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1 Introduction
Let f (z) be a meromorphic function in the whole complex plane ℂ. It is assumed that

the reader is familiar with the standard symbols and fundamental results of Nevanlinna

theory such as the characteristic function T (r, f ), proximity function m(r, f ), counting

function N(r, f ), the first and second main theorem etc.,(see [1,2]). The notation S(r, f )

denotes any quantity that satisfies the condition: S(r, f ) = o(T (r, f )) as r ® ∞ possibly

outside an exceptional set of r of finite linear measure. A meromorphic a(z) is called a

small function of f (z) if and only if T (r, a(z)) = S(r, f ). A polynomial Q(z, f ) is called

a differential-difference polynomial in f whenever f is a polynomial in f (z), its deriva-

tives and its shifts f (z+c), with small functions of f again as the coefficients. Denote Δc

f := f (z+c) - f (z), and �n
c f = �n−1

c (�cf ) for all n Î N, n ≥ 2, where c is nonzero com-

plex constant.

Recently, Yang and Laine [3] proved:

Theorem A Let p be a non-vanishing polynomial, and let b, c be nonzero complex

numbers. If p is nonconstant, then the differential equation

f 3 + p(z)f ′′ = c sin bz (1:1)

admits no transcendental entire solutions, while if p is constant, then the equation

admits three distinct transcendental entire solutions, provided ( pb
2

27 )
3 = 1

4 c
2.

Remark 1. As an example of the case with p(z) constant, recall the nonlinear differ-

ential equation

4f 3 + 3f ′′ = − sin 3z. (1:2)
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As pointed out by Li and Yang [4], Equation (1.2) admits exactly three distinct

transcendental

entire solutions: f1(z) = sinz, f2(z) =
√
3
2 cos z − 1

2 sin z, f3(z) = −√
3

2 cos z − 1
2 sin z. It

is easy to see the condition given in Theorem A is satisfied.

Very recently, Yang and Laine [3] present some studies on differential-difference ana-

logues of Equation (1.2) showing that similar conclusions follow if one restricts the

solutions to be of finite order. Yang and Laine [3] obtained:

Theorem B A nonlinear difference equation

f 3(z) + q(z)f (z + 1) = c sin bz, (1:3)

where q(z) is a nonconstant polynomial and b, c Î ℂ are nonzero constants, does not

admit entire solutions of finite order. If q(z) = q is a nonzero constant, then Equation

(1.3) possesses three distinct entire solutions of finite order, provided b = 3πn and

q3 = (−1)n+1 27
4 c2 for a nonzero integer n.

Theorem C Let p, q be polynomials. Then a nonlinear difference equation

f 2(z) + q(z)f (z + 1) = p(z)

has no transcendental entire solutions of finite order.

In this article, by the same method of [3], we replace f (z + 1) by Δ f (z) in Theorem

B. We obtain:

Theorem 1 A nonlinear difference equation

f 3(z) + q(z)�f (z) = c sin bz (1:4)

where q(z) is a nonconstant polynomial and b, c Î ℂ are nonzero constants, does not

admit entire solutions of finite order. If q(z) = q is a nonzero constant, then equation

(1.3) possesses three distinct entire solutions of finite order, provided b = 3πn(n must

be odd integer) and q3 = 27
32 c

2 for a nonzero integer n. Without loss of generality, we

may assume Δf (z) = f (z + 1) - f (z) in (1.4).

Example 1. In the special case of

f 3(z) +
3
2
[f (z + 1) − f (z)] = 2 sin 3πz,

a finite order entire solution is

f1(z) = −2 sinπz = −1
i
(eiπz − e−iπz).

The other two immediately follow from the conditions above:

f2(z) =
1
−i

(εeiπz − ε2e−iπz) = sinπz −
√
3 cosπz,

f3(z) = −1
i
(ε2eiπz − εe−iπz) = sinπz +

√
3 cosπz,

where ε := − 1
2 +

√
3
2 i is a cubic of unity.

Theorem 2. A nonlinear difference equation

f 3(z) + q(z)�2f (z) = c sin bz, (1:5)
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where q(z) is a nonconstant polynomial and b, c Î ℂ are nonzero constants, does not

admit entire solutions of finite order. If q(z) = q is a nonzero constant, then equation

(1.5) possesses three distinct entire solutions of finite order, provided b = 3πn(n must

be odd integer) and q3 = − 27
256 c

2 for a nonzero integer n. Without loss of generality,

we may assume Δf (z) = f (z + 1) - f (z) in (1.5).

We also replace f (z + c) by Δ f (z) in the above Theorem C. We obtain:

Theorem 3 Let p, q be polynomials and let m, n be positive integers satisfying m ≥ 3.

Then a nonlinear difference equation

f m(z) + q(z)�nf (z) = p(z) (1:6)

has no transcendental entire solutions of finite order. With out loss of generality, we

may assume Δ f (z) = f (z + 1) - f (z) in (1.6).

In 1959, Hayman [5] proposed:

Conjecture A If f is a transcendental meromorphic function, then f n f’ assumes

every finite non-zero complex number infinitely often for any positive integer n.

Hayman [5,6] himself confirmed it for n ≥ 3 and for n ≥ 2 in the case of entire f.

Further, it was proved by Mues [7] when n ≥ 2; Clunie [8] when n ≥ 1 and f is entire;

Bergweiler and Eremenko [9] verified the case when n = 1 and f is of finite order, and

finally by Chen and Fang [10] for the case n = 1. For an analogue result in difference,

in 2007, Laine and Yang [11] proved:

Theorem D Let f be a transcendental entire function of finite order and c be non-

zero complex constant. Then for n ≥ 2, f (z)n f (z + c) assumes every non-zero value a

Î ℂ infinitely often.

Recently, Liu and Yang [12] improved Theorem D and obtained the next result.

Theorem E Let f be a transcendental entire function of finite order, and c be a non-

zero complex constant. Then, for n ≥ 2; f (z)n f (z + c) - p(z) has infinitely many zeros,

where p(z) is a non-zero polynomial.

Very recently, Qi et al. [13] obtained the following uniqueness theorem about the

above results.

Theorem F [13] Let f and g be transcendental entire functions of finite order, and c

be a non-zero complex constant; let n ≥ 6 be an integer. If f n f (z + c), gng(z + c) share

z CM, then f = t1g for a constant t1 that satisfies tn+11 = 1.

In the present paper, we get analogue results in difference, along with the following.

Theorem 4 Let f be a transcendental meromorphic function of finite order r, and a
(z) be a small function with respect to f (z). Suppose that c is a nonzero complex con-

stant and l, μ are constants, n, m are positive integers.

If l ≠ 0 and n ≥ 3m + 2, then f (z)n (μ f m(z + c) + l) - a(z) has infinitely many

zeros.

If l = 0 and n + m ≥ 3, then f (z)n(μ f m(z + c)) - a(z) has infinitely many zeros.

Theorem 5 Let f and g be transcendental entire functions of finite order, and c be a

non-zero complex constant. Suppose that and l, μ are constants, n, m are distinct

positive integers.

If l ≠ 0 and n ≥ 4m + 5 and f (z)n(μ f (z + c)m + l), g(z)n(μ f (z + c)m + l) share a(z)
CM, then

1. f (z) ≡ tg(z) (where t is a constant and tn = 1); or
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2. f n(z)(μ f m (z + c) + l)gn(z)(μg m (z + c) + l) ≡ a2(z).

If l = 0 and n + m ≥ 9 and f (z)n(μ f (z + c)m), g(z)n (μ f (z + c)m) share a(z) CM, then

1. f ≡ h1g(h1 is a constant and hn+m1 = 1); or

2. f g = h2(h2 is a constant).

Remark 2. Some ideas of this paper are based on[3,13,14].

2 Some Lemmas
In order to prove our theorem, we need the following Lemmas:

As far as Clunie type lemmas are concerned, same conclusions hold as long as the

proximity functions of the coefficients a(z) satisfy m(r, a) = S(r, f ). The next lemma is

a rather general variant of difference counterpart of the Clunie Lemma, see [15], for

the corresponding results on differential polynomials, see [16].

Lemma 2.1 Let f be a transcendental meromorphic solution of finite order r of a dif-

ference equation of the form

H(z, f )P(z, f ) = Q(z, f ),

where H (z, f ), P(z, f ), Q(z, f ) are difference polynomials in f such that the total

degree of H (z, f ) in f and its shifts is n, and the corresponding total degree of Q(z, f )

is ≤ n. If H (z, f ) contains just one term of maximal total degree, then for any ε > 0,

m(r,P(z, f )) = O(rρ−1+ε) + S(r, f ),

possibly outside of an exceptional set of finite logarithmic measure.

Lemma 2.2 [17,18] Let f be a transcendental meromorphic function of finite order r.
Then for any given complex numbers c1, c2, and for each ε > 0,

m
(
r,
f (z + c1)
f (z + c2)

)
= O(rρ−1+ε).

Lemma 2.3 [19] Suppose c is a nonzero constant and a is a nonconstant mero-

morphic function. Then the differential equation f 2 + (c f (n))2 = a has no transcen-

dental meromorphic solutions satisfying T (r, a) = S(r, f ).

Lemma 2.4 [17] Let f be a meromorphic function of finite order r and c is a non-

zero complex constant. Then, for each ε > 0, We have

T(r, f (z + c)) = T(r, f ) +O(rρ−1+ε) +O(log r).

It is evident that S(r, f (z + c)) = S(r, f ) from Lemma 2.4.

Lemma 2.5 [17] Let f be a meromorphic function with finite exponent of convergence

of poles λ( 1f ) and c is a non-zero complex constant. Then, for each ε > 0, We have

N(r, f (z + c)) = N(r, f ) +O(rρ−1+ε) +O(log r).

Lemma 2.6 Let f (z), n, m, μ , l and c be as in Theorem 5. Denote F (z) = f n (z)(μ f m

(z)+c). Then

T(r, F) = (n + k)T(r, f ) + S(r, f ), (2:1)
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where k is a real constant and k Î [-2m, m].

Proof. It is easy to see F (z) is not a constant. Otherwise, we may set d = f n(z)(μ f m

(z + c) + l) (d is a constant). So nT (r, f ) = T (r, μ f m (z + c) + l) + O(1) = mT

(r, f ) + S(r, f ). It is contradict with m, n are distinct.

Case 1. l ≠ 0, Using Lemma 2.4, we have

T(r, F(z)) = T(r, f n(z)(μf m(z) + c)) ≤ nT(r, f (z)) +mT(r, f (z + c))

≤ (n +m)T(r, f (z)) +O(rρ−1) + S(r, f (z)).

On the other hand, using Lemma 2.2, we have

(n +m)T(r, f (z)) = T(r, f n+m(z)) + S(r, f (z)) ≤ T
(
r,
f n+m(z)
F(z)

)
+ T(r, F(z)) + S(r, f (z))

≤ T
(
r,
f n(z)(μf m(z + c) + λ)

f n+m(z)

)
+ T(r, F(z)) + S(r, f (z))

≤ T
(
r,
f m(z + c)
f m(z)

)
+mT(r, f ) + T(r, F(z)) + S(r, f (z))

≤ mm (r, f (z + c)) + 2mT(r, f ) + T(r, F(z)) + S(r, f (z))

≤ mm
(
r,
f (z + c)
f (z)

)
+ 3mT(r, f ) + T(r, F(z)) + S(r, f (z)),

that is

(n−2m)T(r, f ) +O(rρ−1) +S(r, f (z)) ≤ T(r, F) ≤ (n+m)T(r, f ) +O(rρ−1) +S(r, f (z)).

So

T(r, F) = (n + k)T(r, f ) + S(r, f ), k ∈ [−2m,m]

Case 2. l = 0 By the same method of case 1 and Lemma 2.4, we obtain

T(r, F) = (n +m)T(r, f ) + S(r, f ) (2:2)

The proof of Theorem 5 is complete.

Lemma 2.7 [20] Let F and G be two nonconstant meromorphic functions. If F and

G share 1 CM, then one of the following three cases holds:

(1) max{T(r, F), T(r, G)} ≤ N2

(
r,
1
F

)
+N2

(
r,

1
G

)
+N2(r, F) +N2(r, G) + S(r, F) + S(r, G);

(2) F = G; (3)FG = 1.
(2:3)

where N2(r, 1F ) denotes the counting function of zeros of F such that simple zeros

are counted once and multiple zero twice.

3 Proof of Theorem 1
Let f be an entire solution of Equation (1.4). Without loss of generality, we may

assume that f is transcendental entire.

Differentiating (1.4) results in

3f 2(z)f ′(z) + q′(z)f (z + 1) − q′(z)f (z) + q(z)f ′(z + 1) − q(z)f ′(z) = bc cos bz. (3:1)

Combining (3.1) and (1.4), we get

[bf 3(z) + bq(z)(f (z + 1) − f (z))]2 + [3f 2(z)f ′(z)

+q′(z)f (z + 1) − q′(z)f (z) + q(z)f ′(z + 1) − q(z)f ′(z)]2 = b2c2.

Qi et al. Journal of Inequalities and Applications 2011, 2011:50
http://www.journalofinequalitiesandapplications.com/content/2011/1/50

Page 5 of 10



This means that

f 4(z)(b2f 2(z) + 9f ′2(z)) = T4(z, f ), (3:2)

where T4(z, f ) is a differential-difference polynomial of f , of total degree at most 4.

If now T4(z, f ) vanishes identically, then f ′ = i b3 f or f ′ = −i b3 f , and therefore,

f ′′ +
(
b
3

)2

f = 0. (3:3)

Otherwise, the Clunie lemma applied to a differential-difference equation, see

Remark after Lemma 2.1, implies that

T(r, b2f 2 + 9(f ′)2) = m(r, b2f 2 + 9(f ′)2) = S(r, f ). (3:4)

Therefore, a := b2 f 2 + 9(f’)2 is a small function of f , not vanishing identically. By

Lemma 2.3, a must be a constant. Differentiating b2 f 2 + 9(f’)2 = a, we immediately

conclude that (3.3) holds in this case as well. Solving (3.3) shows that f must be of the

form

f (z) = c1e
ibz
3 + c2e

− ibz
3 . (3:5)

Substituting the preceding expression of f into the original difference equation (1.4),

expressing sin bz in the terms of exponential function, and denoting w(z) := e
ibz
3 , an

elementary computation results in
(
c31 +

ic
2

)
w6+

(
3c21c2 + c1q(z)e

ib
3 − c1q(z)

)
w4+

(
3c1c22 + c2q(z)e

−ib
3 − c2q(z)

)
w2+c32−

ic
2

= 0,

where

a6 = c31+
1
2
ic, a4 = 3c21c2+c1q(z)e

ib
3 −c1q(z), a2 = 3c1c22+c2q(z)e

−ib
3 −c2q(z), a0 = c32−

1
2
ic.

Since w(z) is transcendental, we must have a0 = a2 = a4 = a6 = 0. Therefore, c1 ≠ 0,

c2 ≠ 0, and the condition a4 = 0 implies that q(z) is a constant, say q ≠ 0. Combing

now the conditions a4 = 0 and a2 = 0 we conclude that q(e
ib
3 − e− ib

3 ) = 0, and then

e
2ib
3 = 1 = e2πin, hence b = 3πn. The connection between q and c now follows from

3c1c2 + (-1)n q - q = 0 and (c1c2)3 = 1
4 c

2. We obtain, 27c31c
3
2 = q3[1 − (−1)n]3, so n

must be an odd. Finally, q3 = 27
32 c

2. The proof of Theorem 1 is complete.

4 Proof of Theorem 2
Due to the same idea of Proof Theorem 1, we omit the proof.

5 Proof of Theorem 3
Suppose that f is a transcendental entire solution of finite order r to Equation (1.6).

Without loss of generality, we may assume that q(z) does not vanish identically. From

(1.6), we readily conclude by Lemma 2.2 that

mm(r, f ) = m(r, p(z) − q(z)�nf (z)) ≤ m(r, �nf (z)) +O(log r)

≤ m
(
r,
f (z + n)
f (z)

)
+m

(
r,
f (z + n − 1)

f (z)

)
+ · · · +m

(
r,
f (z + 1)
f (z)

)
+ 2m(r, f ) +O(log r),

= 2m(r, f ) +O(rρ−1+ε) +O(log r),
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and then

(m − 2)T(r, f ) = (m − 2)m(r, f ) ≤ O(rρ−1+ε) +O(log r).

By the m ≥ 3, hence r(f) <r, a contradiction.

6 Proof of Theorem 4
Case 1. If l ≠ 0, then we denote F (z) = f (z)n(μ f (z + c)m + l). From Lemma 2.6, we

have (2.1) and F (z) is not a constant. Since f (z) is a transcendental entire function of

finite order, we get T (r, f (z + c)) = T (r, f (z)) + S(r, f ) from Lemma 2.4. By the

second main theorem, we have

(n + k)T(r, f (z)) = T(r, F(z)) + S(r, f )

≤ N(r, 1/F(z)) +N(r, 1/(F(z) − α(z)) + S(r, f )

≤ N(r, 1/f (z)) +N(r, 1/(f m(z + c) + λ/μ)) +N(r, 1/(F(z) − α(z))

≤ (m + 1)T(r, f (z)) +N(r, 1/(F(z) − α(z)) + S(r, f ).

Thus

(n + k − m − 1)T(r, f (z)) ≤ N(r, 1/(F(z) − α(z)) + S(r, f ).

The assertion follows by n ≥ 3m + 2.

Case 2. If l = 0, then we denote F (z) = f (z)n (μ f (z + c)m). From Lemma 2.6, we

have (2.2) and F (z) is not a constant,

(n +m)T(r, f (z)) = T(r, F(z)) + S(r, f )

≤ N(r, 1/F(z)) +N(r, 1/(F(z) − α(z)) + S(r, f )

≤ N(r, 1/f (z)) +N(r, 1/(f (z + c))) +N(r, 1/(F(z) − α(z)) + S(r, f )

≤ 2T(r, f ) +N(r, 1/(F(z) − α(z)) + S(r, f ).

Thus

(n +m − 2)T(r, f (z)) ≤ N(r, 1/(F(z) − α(z)) + S(r, f ).

The assertion follows by n + m ≥ 3. The Proof of Theorem 5 is complete.

7 Proof of Theorem 5
Case 1 l ≠ 0. Denote

F(z) =
f (z)n(μf (z + c)m + λ)

α(z)
, G(z) =

g(z)n(μg(z + c)m + λ)
α(z)

. (7:1)

Then F (z) and G(z) share 1 CM except the zeros or poles of a(z), and

T(r, F) = (n + k)T(r, f ) + S(r, f ), k ∈ [−2m,m] (7:2)

T(r, G) = (n + k)T(r, g) + S(r, g), k ∈ [−2m,m] (7:3)

from Lemma 2.6. By the definition of F , we get N2(r, F (z)) = S(r, f ) and

N2(r, 1/F(z)) ≤ 2N(r, 1/f (z)) +N(r, 1/(f m(z + c) + λ/μ))

≤ 2T(r, f (z)) +mT(r, f (z + c)) + S(r, f (z))

≤ (m + 2)T(r, f ) + S(r, f ).
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Then

N2(r, F) +N2(r, 1/F) ≤ (m + 2)T(r, f ) + S(r, f ). (7:4)

Similarly,

N2(r, G) +N2(r, 1/G) ≤ (m + 2)T(r, g) + S(r, g). (7:5)

Suppose that (2.3) hold. Substituting (7.4) and (7.5) into (2.3), we obtain

max{T(r, F), T(r, G)} ≤ (m + 2)(T(r, f ) + T(r, g)) + S(r, f ) + s(r, g).

Then

T(r, f ) + T(r, g) ≤ (2m + 4){T(r, f (z)) + T(r, g(z))} + S(r, f ) + S(r, g).

Substituting (7.2) and (7.3) into the last inequality, yields

(n + k − 2m − 4){T(r, F) + T(r, G)} ≤ S(r, f ) + S(r, g),

contradicting with n ≥ 4m + 5. Hence F (z) ≡ G(z) or F (z)G(z) ≡ a(z)2 by Lemma

2.7, We discuss the following two subcases.

Subcase 1.1. Suppose that F (z) ≡ G(z). That f (z)n(μ f (z + c)m + l) ≡ g(z)n(μg (z + c)
m + l). Let h(z) = f (z)/g(z). If h(z)n hm(z + c) ≢1, we have

gm(z + c) =
λ

μ

1 − h(z)n

h(z)nhm(z + c) − 1
. (7:6)

Then h is a transcendental meromorphic function with finite order since g is trans-

cendental. By Lemma 2.4, we have

T(r, h(z + c)) = T(r, h(z)) + S(r, h). (7:7)

By the condition n ≥ 4m + 5, it is easily to show that h(z)n hm(z + c) is not a con-

stant from (7.7).

Suppose that there exists a point z0 such that h(z0 )nhm(z0 + c) = 1. Then h(z0 )
n = 1

from (7.6) since g(z) is entire function. Hence hm(z0 + c) = 1 and

N(r, 1/(h(z)nhm(z + c) − 1)) ≤ N(r, 1/hm(z + c) − 1) ≤ mT(r, h(z)) + S(r, h)

Denote H := h(z)nhm(z + c), from the above inequality and (7.7), we apply the second

main theorem to H , resulting in

T(r,H) ≤ N(r,H) +N(r,
1
H
) +N(r,

1
H − 1

) + S(r, h)

≤ N(r, 1/(h(z)nhm(z + c))) +N(r, (h(z)nhm(z + c)) +mT(r, h(z)) + S(r, h)

≤ N(r, h) +N(r, h(z + c)) +N(r, 1/h) +N(r, 1/h(z + c)) +mT(r, h(z)) + S(r, h)

≤ (m + 4)T(r, h) + S(r, h).

Noting this, we have

nT(r, h) = T
(
r,

H
hm(z + c)

)
≤ T(r,H) + T(r, hm(z + c)) +O(1)

≤ (2m + 4)T(r, h) +O(rρ−1+ε) + S(r, h),

and then

(n − 2m − 4)T(r, h) ≤ O(rρ−1+ε) + S(r, h),
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which is a contradiction since n ≥ 4m + 5. Therefore, h(z)n h(z + c)m ≡ 1. Thus hn(z) ≡ 1.

Hence f (z) ≡ tg(z), where t is a constant and tn = 1.

Subcase 1.2. Suppose that F (z)G(z) ≡ a(z)2 . That is

f n(z)(μf m(z + c) + λ)gn(z)(μgm(z + c) + λ) ≡ α2(z).

Case 2. l = 0. Denote

F(z) =
f (z)n(μf (z + c)m)

α(z)
, G(z) =

g(z)n(μg(z + c)m)
α(z)

. (7:8)

Then F (z) and G(z) share 1 CM except the zeros or poles of a(z), and

T(r, F) = (n +m)T(r, f ) + S(r, f ), (7:9)

T(r, G) = (n +m)T(r, g) + S(r, g), (7:10)

from Lemma 2.6. By the definition of F , we get N2(r, F (z)) = S(r, f ) and

N2(r, 1/F(z)) ≤ 2N(r, 1/f (z)) + 2N(r, 1/(f (z + c))

≤ 2T(r, f (z)) + 2T(r, f (z + c)) + S(r, f (z))

≤ 4T(r, f ) + S(r, f ).

Then

N2(r, F) +N2(r, 1/F) ≤ 4T(r, f ) +O(rρ−1+ε) + S(r, f ). (7:11)

Similarly,

N2(r, G) +N2(r, 1/G) ≤ 4T(r, g) +O(rρ−1+ε) + S(r, g). (7:12)

Suppose that (2.3) hold. Substituting (7.11) and (7.12) into (2.3), we obtain

max{T(r, F), T(r, G)} ≤ 4(T(r, F) + T(r, G)) + S(r, f ) + s(r, g).

Then

T(r, F) + T(r, G) ≤ 8{T(r, f (z)) + T(r, g(z))} + S(r, f ) + S(r, g).

Substituting (7.9) and (7.10) into the last inequality, yields

(n +m − 8){T(r, F) + T(r, G)} ≤ S(r, f ) + S(r, g),

contradicting with n + m ≥ 9. Hence F (z) ≡ G(z) or F (z)G(z) ≡ a(z)2 by Lemma 2.7.

We discuss the following two subcases.

subcase 2.1. Suppose that F (z) ≡ G(z). That f (z)n (μ f (z + c)m ) ≡ g(z)n (μg (z + c)m).

Let h1(z) = f (z)/g(z). If h1(z) is not a constant, we have

h1(z)nh1(z + c)m ≡ 1. (7:13)

Then h1 is a meromorphic function with finite order since g and f are of finite order.

By Lemma 2.4 and (7.13), we have

mT(r, h1(z + c)) = nT(r, h1(z)) + S(r, h1), (7:14)

and then

m = n, (7:15)
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a contradiction. So h1(z) must be a constant, then f ≡ h1g(h1 is a constant and hn+m = 1).

subcase 2.2. Suppose that F (z)G(z) ≡ a(z)2. That is

f n(z)(μf m(z + c))gn(z)(μgm(z + c)) ≡ α2(z).

Let f (z)g(z) = h2(z), By a reasoning similar to that mentioned at the end of the proof

of Case2.1, we know that h2(z) must be a constant, then f g = h2(h2 is a constant). The

proof of Theorem 6 is complete.
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