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Abstract

In this paper, some new nonlinear Gronwall-Bellman-type discrete inequalities are
established, which can be used as a handy tool in the research of qualitative and
quantitative properties of solutions of certain difference equations. The established
results generalize some of the recent results obtained by Cheung and Ma,
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1 Introduction
In the past few years, the research of Gronwall-Bellman-type finite difference inequal-

ities has been payed much attention by many authors, which play an important role in

the study of qualitative as well as quantitative properties of solutions of difference

equations, such as boundedness, stability, existence, uniqueness, continuous depen-

dence and so on. Many difference inequalities have been established (see [1]-[11] and

the references therein). But in the analysis of some certain difference equations, the

bounds provided by the earlier inequalities are inadequate and it is necessary to seek

some new discrete inequalities in order to obtain a diversity of desired results. Our

aim in this paper is to establish some new nonlinear Gronwall-Bellman-type discrete

inequalities, which provide new bounds for unknown functions lying in these inequal-

ities. We will illustrate the usefulness of the established results by applying them to

study the boundedness, uniqueness, and continuous dependence on initial data of solu-

tions of certain difference equations. Our results generalize some of the results in [1,2].

Throughout this paper, R denotes the set of real numbers and R+ = [0, ∞), while Z

denotes the set of integers. The definition domain and the image of a function f are

denoted by Dom(f) and Im(f), respectively. I := [m0, ∞) ⋂ Z and J := [n0, ∞) ⋂ Z are

two fixed lattices of integral points in R. Let Ω := I × J ⊂ Z2, and ℘(Ω) denotes the set

of all R-valued functions on Ω, while ℘+(Ω) denotes the set of all R+-valued functions

on Ω. For the sake of convenience, we extend the domain of definition of each func-

tion in ℘(Ω) and ℘+(Ω) trivially to the ambient space Z2. So, for example, a function

in ℘(Ω) is regarded as a function defined on Z2 with support in ℘(Ω). As usual, the

collection of all continuous functions of a topological space X into a topological space

Y will be denoted by C(X, Y). Finally, the partial difference operators Δ1 and Δ2 on u
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Î ℘(Z2) are defined as Δ1u(m, n) = u(m + 1, n) - u(m, n), Δ2u(m, n) = u(m, n + 1) - u

(m, n).

2 Main results
Theorem 1 Let Ω(s, t) = ([m0, s] × [n0, t]) ⋂ Ω, (s, t) Î Ω. Suppose u(m, n), a(m, n), k

(m, n), b(m, n) Î ℘+(Ω), and a, k are nondecreasing in every variable. h, � Î C(R+, R

+), and h are strictly increasing, while � is nondecreasing with �(r) > 0 for r > 0. If for

(m, n) Î Ω, u(m, n), satisfies the following inequality

η(u(m,n)) ≤ a(m,n) + k(m,n)
m−1∑
s=m0

n−1∑
t=n0

b(s, t)ϕ(u(s, t)), (1)

then for (m,n) ∈ �(m1,n1), we have

u(m,n) ≤ η−1

{
G−1

[
G(a(m,n)) + k(m,n)

m−1∑
s=m0

n−1∑
t=n0

b(s, t)

]}
, (2)

where

G(z) =
∫ z

z0

1
ϕ(η−1(z))

dz, z ≥ z0 > 0, (3)

and m1, n1 are chosen so that for (m,n) ∈ �(m1,n1),

G(a(m,n)) + k(m,n)
m−1∑
s=m0

n−1∑
t=n0

b(s, t) ∈ Dom(G−1). (4)

Proof Given (X,Y) ∈ �(m1,n1), and let (m, n) Î Ω(X, Y). Then considering a, k are both

nondecreasing, from (1), we have

η(u(m,n)) ≤ a(X,Y) + k(X,Y)
m−1∑
s=m0

n−1∑
t=n0

b(s, t)ϕ(u(s, t)), (m, n) ∈ �(X,Y) (5)

Let the right side of (5) be v(m, n). Then

u(m,n) ≤ η−1(v(m,n)), (m, n) ∈ �(X,Y), (6)

and

�1v(m,n) = v(m + 1,n) − v(m,n) = k(X,Y)
n−1∑
t=n0

b(m, t)ϕ(u(m, t))

≤ k(X,Y)
n−1∑
t=n0

b(m, t)ϕ
(
η−1(v(m, t))

) ≤ k(X,Y)ϕ
(
η−1(v(m,n − 1))

) n−1∑
t=n0

b(m, t).

(7)

On the other hand, according to the Mean-Value Theorem for integrals, there exists

ξ such that v(m, n) ≤ ξ ≤ v(m + 1, n), and

�1G(v(m,n)) = G(v(m + 1,n)) − G(v(m,n))

=

v(m+1,n)∫
v(m,n)

1
ϕ(η−1(z))

dz =
�1v(m,n)
ϕ(η−1(ξ))

≤ �1v(m,n)
ϕ(η−1(v(m,n)))

.
(8)
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Combining (7) and (8), we obtain

�1G(v(m,n)) ≤ k(X,Y)
ϕ

(
η−1(v(m,n − 1))

)
ϕ

(
η−1(v(m,n))

) n−1∑
t=n0

b(m, t) ≤ k(X,Y)
n−1∑
t=n0

b(m, t). (9)

Setting m = s, and a summary on both sides of (9) with respect to s from m0 to m -

1 yields

m−1∑
s=m0

�1G(v(s,n)) ≤ k(X,Y)
m−1∑
s=m0

n−1∑
t=n0

b(s, t), (10)

that is,

G(v(m,n)) − G(v(m0,n)) ≤ k(X,Y)
m−1∑
s=m0

n−1∑
t=n0

b(s, t). (11)

Considering G is strictly increasing, and v(m0, n) = a(X, Y), it follows

v(m,n) ≤ G−1

[
G(a(X,Y)) + k(X,Y)

m−1∑
s=m0

n−1∑
t=n0

b(s, t)

]
, (m,n) ∈ �(X,Y). (12)

Combining (6) and (12), we have

u(m,n) ≤ η−1

{
G−1

[
G(a(X,Y)) + k(X,Y)

m−1∑
s=m0

n−1∑
t=n0

b(s, t)

]}
, (m,n) ∈ �(X,Y).(13)

Take m = X, n = Y in (13), yields

u(X,Y) ≤ η−1

{
G−1

[
G(a(X,Y)) + k(X,Y)

X−1∑
s=m0

Y−1∑
t=n0

b(s, t)

]}
. (14)

Since (X,Y) ∈ �(m1,n1) are selected arbitrarily, then in fact (14) holds for

∀(m,n) ∈ �(m1, n1), that is

u(m,n) ≤ η−1

{
G−1

[
G(a(m,n)) + k(m,n)

m−1∑
s=m0

n−1∑
t=n0

b(s, t)

]}
, (m,n) ∈ �(m1,n1),

which is the desired result. □
Remark 1 If we take a(m, n) ≡ c, k(m, n) ≡ 1, h(u) = ua in Theorem 2.1, where c ≥ 0,

a > 0 are constants, then Theorem 2.1 reduces to [1, Theorem 2.1].

Corollary 1 Under the conditions of Theorem 2.1, if for (m, n) Î Ω, u(m, n) satisfies

the following inequality

η(u(m,n)) ≤ a(m,n) + k(m,n)
m−1∑
s=m0

n−1∑
t=n0

b(s, t)η(u(s, t)), (15)

then for (m,n) ∈ �(m1,n1), we have

u(m,n) ≤ η−1(a(m,n)eJ(m,n)), (16)
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where

J(m,n) = k(m,n)
m−1∑
s=m0

n−1∑
t=n0

b(s, t). (17)

Remark 2 In Corollary 2.2, if we take h for different functions, then we have various

bounds for u(m, n). For example, if we take h(u) = u, then we obtain u(m, n) ≤ a(m,

n)eJ(m, n), while u(m,n) ≤ C
1
p e

J(m,n)
p , if we take h(u) = up, a(m, n) ≡ C, k(m, n) ≡ 1.

Following in a same manner as the proof of Theorem 2.1, we can obtain the follow-

ing three theorems.

Theorem 2 Let Ω(s, t) = ([m0, s] × [t, ∞)) ⋂ Ω, (s, t) Î Ω. Suppose u, a, k, b, h, � are

defined the same as in Theorem 2.1. If for (m, n) Î Ω, u(m, n) satisfies the following

inequality

η(u(m,n)) ≤ a(m,n) + k(m,n)
m−1∑
s=m0

∞∑
t=n+1

b(s, t)ϕ(u(s, t)), (18)

then for (m,n) ∈ �(m1,n1), we have

u(m,n) ≤ η−1

{
G−1

[
G(a(m,n)) + k(m,n)

m−1∑
s=m0

∞∑
t=n+1

b(s, t)

]}
, (19)

where G is defined as in Theorem 2.1, and m1, n1 are chosen so that for

G(a(m,n)) + k(m,n)
∑m−1

s=m0

∑∞
t=n+1

b(s, t) ∈ Dom(G−1),

G(a(m,n)) + k(m,n)
∑m−1

s=m0

∑∞
t=n+1

b(s, t) ∈ Dom(G−1).

Theorem 3 Let Ω(s, t) = ([s, ∞) × [n0, t]) ⋂ Ω, (s, t) Î Ω. Suppose u, a, k, b, h, � are

defined the same as in Theorem 2.1. If for (m, n) Î Ω, u(m, n) satisfies the following

inequality

η(u(m,n)) ≤ a(m,n) + k(m,n)
∞∑

s=m+1

n−1∑
t=n0

b(s, t)ϕ(u(s, t)), (20)

then for (m,n) ∈ �(m1,n1), we have

u(m,n) ≤ η−1

{
G−1

[
G(a(m,n)) + k(m,n)

∞∑
s=m+1

n−1∑
t=n0

b(s, t)

]}
, (21)

where G is defined as in Theorem 2.1, and m1, n1 are chosen so that for

G(a(m,n)) + k(m,n)
∑∞

s=m+1
∑n−1

t=n0 b(s, t) ∈ Dom(G−1),

G(a(m,n)) + k(m,n)
∑∞

s=m+1
∑n−1

t=n0 b(s, t) ∈ Dom(G−1).

Theorem 4 Let Ω(s, t) = ([s, ∞) × [t, ∞)) ⋂ Ω, (s, t) Î Ω. Suppose u, a, k, b, h, � are

defined the same as in Theorem 2.1. If for (m, n) Î Ω, u(m, n) satisfies the following

inequality

η(u(m,n)) ≤ a(m,n) + k(m,n)
∞∑

s=m+1

∞∑
t=n+1

b(s, t)ϕ(u(s, t)), (22)
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then for (m,n) ∈ �(m1,n1), we have

u(m,n) ≤ η−1

{
G−1

[
G(a(m,n)) + k(m,n)

∞∑
s=m+1

∞∑
t=n+1

b(s, t)

]}
, (23)

where G is defined as in Theorem 2.1, and m1, n1 are chosen so that for

G(a(m,n)) + k(m,n)
∑∞

s=m+1
∑∞

t=n+1 b(s, t) ∈ Dom(G−1),

G(a(m,n)) + k(m,n)
∑∞

s=m+1
∑∞

t=n+1 b(s, t) ∈ Dom(G−1).

In the following theorem, we will study a class of Volterra-Fredholm type difference

inequality.

Theorem 5 Suppose u, h, � are defined as in Theorem 2.1, a Î ℘+(Ω), M, N, C are

constants, and M Î [m0, ∞) ⋂ Z, N Î [n0, ∞) ⋂ Z, C ≥ 0. If for (m, n) Î Ω, u(m, n)

satisfies the following inequality

η(u(m,n)) ≤ C +
m−1∑
s=m0

n−1∑
t=n0

a(s, t)ϕ(u(s, t)) +
M−1∑
s=m0

N−1∑
t=n0

a(s, t)ϕ(u(s, t)), (24)

then we have

u(m,n) ≤ η−1

{
G−1

{
G

(
G̃−1

[
M−1∑
s=m0

N−1∑
t=n0

a(s, t)

])
+

m−1∑
s=m0

n−1∑
t=n0

a(s, t)

}}
, (m,n) ∈ �, (25)

provided that G̃(z) = G(2z − C) − G(z)is strictly increasing for z ≥ C, where G is

defined as in (3).

Proof Suppose C > 0, and let the right side of (24) be v(m, n). Then

u(m,n) ≤ η−1(v(m,n)), (m,n) ∈ �, (26)

and

v(m0,n) = C +
M−1∑
s=m0

N−1∑
t=n0

a(s, t)ϕ(u(s, t)). (27)

Furthermore,

�1v(m,n) =
n−1∑
t=n0

a(m, t)ϕ(u(m, t))

≤
n−1∑
t=n0

a(m, t)ϕ(η−1(v(m, t))) ≤ ϕ(η−1(v(m,n − 1)))
n−1∑
t=n0

a(m, t).

(28)

On the other hand, according to the Mean-Value Theorem for integrals, there exists

ξ such that v(m, n) ≤ ξ ≤ v(m + 1, n), and

�1G(v(m,n)) = G(v(m + 1,n)) − G(v(m,n))

=

v(m+1,n)∫
v(m,n)

1
ϕ(η−1(z))

dz =
�1v(m,n)
ϕ(η−1(ξ))

≤ �1v(m,n)
ϕ(η−1(v(m,n)))

.
(29)
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Combining (28) and (29), we obtain

�1G(v(m,n)) ≤ ϕ(η−1(v(m,n − 1)))
ϕ(η−1(v(m,n)))

n−1∑
t=n0

a(m, t) ≤
n−1∑
t=n0

a(m, t). (30)

Setting m = s, and a summary on both sides of (30) with respect to s from m0 to m -

1 yields

m−1∑
s=m0

�1G(v(s,n)) ≤
m−1∑
s=m0

n−1∑
t=n0

a(s, t), (31)

that is,

G(v(m,n)) − G(v(m0,n)) ≤
m−1∑
s=m0

n−1∑
t=n0

a(s, t). (32)

Considering G is strictly increasing, then it follows

v(m,n) ≤ G−1

[
G(v(m0,n)) +

m−1∑
s=m0

n−1∑
t=n0

a(s, t)

]
, (m,n) ∈ �. (33)

Take m = M, n = N in (33), we obtain

v(M,N) ≤ G−1

[
G(v(m0,N)) +

M−1∑
s=m0

N−1∑
t=n0

a(s, t)

]
. (34)

So,

2v(m0,n) − C = C + 2
M−1∑
s=m0

N−1∑
t=n0

a(s, t)ϕ(u(s, t)) = v(M,N)

≤ G−1

[
G(v(m0,N)) +

M−1∑
s=m0

N−1∑
t=n0

a(s, t)

]
= G−1

[
G(v(m0,n)) +

M−1∑
s=m0

N−1∑
t=n0

a(s, t)

]
,

(35)

that is,

G(2v(m0,n) − C) − G(v(m0,n)) ≤
M−1∑
s=m0

N−1∑
t=n0

a(s, t), (36)

which is rewritten as

G̃(v(m0,n)) ≤
M−1∑
s=m0

N−1∑
t=n0

a(s, t). (37)

Since G̃ is strictly increasing, then furthermore we have

v(m0,n) ≤ G̃−1

[
M−1∑
s=m0

N−1∑
t=n0

a(s, t)

]
. (38)

Combining (26), (33), and (38), we obtain the desired inequality.

If C = 0, we can substitute C with ε > 0 in the proof above and then after letting ε ®
0, we obtain the desired result. □
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Remark 3 If we take h(u) = u in Theorem 2.6, then Theorem 2.6 reduces to [2, The-

orem 2.1].

Corollary 2 Under the conditions of Theorem 2.6, if C > 0, and for (m, n) Î Ω, u(m,

n) satisfies the following inequality

η(u(m,n)) ≤ C +
m−1∑
s=m0

n−1∑
t=n0

a(s, t)η(u(s, t)) +
M−1∑
s=m0

N−1∑
t=n0

a(s, t)η(u(s, t)), (39)

then we have

u(m,n) ≤ η−1
{

C

2 − eJ(M,N)
eJ(m,n)

}
, (m,n) ∈ �, (40)

provided that eJ(M, N) < 2, where J(m,n) =
∑m−1

s=m0

∑n−1
t=n0 a(s, t).

Proof From Theorem 2.6, considering h = �, we have

G(z) =
∫ z

z0

1
z
dz = lnz − lnz0 (41)

and

G̃(z) = G(2z − C) − G(z) = ln(2 − C
z
). (42)

Combining (25), (41) and (42), we can deduce the desired result. □
Remark 4 In Corollary 2.7, if we take h for different functions, then we have various

bounds foe u(m, n). For example, if we take h(u) = u, then we obtain

u(m,n) ≤ C
2−eJ(M,N) eJ(m,n). If we take h(u) = up, then we obtain

u(m,n) ≤ { C
2−eJ(M,N) eJ(m,n)}

1
p.

Theorem 6 Suppose u, h, �, a, C, G are defined as in Theorem 2.6. Define

J̃(z) = G(2z − C) − G(z) − ∑M−1
s=m0

∑N−1
t=n0 a(s, t). Furthermore, assume J̃ is increasing, and

∃ξ ≥ C such that J̃(ξ) = 0. If for (m, n) Î Ω, u(m, n) satisfies (24), then

u(m,n) ≤ η−1

{
G−1

[
G(ξ) +

m−1∑
s=m0

n−1∑
t=n0

a(s, t)

]}
, (m,n) ∈ �. (43)

Proof Let the right side of (24) be v(m, n). Then

u(m,n) ≤ η−1(v(m,n)), (m,n) ∈ �. (44)

Similar to the process of (26)-(32), we deduce

v(m,n) ≤ G−1

[
G(v(m0,n)) +

m−1∑
s=m0

n−1∑
t=n0

a(s, t)

]
, (m,n) ∈ �, (45)

and

G(2v(m0,n) − C) − G(v(m0,n)) ≤
M−1∑
s=m0

N−1∑
t=n0

a(s, t), (46)

that is, J̃(v(m0,n)) ≤ 0. Considering J̃(ξ) = 0, then J̃(v(m0,n)) ≤ J̃(ξ). Since J̃ is

increasing, then
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v(m0,n) ≤ ξ . (47)

Combining (45) and (47), we obtain

v(m,n) ≤ G−1

[
G(ξ) +

m−1∑
s=m0

n−1∑
t=n0

a(s, t)

]
, (m,n) ∈ �. (48)

Then by (44) and (48), we obtain the desired inequality. □
Remark 5 If we take h(u) = u in Theorem 2.8, then Theorem 2.8 reduces to [2, The-

orem 2.1’].

3 Applications
In this section, we will present some applications for the established results above, and

show that they are useful in the study of boundedness, uniqueness, and continuous

dependence of solutions of certain difference equations.

Example 1 Consider the following difference equation

�12e
u(m,n) = F(m,n, u(m,n)) (49)

with the initial condition

u(m,n0) = ln
[
ef (m) + 1

]
, u(m0,n) = ln

[
eg(n) + 1

]
, f (m0) = g(n0) = 0, (50)

where u Î ℘+(Ω), F : Ω × R+ ® R, f : I ® R, g : J ® R.

Theorem 7 Suppose u(m, n) is a solution of (49) and (50), and |F(m, n, u)| ≤ b(m, n)

up, ef(m) + eg(n) ≤ C, where p, C are constants, and p > 1, C > 0, b Î ℘+(Ω), then for

(m,n) ∈ �(m1,n1), we have

u(m,n) ≤ ln

{
G−1

[
G(C) +

m−1∑
s=m0

n−1∑
t=n0

b(s, t)

]}
, (51)

where

G(z) =
∫ z

z0

1

(lnz)p
dz, z ≥ z0 > 0, (52)

�(m1,n1) = ([m0,m1] × [n0,n1])
⋂

�, and m1, n1 are chosen so that for

G(C) +
∑m−1

s=m0

∑n−1
t=n0 b(s, t) ∈ Dom(G−1), G(C) +

∑m−1
s=m0

∑n−1
t=n0 b(s, t) ∈ Dom(G−1).

Proof The equivalent form of (49) and (50) can be denoted by

eu(m,n) = ef (m) + eg(n) +
m−1∑
s=m0

n−1∑
t=n0

F(s, t, u(s, t)). (53)

So,

eu(m,n) ≤ ef (m) + eg(n) +
m−1∑
s=m0

n−1∑
t=n0

|F(s, t, u(s, t))| ≤ C +
m−1∑
s=m0

n−1∑
t=n0

b(s, t)up(s, t). (54)

Then, a suitable application of Theorem 2.1 (with h(u) = ea, �(u) = up) to (54) yields

the desired result. □
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Lemma 1 For any u1, u2 Î R+, we have

|u1 − u2| ≤ |eu1 − eu2 |. (55)

Proof Without loss of generality, we assume u1 ≥ u2, and let u2 be fixed. Define

f (z) = (ez − eu2 ) − (z − u2). Then we have f’(z) = ez - 1 ≥ o for z ≥ u2 ≥ 0, which shows

f(z) is nondecreasing on [u2, ∞). So f(u1) ≥ f(u2) = 0, that is, eu1 − eu2 ≥ u1 − u2, which

shows |u1 − u2| ≤ |eu1 − eu2 |. □
Theorem 8 Assume u1, u2 are two solutions of (49) and (50), and |F(m, n, u1) - F(m,

n, u2)| ≤ b(m, n)|u1 - u2|, ∀(m, n) Î Ω, where b Î ℘+(Ω), then u1 ≡ u2, that is, (49)

and (50) has at most one solution.

Proof Since u1, u2 are two solutions of (49) and (50), then from (49), (50), and (53),

we have

eu1(m,n) = ef (m) + eg(n) +
m−1∑
s=m0

n−1∑
t=n0

F(s, t, u1(s, t)) (56)

and

eu2(m,n) = ef (m) + eg(n) +
m−1∑
s=m0

n−1∑
t=n0

F(s, t, u2(s, t)). (57)

By (56) and (57) and Lemma 3.2, we deduce∣∣∣eu1(m,n) − eu2(m,n)
∣∣∣

=

∣∣∣∣∣
m−1∑
s=m0

n−1∑
t=n0

[F(s, t, u1(s, t)) − F(s, t, u2(s, t))]

∣∣∣∣∣
≤

m−1∑
s=m0

n−1∑
t=n0

|F(s, t, u1(s, t)) − F(s, t, u2(s, t))|

≤
m−1∑
s=m0

n−1∑
t=n0

b(s, t)|u1(s, t) − u2(s, t)|

≤
m−1∑
s=m0

n−1∑
t=n0

b(s, t)|eu1(s,t) − eu2(s,t)|.

(58)

A suitable application of Corollary 2.2 to (58) yields |eu1(m,n) − eu2(m,n)| ≤ 0, which

implies u1 ≡ u2, and the proof is complete.

The following theorem deals with the continuous dependence of the solution of (49)

and (50) on the function F and the initial value f(m), g(n). □
Theorem 9 Assume u(m, n) is the solution of (49) and (50), |F(m, n, u1) - F(m, n,

u2)| ≤ b(m, n)|u1 - u2|, ∀(m, n) Î Ω, where b Î ℘+(Ω),

|ef (m) − ef̄(m) + eg(n) − eḡ(n)| ≤ ε, where ε > 0 is a constant. Furthermore, assume

ū ∈ ℘+(�), ū ∈ ℘+(�)is the solution of the following difference equation

�12eū
(m,n) = F̄(m,n, ū(m,n)) (59)
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with the initial condition

ū(m,n0) = ln[ef̄ (m) + 1], ū(m0,n) = ln[eḡ(n) + 1], f̄ (m0) = ḡ(n0) = 0, (60)

where F̄ : � × R+ → R, f̄ : I → R, ḡ : J → R, then

|u(m,n) − ū(m,n)| ≤ 2εeJ(m,n), (61)

where

J(m,n) =
m−1∑
s=m0

n−1∑
t=n0

b(s, t). (62)

Proof From (59) and (60), we deduce

eū(m,n) = ef̄ (m) + eḡ(n) +
m−1∑
s=m0

n−1∑
t=n0

F̄(s, t, ū(s, t)). (63)

Then by a combination of (53) and (63), we deduce∣∣∣eu(m,n) − eū(m,n)
∣∣∣

≤
∣∣∣ef (m) − ef̄(m) + eg(n) − eḡ(n)

∣∣∣ + m−1∑
s=m0

n−1∑
t=n0

|F(s, t, u(s, t)) − F̄(s, t, ū(s, t))|

≤ ε +
m−1∑
s=m0

n−1∑
t=n0

|F(s, t, u(s, t)) − F(s, t, ū(s, t)) + F(s, t, ū(s, t)) − F̄(s, t, ū(s, t))|

≤ ε +
m−1∑
s=m0

n−1∑
t=n0

[|F(s, t, u(s, t)) − F(s, t, ū(s, t))| + |F(s, t, ū(s, t)) − F̄(s, t, ū(s, t))|]

≤ 2ε +
m−1∑
s=m0

n−1∑
t=n0

|F(s, t, u(s, t)) − F(s, t, ū(s, t))|

≤ 2ε +
m−1∑
s=m0

n−1∑
t=n0

b(s, t)|u(s, t) − ū(s, t)|

≤ 2ε +
m−1∑
s=m0

n−1∑
t=n0

b(s, t)|eu(s,t) − eū(s,t)|.

(64)

After a suitable application of Corollary 2.2 to (64), we obtain

|eu(m,n) − eū(m,n)| ≤ 2εeJ(m,n). So from Lemma 3.2, it follows

|u(m,n) − ū(m,n)| ≤ |eu(m,n) − eū(m,n)| ≤ 2εeJ(m,n), which is the desired result. □
Example 2 Consider the following Volterra-Fredholm sum-difference equation

up(m,n) = f p(m) + gp(n) +
m−1∑
s=m0

n−1∑
t=n0

F(s, t, u(s, t)) +
M−1∑
s=m0

N−1∑
t=n0

F(s, t, u(s, t)) (65)

with the initial condition

u(m,n0) = f (m), u(m0,n) = g(n), f (m0) = g(n0) = 0, (66)

where u Î ℘(Ω), F : Ω × R ® R, f : I ® R, g : J ® R, p ≥ 1 is an odd number.

Theorem 10 Suppose u(m, n) is a solution of (65) and (66), and |F(m, n, u)| ≤ a(m,

n) |u|p, |fp(m) + gp(n)| ≤ C, where C > 0 is a constant, and a Î ℘+(Ω), then we have
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|u(m,n)| ≤
{

C

2 − eJ(M,N)
eJ(m,n)

} 1
p (67)

provided eJ(M, N) < 2, where

J(m,n) =
m−1∑
s=m0

n−1∑
t=n0

a(s, t). (68)

Proof From (65) and (66), we have

|u(m,n)|p ≤ |f p(m) + gp(n)| +
m−1∑
s=m0

n−1∑
t=n0

|F(s, t, u(s, t))| +
M−1∑
s=m0

N−1∑
t=n0

|F(s, t, u(s, t))|

≤ C +
m−1∑
s=m0

n−1∑
t=n0

a(s, t)|u(s, t)|p +
M−1∑
s=m0

N−1∑
t=n0

a(s, t)|u(s, t)|p
(69)

Then a suitable application of Corollary 2.7 to (69) yields the desired result. □
Theorem 11 Assume |F(m,n, u1) − F(m,n, u2)| ≤ a(m,n)|up1 − up2|, ∀(m, n) Î Ω,

where a Î ℘+(Ω), and eJ(M, N) < 2, where J(m,n) =
∑m−1

s=m0

∑n−1
t=n0 a(s, t), then (65) and

(66) has at most one solution.

Proof Suppose u1, u2 are two solutions of (65) and (66), then from (65) and (66), we

have ∣∣∣up1(m,n) − up2(m,n)
∣∣∣

=

∣∣∣∣∣
m−1∑
s=m0

n−1∑
t=n0

[F1(s, t, u(s, t)) − F2(s, t, u(s, t))] +
M−1∑
s=m0

N−1∑
t=n0

[F1(s, t, u(s, t)) − F2(s, t, u(s, t))]

∣∣∣∣∣
≤

m−1∑
s=m0

n−1∑
t=n0

|F1(s, t, u(s, t)) − F2(s, t, u(s, t))| +
M−1∑
s=m0

N−1∑
t=n0

|F1(s, t, u(s, t)) − F2(s, t, u(s, t))|

≤
m−1∑
s=m0

n−1∑
t=n0

a(s, t)|up1(s, t) − up2(s, t)| +
M−1∑
s=m0

N−1∑
t=n0

a(s, t)|up1(s, t) − up2(s, t)|.

(70)

A suitable application of Corollary 2.7 to (70) yields |up1(m,n) − up2(m,n)| ≤ 0, that

is, up1(m,n) = up2(m,n), ∀(m, n) Î Ω. Since p is an odd number, then u1(m, n) = u2(m,

n), which implies (65) and (66) has at most one solution.

Similar to Theorem 3.4, we have the following result showing the continuous depen-

dence of the solution of (65) and (66) on the function F and the initial data f(m), g(n).

□
Theorem 12 Assume u(m, n) is the solution of (65) and (66),

|F(m,n, u1) − F(m,n, u2)| ≤ a(m,n)|up1 − up2|, ∀(m, n) Î Ω, where a Î ℘+(Ω),

|f p(m) − f̄ p(m) + gp(n) − ḡp(n)| ≤ ε, where ε > 0 is a constant. Furthermore, assume

ū ∈ ℘+(�), ū ∈ ℘+(�)is the solution of the following difference equation

ūp(m,n) = f̄ p(m) + ḡp(n) +
m−1∑
s=m0

n−1∑
t=n0

F̄(s, t, ū(s, t)) +
M−1∑
s=m0

N−1∑
t=n0

F̄(s, t, ū(s, t)) (71)

with the initial condition

ū(m,n0) = f̄ (m), ū(m0,n) = ḡ(n), f̄ (m0) = ḡ(n0) = 0, (72)
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where F̄ : � × R → R, f̄ : I → R, ḡ : J → R, then

|up(m,n) − ūp(m,n)| ≤ 2ε

2 − eJ(M,N)
eJ(m,n), (m,n) ∈ �, (73)

provided that eJ(M, N) < 2, where J(m,n) =
∑m−1

s=m0

∑n−1
t=n0 a(s, t).

The proof for Theorem 3.7 is similar to Theorem 3.4, and we omit it here.
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