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Abstract

In this paper, we establish two new inequalities between the root-square, arithmetic,
and Seiffert means.
The achieved results are inspired by the paper of Seiffert (Die Wurzel, 29, 221-222,
1995), and the methods from Chu et al. (J. Math. Inequal., 4, 581-586, 2010). The
inequalities we obtained improve the existing corresponding results and, in some
sense, are optimal.
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1 Introduction
For a, b > 0 with a ≠ b, the root-square mean S(a, b) and Seiffert mean T(a, b) are

defined by

S(a, b) =

√
a2 + b2

2
(1:1)

and

T(a, b) =
a − b

2 arctan
(
a−b
a+b

)
,

(1:2)

respectively. In the recent past, both mean values have been the subject of intensive

research. In particular, many remarkable inequalities for S and T can be found in the

literature [1-11].

Let A(a, b) = (a + b)/2, G(a, b) =
√
ab, and H(a, b) = 2ab/(a + b) be the classical

arithmetic, geometric, and harmonic means of two positive numbers a and b, respec-

tively. In [1], Seiffert proved that

A(a, b) < T(a, b) < S(a, b)

for all a, b > 0 with a ≠ b.

Taneja [5] presented that

G(a, b) <
2
3
H(a, b) +

1
3
S(a, b) <

1
2
A(a, b) +

1
2
H(a, b) <

1
2
S(a, b) +

1
2
G(a, b)

<
1
3
H(a, b) +

2
3
S(a, b) < A(a, b) < S(a, b) − G(a, b) +H(a, b)

for all a, b > 0 with a ≠ b.
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In [2], the authors find the greatest value p and the least value q such that the double

inequality Hp(a, b) <T(a, b) <Hq(a, b) for all a, b > 0 with a ≠ b. Here,

Hp(a, b) = [(ap + (ab)p/2 + bp)/3]1/p is the power-type Heron mean of a and b.

Wang, Qiu, and Chu [3] established that

T(a, b) < L1/3(a, b)

for all a, b > 0 with a ≠ b, where Lp(a, b) = (ap+1 + bp+1) = (ap + bp) is the Lehmer

mean of a and b.

The purpose of the paper is to find the greatest values a1 and a2, and the least

values b1 and b2, such that the double inequalities a1S(a, b) + (1 - a1)A(a, b) <T (a, b)

<b1S(a, b) + (1 - b1)A(a, b) and Sα2 (a, b)A1−α2 (a, b) < T(a, b) < Sβ2(a, b)A1−β2 (a, b)

hold for all a, b > 0 with a ≠ b.

2 Main results
Theorem 2.1. The double inequality a1S(a, b)+(1 - a1)A(a, b) <T (a, b) <b1S(a, b) +
(1 - b1)A(a, b) holds for all a, b > 0 with a ≠ b if and only if

α1 ≤ (4 − π)/[(
√
2 − 1)π] = 0.659 · · · and b1 ≥ 2/3.

Proof. Firstly, we prove that

T(a, b) <
2
3
S(a, b) +

1
3
A(a, b), (2:1)

T(a, b) >
4 − π

π(
√
2 − 1)

S(a, b) +

√
2π − 4

π(
√
2 − 1)

A(a, b) (2:2)

for all a, b > 0 with a ≠ b.

Without loss of generality, we assume that a >b. Let t =
√
a/b > 1 and

p ∈
{
2/3, (4 − π)/[(

√
2 − 1)π]

}
, then from (1.1) and (1.2) we have

T(a, b) − [pS(a, b) + (1 − p)A(a, b)]

=
b[

√
2p

√
1 + t2 + (1 − p)(1 + t)]

2 arctan
( t−1
t+1

)
×

[
t − 1√

2p
√
1 + t2 + (1 − p)(1 + t)

− arctan
(
t − 1
t + 1

)]
.

(2:3)

Let

f (t) =
t − 1√

2p
√
1 + t2 + (1 − p)(1 + t)

− arctan
(
t − 1
t + 1

)
, (2:4)

then simple computations lead to

f (1) = 0, (2:5)

lim
t→+∞ f (t) =

1

(
√
2 − 1)p + 1

− π

4
, (2:6)

f ′(t) =
f1(t)

(t2 + 1)[
√
2p

√
1 + t2 + (1 − p)(1 + t)]

2 , (2:7)
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where

f1(t) =
√
2p(2p − 1)(t + 1)

√
t2 + 1 − [(3p2 − 1)t2 + 2(p − 1)2t + 3p2 − 1] (2:8)

We divide the proof into two cases.

Case 1. p = 2/3. Then, we clearly see that

2p − 1 = 3p2 − 1 =
1
3

> 0, (2:9)

and

[
√
2p(2p − 1)(t + 1)

√
1 + t2]2 − [(3p2 − 1)t2 + 2(p − 1)2t + 3p2 − 1]2

= −(t − 1)4

81
< 0

(2:10)

for t > 1.

Therefore, inequality (2.1) follows from (2.3)-(2.5) and (2.7)-(2.10).

Case 2. p = (4 − π)/[(
√
2 − 1)π] = 0.659 · · ·. Then, simple computations yield that

2p − 1 ¿ 0, (2:11)

2 − 3p > 0, (2:12)

3p2 − 1 > 0, (2:13)

−p4 − 8p3 + 8p2 − 1 = −0.00456 · · · < 0 (2:14)

and [√
2p(2p − 1)(t + 1)

√
1 + t2

]2 − [(3p2 − 1)t2 + 2(p − 1)2t + 3p2 − 1]2

= (t − 1)2[(−p4 − 8p3 + 8p2 − 1)t2

+2(p4 − 4p3 + 6p2 − 4p + 1)t − p4 − 8p3 + 8p2 − 1].

(2:15)

Let

g(t) = (−p4 − 8p3 + 8p2 − 1)t2 + 2(p4 − 4p3 + 6p2 − 4p + 1)t

− p4 − 8p3 + 8p2 − 1,
(2:16)

then from (2.11) and (2.12) together with (2.14), we get

g(1) = 4p(2p − 1)(2 − 3p) > 0, (2:17)

lim
t→+∞ g(t) = −∞, (2:18)

g′(t) = 2(−p4 − 8p3 + 8p2 − 1)t + 2(p4 − 4p3 + 6p2 − 4p + 1),

g′(1) = 4p(2p − 1)(2 − 3p) > 0,
(2:19)

lim
t→+∞ g′(t) = −∞ (2:20)

and

g′′(t) = 2(−p4 − 8p3 + 8p2 − 1) = −0.00912 · · · < 0. (2:21)
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It follows from (2.19)-(2.21) that there exists t0 > 1 such that g’(t) > 0 for t Î [1, t0)

and g’(t) < 0 for t Î (t0, ∞). Hence, g(t) is strictly increasing in [1, t0] and strictly

decreasing in [t0, ∞).

From (2.17) and (2.18) together with the piecewise monotonicity of g(t), we clearly

see that there exists t1 > t0 >1 such that g(t) >0 for t Î [1, t1) and g(t) <0 for t Î
(t1, ∞). Then, from (2.8), (2.11), (2.13), (2.15), and (2.16), we know that f1(t) >0 for t Î
[1, t1) and f1(t) <0 for t Î (t1, ∞). It follows from (2.7) that f(t) is strictly increasing in

[1, t1] and strictly decreasing in [t1, ∞).

Note that (2.6) becomes

lim
t→+∞ f (t) = 0. (2:22)

Therefore, inequality (2.2) follows from (2.3)-(2.5) and (2.22) together with the piece-

wise monotonicity of f(t).

Secondly, we prove that 2S(a, b)/3 + A(a, b)/3 is the best possible upper convex

combination bound of root-square and arithmetic means for the Seiffert mean T(a, b).

Letting x >0 (x ® 0) and making use of the Taylor expansion, one has

β1S(1, 1 + x) + (1 − β1)A(1, 1 + x) − T(1, 1 + x)

= β1

[
[1 +

1
2
x +

1
8
x2 + o(x2)

]
+ (1 − β1)

(
1 +

x
2

)

−
[
1 +

1
2
x +

1
12

x2 + o(x2)
]

=
1
24

(3β1 − 2)x2 + o(x2).

(2:23)

Equation (2.23) implies that for any b1 < 2/3, there exists δ1 = δ1(b1) > 0, such that

b1S(1, 1 + x) + (1 - b1)A(1, 1 + x) <T (1, 1 + x) for x Î (0, δ1).

Finally, we prove that (4 − π)S(a, b)/[(
√
2 − 1)π] + (

√
2π − 4)A(a, b)/[(

√
2 − 1)π]

is the best possible lower convex combination bound of root-square and arithmetic

means for the Seiffert mean T (a, b).

For any α1 > (4 − π)/[(
√
2 − 1)π], it follows from (1.1) and (1.2) that

lim
x→+∞

α1S(1, x) + (1 − α1)A(1, x)
T(1, x)

=
(
√
2 − 1)α1 + 1

4
π > 1. (2:24)

Inequality (2.24) implies that for any α1 > (4 − π)/[(
√
2 − 1)π], there exists X1 = X1

(a1) > 1 such that a1S(1, x) + (1 a1)A(1, x) >T (1, x) for x Î (X1, ∞).

Theorem 2.2. The double inequality Sα2 (a, b)A1−α2 (a, b) < T(a, b) < Sβ2(a, b)A1−β2 (a, b)

holds for all a, b > 0 with a ≠ b if and only if a2 ≤ 2/3 and b2 ≥ 4 - 2 log = log 2 = 0.697....

Proof. Firstly, we prove that

T(a, b) > S2/3(a, b)A1/3(a, b), (2:25)

T(a, b) < [S(a, b)]4−2 logπ/ log 2[A(a, b)]2 logπ/ log 2−3 (2:26)

for all a, b > 0 with a ≠ b.

Without loss of generality, we assume that a >b. Let t =
√
a/b > 1 and q Î {2/3, 4 - 2

log π /log 2}, then from (1.1) and (1.2), we have

Chu et al. Journal of Inequalities and Applications 2011, 2011:44
http://www.journalofinequalitiesandapplications.com/content/2011/1/44

Page 4 of 7



log T(a, b) − [q log S(a, b) + (1 − q) logA(a, b)]

= log
t − 1

2 arctan
( t−1
t+1

) − q
2
log

(
1 + t2

2

)
− (1 − q) log

(
1 + t
2

)
(2:27)

Let

F(t) = log
t − 1

2 arctan
( t−1
t+1

) − q
2
log

(
1 + t2

2

)
− (1 − q) log

(
1 + t
2

)
, (2:28)

then simple computations lead to

lim
t→1

F(t) = 0, (2:29)

lim
t→+∞ F(t) = log

4
π

− q

2
log 2, (2:30)

F′(t) =
(2 − q)t2 + 2qt + 2 − q

(t4 − 1) arctan
( t−1
t+1

) F1(t) (2:31)

where

F1(t) = arctan
(
t − 1
t + 1

)
− t2 − 1

(2 − q)t2 + 2qt + 2 − q
, (2:32)

F1(1) = 0, (2:33)

lim
t→+∞ F1(t) =

π

4
− 1

2 − q
, (2:34)

F′
1(t) =

(t − 1)2

(1 + t2)[(2 − q)t2 + 2qt + 2 − q]2
F2(t), (2:35)

where

F2(t) = (q2 − 6q + 4)t2 − 2q2t + q2 − 6q + 4, (2:36)

F2(1) = 4(2 − 3q), (2:37)

F′
2(t) = 2(q2 − 6q + 4)t − 2q2, (2:38)

F′
2(1) = 4(2 − 3q). (2:39)

We divide the proof into two cases.

Case 1. q = 2/3. Then, we clearly see that

2 − 3q = 0, (2:40)

q2 − 6q + 4 =
4
9

> 0. (2:41)

From (2.38)-(2.41), we know that F′
2(t) > 0 for t Î (1, ∞). Hence, F2(t) is strictly

increasing in [1, ∞). It follows from (2.35), (2.37), (2.40), and the monotonicity of F2(t)

that F1(t) is strictly increasing in [1, ∞).
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Therefore, inequality (2.25) follows from (2.27)-(2.29), (2.31), (2.33), and the monoto-

nicity of F1(t).

Case 2. q = 4 - 2 log π /log 2 = 0:697.... Then, simple computations lead to

log
4
π

− q

2
log 2 = 0, (2:42)

π

4
− 1

2 − q
= 0.0179 · · · > 0, (2:43)

q2 − 6q + 4 = 0.303 · · · > 0, (2:44)

2 − 3q = −0.09102 · · · < 0. (2:45)

It follows from (2.36) and (2.38) together with (2.44) that

lim
t→+∞ F2(t) = +∞, (2:46)

lim
t→+∞ F′

2(t) = +∞. (2:47)

From (2.38) and (2.44), we clearly see that F′
2(t) is strictly increasing in [1, ∞). Then,

(2.39) and (2.45) together with (2.47) imply that there exists l0 > 1 such that F′
2(t) < 0

for t Î [1, l0) and F′
2(t) > 0 for t Î (l0, ∞). Hence, F2(t) is strictly decreasing in [1,

l0] and strictly increasing in [l0, ∞).
From (2.37), (2.45), (2.46), and the piecewise monotonicity of F2(t), we know that there

exists l1 >l0 > 1 such that F2(t) < 0 for t Î [1, l1) and F2(t) > 0 for t Î (l1, ∞). Then

(2.35) implies that F1(t) is strictly decreasing in [1, l1] and strictly increasing in [l1, ∞).
From (2.33), (2.34), (2.43), and the piecewise monotonicity of F1(t), we conclude that

there exists l2 >l1 > 1 such that F1(t) < 0 for t Î (1, l2) and F1(t) > 0 for t Î (l2, ∞). Then,
(2.31) implies that F(t) is strictly decreasing in (1, l2] and strictly increasing in [l2, ∞).
Therefore, inequality (2.26) follows from (2.27)-(2.30) and (2.42) together with the

piecewise monotonicity of F(t).

Secondly, we prove that S2/3(a, b)A1/3(a, b) is the best possible lower geo-metric

combination bound of root-square and arithmetic means for the Seiffert mean T(a, b).

Letting x > 0 (x ® 0) and making use of the Taylor expansion, one has

Sα2 (1, 1 + x)A1−α2 (1, 1 + x) − T(1, 1 + x)

=
[
1 +

α2

2
x +

α22

8
x2 + o(x2)

] [
1 +

1 − α2

2
x +

α2(α2 − 1)
8

x2 + o(x2)
]

−
[
1 +

1
2
x +

1
12

x2 + o(x2)
]

=
1
24

(3α2 − 2)x2 + o(x2).

(2:48)

Equation (2.48) implies that for any a2 > 2/3, there exists δ2 = δ2(a2) > 0, such that

Sα2 (1, 1 + x)A1−α2 (1, 1 + x) > T(1, 1 + x) for x Î (0, δ2).

Finally, we prove that [S(a, b)]4-2 log π /log2[A(a, b)]2 log π/log 2-3 is the best possible

upper geometric combination bound of root-square and arithmetic means for the Seif-

fert mean T (a, b).
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For any b2 < 4 - 2 log π /log 2 and x > 0, from (1.1) and (1.2), one has

lim
x→+∞

Sβ2(1, x)A1−β2 (1, x)
T(1, x)

= 2β2/2 × π

4
< 1. (2:49)

Inequality (2.49) implies that for any b2 < 4 - 2 log π /log 2, there exists X2 = X2(b2)
> 1 such that T(1, x) > Sβ2(1, x)A(1−β2)(1, x) for x Î (X2, +∞).
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