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Abstract

In this paper, a class of impulsive bidirectional associative memory (BAM) fuzzy cellular
neural networks (FCNNs) with time delays in the leakage terms and distributed delays is
formulated and investigated. By establishing an integro-differential inequality with
impulsive initial conditions and employing M-matrix theory, some sufficient conditions
ensuring the existence, uniqueness and global exponential stability of equilibrium point
for impulsive BAM FCNNs with time delays in the leakage terms and distributed delays
are obtained. In particular, the estimate of the exponential convergence rate is also
provided, which depends on the delay kernel functions and system parameters. It is
believed that these results are significant and useful for the design and applications of
BAM FCNNs. An example is given to show the effectiveness of the results obtained here.
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1 Introduction
The bidirectional associative memory (BAM) neural network models were first introduced

by Kosko [1]. It is a special class of recurrent neural networks that can store bipolar vector

pairs. The BAM neural network is composed of neurons arranged in two layers, the

X-layer and Y-layer. The neurons in one layer are fully interconnected to the neurons in

the other layer. Through iterations of forward and backward information flows between

the two layer, it performs a two-way associative search for stored bipolar vector pairs and

generalize the single-layer autoassociative Hebbian correlation to a two-layer pattern-

matched heteroassociative circuits. Therefore, this class of networks possesses good appli-

cation prospects in some fields such as pattern recognition, signal and image process, and

artificial intelligence [2]. In such applications, the stability of networks plays an important

role; it is of significance and necessary to investigate the stability. It is well known, in both

biological and artificial neural networks, the delays arise because of the processing of

information. Time delays may lead to oscillation, divergence or instability which may be

harmful to a system. Therefore, study of neural dynamics with consideration of the

delayed problem becomes extremely important to manufacture high-quality neural net-

works. In recent years, there have been many analytical results for BAM neural networks

with various axonal signal transmission delays, for example, see [3-11] and references

therein. In addition, except various axonal signal transmission delays, time delay in the
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leakage term also has great impact on the dynamics of neural networks. As pointed out by

Gopalsamy [12,13], time delay in the stabilizing negative feedback term has a tendency to

destabilize a system. Recently, some authors have paid attention to stability analysis of

neural networks with time delays in the leakage (or “forgetting”) terms [12-18].

Since FCNNs were introduced by Yang et. al [19,20], many researchers have done

extensive works on this subject due to their extensive applications in classification of

image processing and pattern recognition. Specially, in the past few years, the stability

analysis on FCNNs with various delays and fuzzy BAM neural networks with transmis-

sion delays has been the highlight in the neural network field, for example, see [21-27]

and references therein. On the other hand, in respect of the complexity, besides delay

effect, impulsive effect likewise exists in a wide variety of evolutionary processes in which

states are changed abruptly at certain moments of time, involving such fields as medicine

and biology, economics, mechanics, electronics and telecommunications. Many interest-

ing results on impulsive effect have been gained, e.g., Refs. [28-37]. As artificial electronic

systems, neural networks such as CNNs, bidirectional neural networks and recurrent

neural networks often are subject to impulsive perturbations, which can affect dynamical

behaviors of the systems just as time delays. Therefore, it is necessary to consider both

impulsive effect and delay effect on the stability of neural networks. To the best of our

knowledge, few authors have considered impulsive BAM FCNNs with time delays in the

leakage terms and distributed delays.

Motivated by the above discussions, the objective of this paper is to formulate and

study impulsive BAM FCNNs with time delays in the leakage terms and distributed

delays. Under quite general conditions, some sufficient conditions ensuring the exis-

tence, uniqueness and global exponential stability of equilibrium point are obtained by

the topological degree theory, properties of M-matrix, the integro-differential inequality

with impulsive initial conditions and analysis technique.

The paper is organized as follows. In Section 2, the new neural network model is for-

mulated, and the necessary knowledge is provided. The existence and uniqueness of

equilibrium point are presented in Section 3. In Section 4, we give some sufficient con-

ditions of exponential stability of the impulsive BAM FCNNs with time delays in the

leakage terms and distributed delays. An example is given to show the effectiveness of

the results obtained here in Section 5. Finally, in Section 6, we give the conclusion.

2 Model description and preliminaries
In this section, we will consider the model of impulsive BAM FCNNs with time delays in

the leakage terms and distributed delays, it is described by the following functional dif-

ferential equation:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi(t) = −aixi(t − δi) +
m∑
j=1

aijgj(yj(t)) +
m∑
j=1

ãijvj + Ii

+
m∧
j=1

αij

+∞∫
0

Kij(s)gj(yj(t − s))ds +
m∨
j=1

α̃ij

+∞∫
0

Kij(s)gj(yj(t − s))ds

+
m∧
j=1

Tijvj +
m∨
j=1

Hijvj, t �= tk

xi(t+) = xi(t−) + Pik(xi(t−)), t = tk, k ∈ N = {1, 2, . . .},

ẏj(t) = −bjyj(t − θj) +
n∑
i=1

bjifi(xi(t)) +
n∑
i=1

b̃jiui + Jj

+
n∧
i=1

βji

+∞∫
0

K̄ji(s)fi(xi(t − s))ds +
n∨
i=1

β̃ji

+∞∫
0

K̄ij(s)fi(xi(t − s))ds

+
n∧
i=1

T̄jiui +
n∨
i=1

H̄jiui, t �= tk

yj(t+) = yj(t−) +Qjk(yj(t−)), t = tk, k ∈ N = {1, 2, . . .},

(1)
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for i = 1, 2, ..., n, j = 1, 2,..., m, t > 0, where xi(t) and yj(t) are the states of the ith

neuron and the jth neuron at time t, respectively; δi ≥ 0 and θj ≥ 0 denote the leakage

delays, respectively; fi and gj denote the signal functions of the ith neuron and the jth

neuron at time t, respectively; ui, vj and Ii, Jj denote inputs and bias of the ith neuron

and the jth neuron, respectively; ai > 0, bj > 0, aij, ãij,αij, α̃ij, bji, b̃ji,βji, β̃ji are constants,

ai and bj represent the rate with which the ith neuron and the jth neuron will reset

their potential to the resting state in isolation when disconnected from the networks

and external inputs, respectively; aij, bji and ãij, b̃ji denote connection weights of feed-

back template and feedforward template, respectively; aij, bji and α̃ij, β̃ji denote connec-

tion weights of the distributed fuzzy feedback MIN template and the distributed fuzzy

feedback MAX template, respectively; Tij, T̄ji and Hij, H̃ji are elements of fuzzy feedfor-

ward MIN template and fuzzy feedforward MAX template, respectively; ⋀ and ⋁
denote the fuzzy AND and fuzzy OR operations, respectively; Kij(s) and K̄ji(s) corre-

spond to the delay kernel functions, respectively. tk is called impulsive moment and

satisfies 0 <t1 <t2 < ..., lim
k→+∞

tk = +∞; xi(t−k ) and xi(t+k ) denote the left-hand and right-

hand limits at tk, respectively; Pik and Qjk show impulsive perturbations of the ith neu-

ron and jth neuron at time tk, respectively.

We always assume xi(t+k ) = xi(tk) and yj(t+k ) = yj(tk), k Î N . The initial conditions are

given by

{
xi(t) = φi(t), −∞ ≤ t ≤ 0,
yj(t) = ϕj(t), −∞ ≤ t ≤ 0,

where ji(t), �j(t) (i = 1, 2, ..., n; j = 1, 2, ..., m) are bounded and continuous on (-∞, 0],

respectively.

If the impulsive operators Pik(xi) = 0, Qjk(yj) = 0, i = 1, 2, ..., n, j = 1, 2, ..., m, k Î N,

then system (1) may reduce to the following model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi(t) = −aixi(t − δi) +
m∑
j=1

aijgj(yj(t)) +
m∑
j=1

ãijvj + Ii

+
m∧
j=1

αij

+∞∫
0

Kij(s)gj(yj(t − s))ds +
m∨
j=1

α̃ij

+∞∫
0

Kij(s)gj(yj(t − s))ds

+
m∧
j=1

Tijvj +
m∨
j=1

Hijvj,

ẏj(t) = −bjyj(t − θj) +
n∑
i=1

bjifi(xi(t)) +
n∑
i=1

b̃jiui + Jj

+
n∧
i=1

βji

+∞∫
0

K̄ji(s)fi(xi(t − s))ds +
n∨
i=1

β̃ji

+∞∫
0

K̄ij(s)fi(xi(t − s))ds

+
n∧
i=1

T̄jiui +
n∨
i=1

H̄jiui.

(2)

System (2) is called the continuous system of model (1).

Throughout this paper, we make the following assumptions:
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(H1) For neuron activation functions fi and gj (i = 1, 2, ..., n; j = 1, 2, ..., m), there

exist two positive diagonal matrices F = diag(F1, F2, ..., Fn) and G = diag(G1, G2, ...,

Gm) such that

Fi = sup
x �=y

∣∣∣∣ fi(x) − fi(y)
x − y

∣∣∣∣ , Gj = sup
x �=y

∣∣∣∣gj(x) − gj(y)

x − y

∣∣∣∣
for all x, y Î R (x ≠ y).

(H2) The delay kernels Kij : [0, +∞) ® R and K̄ji : [0, +∞) → R are real-valued piece-

wise continuous, and there exists δ > 0 such that

kij(λ) =
∫ +∞

0
eλs|Kij(s)|ds, k̄ji(λ) =

∫ +∞

0
eλs|K̄ji(s)|ds

Are continuous for l Î [0,δ), i = 1,2, ..., n, j = 1,2, ..., m.

(H3) Let P̄k(x) = x + Pk(x) and Q̄k(y) = y +Qk(y) be Lipschitz continuous in Rn and

Rm, respectively, that is, there exist nonnegative diagnose matrices Γk = diag(g1k, g2k, ...,

gnk) and Γ̄k = diag( γ̄1k, γ̄2k, . . . , γ̄mk) such that

|P̄k(x) − P̄k(y)| ≤ Γk|x − y|, for all x, y ∈ Rn, k ∈ N,

|Q̄k(u) − Q̄k(v)| ≤ Γ̄k|u − v|, for all u, v ∈ Rm, k ∈ N,

where

P̄k(x) = (P̄1k(x1), P̄2k(x2), . . . , P̄nk(xn))T ,

Q̄k(x) = (Q̄1k(y1), Q̄2k(y2), . . . , Q̄mk(ym))T ,

Pk(x) = (P1k(x1),P2k(x2), . . . ,Pnk(xn))T ,

Qk(y) = (Q1k(y1),Q2k(y2), . . . ,Qmk(ym))T .

To begin with, we introduce some notation and recall some basic definitions.

PC[J, Rl] = {z(t): J ® Rl|z(t) is continuous at t ≠ tk, z(t
+
k ) = z(tk), and z(t−k ) exists for t,

tk Î J, k Î N}, where J ⊂ R is an interval, l Î N.

PC = {ψ: (-∞, 0] ® Rl| ψ(s) is bounded, and ψ(s+) = ψ(s) for s Î (-∞, 0), ψ(s-) exists

for s Î (-∞, 0], j(s-) = j(s) for all but at most a finite number of points s Î (-∞, 0]}.

For an m × n matrix A, |A| denotes the absolute value matrix given by |A| = (|aij|)m

×n. For A = (aij)m × n, B = (bij)m × n Î Rm × n, A ≥ B (A > B) means that each pair of

corresponding elements of A and B such that the inequality aij ≥ bij (aij > bij).

Definition 1 A function (x, y)T : (-∞, +∞) ® Rn+m is said to be the special solution of

system (1) with initial conditions

x(s) = φ(s), y(s) = ϕ(s) s ∈ (−∞, 0],

if the following two conditions are satisfied

(i) (x, y)T is piecewise continuous with first kind discontinuity at the points tk, k Î K.

Moreover, (x, y)T is right continuous at each discontinuity point.

(ii) (x, y)T satisfies model (1) for t ≥ 0, and x(s) = j(s), y(s) = �(s) for s Î (-∞, 0].

Especially, a point (x*, y*)T Î Rn+m is called an equilibrium point of model (1), if (x

(t), y(t))T = (x*, y*)T is a solution of (1).

Throughout this paper, we always assume that the impulsive jumps Pk and Qk satisfy

(referring to [28-37])
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Pk(x∗) = 0 and Qk(y∗) = 0, k ∈ N,

i.e.,

P̄k(x∗) = x∗ and Q̄(y∗) = y∗, k ∈ N, (3)

where (x*, y*)T is the equilibrium point of continuous systems (2). That is, if (x*, y*)T

is an equilibrium point of continuous system (2), then (x*, y*)T is also the equilibrium

of impulsive system (1).

Definition 2 The equilibrium point (x*, y*)T of model (1) is said to be globally expo-

nentially stable, if there exist constants l > 0 and M ≥ 1 such that

||x(t) − x∗|| + ||y(t) − y∗|| ≤ M(||φ − x∗|| + ||ϕ − y∗||)e−λt

for all t ≥ 0, where (x(t), y(t))T is any solution of system (1) with initial value (j(s),
�(s))T and

||x(t) − x∗|| =
n∑
i=1

|xi(t) − x∗
i |, ||y(t) − y∗|| =

m∑
j=1

|yj(t) − y∗j |,

||φ − x∗|| = sup
−∞<s≤0

n∑
i=1

|φi(s) − x∗
i |, ||ϕ − y∗|| = sup

−∞<s≤0

m∑
j=1

|ϕj(s) − y∗j |.

Definition 3 A real matrix D = (dij)n × n is said to be a nonsingular M-matrix if dij ≤

0, i, j = 1, 2, ..., n, i ≠ j, and all successive principal minors of D are positive.

Lemma 1 [38]Let D = (dij)n × n with dij ≤ 0 (i ≠ j), then the following statements are

true:

(i) D is a nonsingular M-matrix if and only if D is inverse-positive, that is, D-1 exists

and D-1 is a nonnegative matrix.

(ii) D is a nonsingular M-matrix if and only if there exists a positive vector ξ = (ξ1, ξ2,

..., ξn)
T such that Dξ > 0.

Lemma 2 [20]For any positive integer n, let hj : R ® R be a function (j = 1, 2, ..., n),

then we have

| n∧
j=1

αjhj(uj) − n∧
j=1

αjhj(vj)| ≤
n∑
j=1

|αj| · |hj(uj) − hj(vj)|,

| n∨
j=1

αjhj(uj) − n∨
j=1

αjhj(vj)| ≤
n∑
j=1

|αj| · |hj(uj) − hj(vj)|

for all a = (a1, a2, ..., an)
T, u = (u1, u2, ..., un)

T, v = (v1, v2, ..., vn)
T Î Rn.

3 Existence and uniqueness of equilibrium point
In this section, we will proof the existence and uniqueness of equilibrium point of

model (1). For the sake of simplification, let⎧⎪⎪⎨
⎪⎪⎩
Ĩi =

m∑
j=1

ãijvj + Ii +
m∧
j=1

Tijvj +
m∨
j=1

Hijvj, i = 1, 2, . . . ,n,

J̃j =
n∑
i=1

b̃jiui + Jj +
n∧
i=1

T̄jiui +
n∨
i=1

H̄jiui, j = 1, 2, . . . ,m,
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then model (2) is reduced to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi(t) = −aixi(t − δi) +
m∑
j=1

aijgj(yj(t)) +
m∧
j=1

αij

+∞∫
0

Kij(s)gj(yj(t − s))ds

+
m∨
j=1

α̃ij

+∞∫
0

Kij(s)gj(yj(t − s))ds + Ĩi,

ẏj(t) = −bjyj(t − θj) +
n∑
i=1

bjifi(ui(t)) +
n∧
i=1

βji

+∞∫
0

K̄ji(s)fi(xi(t − s))ds

+
n∨
i=1

β̃ji

+∞∫
0

K̄ji(s)fi(ui(t − s))ds + J̃j.

(4)

It is evident that the dynamical characteristics of model (2) are as same as of model (4).

Theorem 1 Under assumptions (H1) and (H2), system (1) has one unique equili-

brium point, if the following condition holds,

(C1) there exist vectors ξ = (ξ1, ξ2, ..., ξn)
T > 0, h = (h1, h2, ..., hm)

T > 0 and positive

number l > 0 such that⎧⎪⎪⎨
⎪⎪⎩
(λ − aieλδi)ξi +

m∑
j=1

[|aij| + (|αij| + |α̃ij|)kij(λ)
]
Gjηj < 0, i = 1, 2, . . . ,n,

(λ − bjeλθj)ηj +
n∑
i=1

[
|bji| + (|βji| + |β̃ji|)k̄ji(λ)

]
Fiξi < 0. j = 1, 2, . . . ,m.

Proof. Let h(x1, . . . , xn, y1, . . . , ym) = (h1, . . . , hn, h1, . . . , hm)T, where⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

hi = aixi −
m∑
j=1

aijgj(yj) − m∧
j=1

αijkij(0)gj(yj) − m∨
j=1

α̃ijkij(0)gj(yj) − Ĩi,

hj = bjyj −
n∑
i=1

bjifi(xi) − n∧
i=1

βjik̄ji(0)fi(xi) − n∨
i=1

β̃jik̄ji(0)fi(xi) − J̃j

for i = 1, 2, ..., n; j = 1, 2, ..., m. Obviously, from assumption (H2), the equilibrium

points of model (4) are the solutions of system of equations:{
hi = 0, i = 1, 2, . . . ,n,
hj = 0, j = 1, 2, . . . ,m.

(5)

Define the following homotopic mapping:

H(x1, ..., xn, y1, ..., ym) = θh(x1, ..., xn, y1, ..., ym) + (1 - θ)(x1, ..., xn, y1, ..., ym)
T, where θ

Î [0, 1]. Let Hk(k = 1, 2, ..., n + m) denote the kth component of H(x1, ..., xn, y1, ..., ym),

then from assumption (H1) and Lemma 2, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

|Hi| ≥ [1 + θ(ai − 1)]|xi| − θ
∑m

j=1

[|aij| + (|αij| + |α̃ij|)kij(0)
]
Gj|yj|

−θ
∑m

j=1

[|aij| + (|αij| + |α̃ij|)kij(0)
] |gj(0)| − θ |Ĩi|,

|Hn+j| ≥ [1 + θ(bj − 1)]|yj| − θ
∑n

i=1

[
|bji| + (|βji| + |β̃ji|)k̄ji(0)

]
Fi|xi|

−θ
∑n

i=1

[
|bji| + (|βji| + |β̃ji|)k̄ji(0)

]
|fi(0)| − θ |J̃j|

(6)
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for i = 1, 2, ..., n, j = 1, 2, ..., m. Denote

H̄ = (|H1|, |H2|, . . . , |Hn+m|)T , z = (|x1|, . . . , |xn|, |y1|, . . . , |ym|)T ,
C = diag(a1, . . . , an, b1, . . . , bm), L = diag(F1, . . . , Fn,G1, . . . ,Gm),

P = (|Ĩ1|, . . . , |Ĩn, |, |J̃1|, . . . , |J̃m|)T
Q = (|f1(0)|, . . . , |fn(0)|, |g1(0)|, . . . , |gm(0)|)T ,
A =

(|aij| + (|αij| + |α̃ij|)kij(0)
)
n×m, B =

(
|bji| + (|βji| + |β̃ji|)k̄ji(0)

)
m×n

,

T =
(
0 A
B 0

)
, ω = (ξ1, . . . , ξn, η1, . . . , ηm)T > 0.

Then, the matrix form of (6) is

H̄ ≥ [E + θ(C − E)]z − θTLz − θ(P + TQ) = (1 − θ)z + θ[(C − TL)z − (P + TQ)].

Since condition (C1) holds, and kij(l), k̄ji(λ) are continuous on [0, δ ), when l = 0 in

(C1), we obtain

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−aiξi +
m∑
j=1

[|aij| + (|αij| + |α̃ij|)kij(0)
]
Gjηj < 0, i = 1, 2, . . . ,n,

−bjηj +
n∑
i=1

[
|bji| + (|βji| + |β̃ji|)k̄ji(0)

]
Fiξi < 0. j = 1, 2, . . . ,m.

or in matrix form,

(−C + TL)ω < 0. (7)

From Lemma 1, we know that C - TL is a nonsingular M-matrix, so (C - TL)-1 is a

nonnegative matrix. Let

Γ =
{
z = (x1, . . . , xn, y1, . . . , ym)T|z ≤ ω + (C − TL)−1(P + TQ)

}
,

then Γ is nonempty, and from (6), for any z = (x1,..., xn, y1,..., ym)
T Î∂Γ, we have

H̄ ≥ (1 − θ)z + θ(C − TL)[z − (C − TL)−1(P + TQ)]

= (1 − θ)[ω + (C − TL)−1(P + TQ)] + θ(C − TL)ω > 0, θ ∈ [0, 1].

Therefore, for any (x1, ..., xn, y1, ..., ym)
T Î ∂Γ and θ Î [0, 1], we have H ≠ 0. From

homotopy invariance theorem [39], we get

deg(h,Γ , 0) = deg(H,Γ , 0) = 1,

by topological degree theory, we know that (5) has at least one solution in Γ. That is,

model (4) has at least an equilibrium point.

Now, we show that the solution of the system of Equations (5) is unique. Assume

that (x∗
1, . . . , x

∗
n, y

∗
1, . . . , y

∗
m)

T and (x̂1, . . . , x̂n, ŷ1, . . . , ŷm)T are two solutions of the system

of Equations (5), then
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ai(x∗
i − x̂i) =

m∑
j=1

aij[gj(y∗j ) + gj(ŷj)]

+
(

m∧
j=1

αijkij(0)gj(y∗j ) − m∧
j=1

αijkij(0)gj(ŷj)
)

+
(

m∨
j=1

α̃ijkij(0)gj(y∗j ) − m∨
j=1

α̃ijkij(0)gj(ŷj)
)
,

bj(y∗j − ŷj) =
n∑
i=1

bji[fi(x∗
i ) − fi(x̂i)]

+
(

n∧
i=1

βjik̄ji(0)fi(x∗
i ) − n∧

i=1
βjik̄ji(0)fi(x̂i)

)

+
(

n∨
i=1

β̃jik̄ji(0)fi(x∗
i ) − n∨

i=1
β̃jik̄ji(0)fi(x̂i)

)
,

it follows that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ai|x∗
i − x̂i| ≤

m∑
j=1

|aij||gj(y∗j ) + gj(ŷj)|

+| m∧
j=1

αijkij(0)gj(y∗j ) − m∧
j=1

αijkij(0)gj(ŷj)|

+| m∨
j=1

α̃ijkij(0)gj(y∗j ) − m∨
j=1

α̃ijkij(0)gj(ŷj)|,

bj|y∗j − ŷj| ≤
n∑
i=1

|bji||fi(x∗
i ) − fi(x̂i)|

+| n∧
i=1

βjik̄ji(0)fi(x∗
i ) − n∧

i=1
βjik̄ji(0)fi(x̂i)|

+| n∨
i=1

β̃jik̄ji(0)fi(x∗
i ) − n∨

i=1
β̃jik̄ji(0)fi(x̂i)|.

By using of Lemma 2 and hypothesis (H1), we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ai|x∗
i − x̂i| −

m∑
j=1

[|aij| + (|αij| + |α̃ij|)kij(0)
]
Gj|y∗j − ŷj| ≤ 0,

bj|y∗j − ŷj| −
n∑
i=1

[
|bji| + (|βji| + |β̃ji|)k̄ji(0)

]
Fi|x∗

i − x̂i| ≤ 0.

(8)

Let Z = diag( |x∗
1 − x̂1|, . . . , |x∗

n − x̂n|, |y∗1 − ŷ1|, . . . , |y∗m − ŷm|), then the matrix form of

(8) is (C -TL)Z ≤ 0. Since C - TL is a nonsingular M-matrix, (C - TL) -1 ≥ 0, thus Z ≤

0, accordingly, Z = 0, i.e., x∗
i = x̂i, y

∗
j = ŷj(i = 1, 2, . . . ,n, j = 1, 2, . . . ,m). This shows that

model (4) has one unique equilibrium point. According to (3), this implies that system

(1) has one unique equilibrium point. The proof is completed.

Corollary 1 Under assumptions (H1) and (H2), system (1) has one unique equili-

brium point if C - TL is a nonsingular M-matrix.

Proof. Since that C - TL is a nonsingular M-matrix, from Lemma 1, there exists a

vector ω = (ξ1, ... ξn, h1, ..., hm)T > 0 such that (C TL) ω > 0, or (-C + TL) ω <0. It fol-

lows that
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−aiξi +
m∑
j=1

[|aij| + (|αij| + |α̃ij|)kij(0)
]
Gjηj < 0, i = 1, 2, . . . ,n,

−bjηj +
n∑
i=1

[
|bji| + (|βji| + |β̃ji|)k̄ji(0)

]
Fiξi < 0, j = 1, 2, . . . ,m.

From the continuity of kij(l) and k̄ji(λ), it is easy to know that there exists l > 0 such

that ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(λ − aieλδi)ξi +
m∑
j=1

[|aij| + (|αij| + |α̃ij|)kij(λ)
]
Gjηj < 0, i = 1, 2, . . . ,n,

(λ − bjeλθj)ηj +
n∑
i=1

[
|bji| + (|βji| + |β̃ji|)k̄ji(λ)

]
Fiξi < 0, j = 1, 2, . . . ,m.

That is, condition (C1) holds. This completes the proof.

4 Exponential stability and exponential convergence rate
In this section, we will discuss the global exponential stability of system (1) and give an

estimation of exponential convergence rate.

Lemma 3 Let a < b ≤ +∞, and u(t) = (u1(t), ..., un(t))
T Î PC[[a, b), Rn] and v(t) = (v1

(t), ..., vm(t))
T Î PC[[a, b), Rm] satisfy the following integro-differential inequalities with

the initial conditions u(s) Î PC[(-∞, 0], Rn] and v(s) Î PC[(-∞, 0], Rm]:

⎧⎪⎪⎨
⎪⎪⎩
D+ui(t) ≤ −riui(t − δi) +

m∑
j=1

pijvj(t) +
m∑
j=1

qij
+∞∫
0

|Kij(s)|vj(t − s)ds,

D+vj(t) ≤ −r̄jvj(t − θj) +
n∑
i=1

p̄jiui(t) +
n∑
i=1

q̄ji
+∞∫
0

|K̄ji(s)|ui(t − s)ds
(9)

for i = 1, 2, ..., n, j = 1, 2, ..., m, where ri > 0, pij > 0, qij > 0, r̄j > 0, p̄ji > 0, q̄ji > 0, i =

1, 2,...,n, j = 1, 2, ..., m. If the initial conditions satisfy

{
u(s) ≤ κξe−λ(s−a), s ∈ (−∞, a],

v(s) ≤ κηe−λ(s−a), s ∈ (−∞, a],
(10)

in which l > 0, ξ = (ξ1, ξ2, ..., ξn)
T > 0 and h = (h1, h2, ..., hm)

T > 0 satisfy

⎧⎪⎪⎨
⎪⎪⎩
(λ − rieλδi)ξi +

m∑
j=1

(pij + qijkij(λ))ηj < 0, i = 1, 2, . . . ,n,

(λ − r̄jeλθj)ηj +
n∑
i=1

(p̄ji + q̄jik̄ji(λ))ξi < 0, j = 1, 2, . . . ,m.
(11)

Then

{
u(t) ≤ κξe−λ(t−a), t ∈ [a, b),

v(t) ≤ κηe−λ(t−a), t ∈ [a, b).

Proof. For i Î {1, 2, ..., n}, j Î {1, 2, ..., m} and arbitrary ε > 0, set zi(t) = (� + ε) ξi e
-l

(t - a), z̄j(t) = (κ + ε)ηje−λ(t−a), we prove that
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{
ui(t) ≤ zi(t) = (κ + ε)ξie−λ(t−a), t ∈ [a, b), i = 1, 2, . . . ,n,

vj(t) ≤ z̄j(t) = (κ + ε)ηje−λ(t−a), t ∈ [a, b), j = 1, 2, . . . ,m.
(12)

If this is not true, no loss of generality, suppose that there exist i0 and t* Î [a, b)

such that

ui0 (t
∗) = zi0(t

∗), D+ui0(t
∗) ≥ żi0(t

∗), ui(t) ≤ zi(t), vj(t) ≤ z̄j(t) (13)

for t Î [a, t*], i = 1, 2,..., n, j = 1, 2,..., m.

However, from (9) and (12), we get

D+ui0(t
∗)

≤ −ri0ui0 (t
∗ − δi0) +

m∑
j=1

pi0 jvj(t
∗) +

m∑
j=1

qi0 j

+∞∫
0

|Ki0j(s)|vj(t∗ − s)ds

≤ −ri0 (κ + ε)ξi0e
−λ(t∗−δi0−a) +

m∑
j=1

pi0 jηj(κ + ε)ηje−λ(t∗−a)

+
m∑
j=1

qi0 j(κ + ε)ηje−λ(t∗−a)

+∞∫
0

eλs|Ki0 j(s)|ds

= [−ri0ξi0e
λδi0 +

m∑
j=1

(pi0 j + qi0jki0 j(λ))ηj](κ + ε)e−λ(t∗−a).

Since (11) holds, it follows that −ri0ξi0e
λδi0 +

∑m
j=1(pi0 j + qi0jki0j(λ))ηj < −λξi0 < 0.

Therefore, we have

D+ui0(t
∗) < −λξi0 (κ + ε)e−λ(t∗−a) = żi0(t

∗),

which contradicts the inequality D+ui0 (t
∗) ≥ żi0 (t

∗) in (13). Thus (12) holds for all t

Î [a, b). Letting ε ® 0, we have{
ui(t) ≤ κξie−λ(t−a), t ∈ [a, b), i = 1, 2, . . . ,n,

vj(t) ≤ κηje−λ(t−a), t ∈ [a, b), j = 1, 2, . . . ,m.

The proof is completed.

Remark 1. Lemma 3 is a generalization of the famous Halanay inequality.

Theorem 2 Under assumptions (H1)-(H3), if the following conditions hold,

(C1) there exist vectors ξ = (ξ1, ξ2, ..., ξn)
T > 0, h = (h1, h2, ..., hm)

T > 0 and positive

number l > 0 such that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(λ − aieλδi)ξi +
m∑
j=1

[|aij| + (|αij| + |α̃ij|)kij(λ)
]
Gjηj < 0, i = 1, 2, . . . ,n,

(λ − bjeλθj)ηj +
n∑
i=1

[
|bji| + (|βji| + |β̃ji|)k̄ji(λ)

]
Fiξi < 0, j = 1, 2, . . . ,m;

(C2) μ = sup
k∈N

{ lnμk
tk−tk−1

} < λ, where μk = max
1≤i≤n,1≤j≤m

{1, γik, γ̄jk}, k Î N,

then system (1) has exactly one globally exponentially stable equilibrium point, and

its exponential convergence rate equals l - μ.
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Proof. Since (C1) holds, from Theorem 1, we know that system (1) has one unique

equilibrium point (x∗
1, . . . , x

∗
n, y

∗
1, . . . , y

∗
m)

T. Now, we assume that (x1(t), ..., xn(t), y1(t), ...,

ym(t))
T is any solution of system (1), let x̄i(t) = xi(t) − x∗

i , i = 1, 2, ..., n,

ȳj(t) = yj(t) − y∗j , j = 1, 2, ..., m. It is easy to see that system (1) can be transformed

into the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̄xi(t) = −aix̄i(t − δi) +
m∑
j=1

aij
(
gj(ȳj(t) + y∗j ) − gj(y∗j )

)

+
m∧
j=1

αij

+∞∫
0

Kij(s)gj(ȳj(t − s) + y∗j )ds − m∧
j=1

αij

+∞∫
0

Kji(s)gj(y∗j )ds

+
m∨
j=1

α̃ij

+∞∫
0

Kij(s)gj(ȳj(t − s) + y∗j )ds − m∨
j=1

α̃ij

+∞∫
0

Kij(s)gj(y∗j )ds,

t �= tk,

x̄i(t+k ) = P̃ik(x̄i(t
−
k )), k ∈ N

˙̄yj(t) = −bjȳj(t − θj) +
n∑
i=1

bji(fi(x̄i(t) + x∗
i ) − fi(x∗

i ))

+
n∧
i=1

βji

+∞∫
0

K̄ji(s)fi(x̄i(t − s) + x∗
i )ds − n∧

i=1
βji

+∞∫
0

K̄ji(s)fi(x∗
i )ds

+
n∨
i=1

β̃ji

+∞∫
0

K̄ij(s)fi(x̄i(t − s) + x∗
i )ds − n∨

i=1
β̃ji

+∞∫
0

K̄ij(s)fi(x∗
i )ds,

t �= tk,

ȳj(t+k ) = Q̃jk(yj(t−k )), k ∈ N,

(14)

where P̃ik(x̄i(t)) = P̄ik(x̄i(t) + x∗
i ) − P̄ik(x∗

i ), Q̃jk(ȳj(t)) = Q̄jk(ȳj(t) + y∗j ) − Q̄jk(y∗j ), and

the initial conditions of (14) are{
φ̃(s) = x(s) − x∗ = φ(s) − x∗, s ∈ (−∞, 0],

ϕ̃(s) = y(s) − y∗ = ϕ(s) − y∗, s ∈ (−∞, 0].

From (H1) and Lemma 2, we calculate the upper right derivative along the solutions

of first equation and third equation of (14), we can obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D+|x̄i(t)| ≤ −ai|x̄i(t − δi)| +
m∑
j=1

|aij|Gj|ȳj(t)|

+
m∑
j=1

(|αij| + |α̃ij|)Gj

+∞∫
0

|Kij(s)||ȳj(t − s)|ds,

D+|ȳj(t)| ≤ −bj|ȳj(t − θj)| +
n∑
i=1

|bji|Fi|x̄i(t)|

+
n∑
i=1

(|βji| + |β̃ji|)Fi
+∞∫
0

|K̄ji(s)||x̄i(t − s)|ds
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for i = 1, 2,..., n, j = 1, 2,..., m.

Let ui(t) = |x̄i(t)|, vj(t) = |ȳj(t)|, ri = ai, pij = |aij|Gj, qij = (|αij| + |α̃ij|)Gj, r̄j = bj,

q̄ji = (|βji| + |β̃ji|)Fi(i = 1, 2, . . . ,n; j = 1, 2, . . . ,m),

q̄ji = (|βji| + |β̃ji|)Fi(i = 1, 2, . . . ,n; j = 1, 2, . . . ,m), then we have

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

D+ui(t) ≤ −riui(t − δi) +
m∑
j=1

pijvj(t) +
m∑
j=1

qij

+∞∫
0

|Kij(s)|vj(t − s)ds,

D+vj(t) ≤ −r̄jvj(t − θj) +
n∑
i=1

p̄jiui(t) +
n∑
i=1

q̄ji

+∞∫
0

|K̄ji(s)|ui(t − s)ds

(15)

for i = 1, 2, ..., n, j = 1, 2, ..., m, and from (C1), there exist vectors ξ = (ξ1, ξ2, ..., ξn)
T

> 0, h = (h1, h2, ..., hm)T > 0 and positive number l > 0 such that

⎧⎪⎪⎨
⎪⎪⎩
(λ − rieλδi)ξi +

m∑
j=1

[
pij + qijkij(λ)

]
Gjηj < 0, i = 1, 2, . . . ,n,

(λ − r̄jeλθj)ηj +
n∑
i=1

[
p̄ji + q̄jik̄ji(λ)

]
Fiξi < 0, j = 1, 2, . . . ,m.

(16)

Taking
||φ̃||+||ϕ̃||
min

1≤i≤n,1≤j≤m
{ξi,ηj}, it is easy to prove that

{
u(t) ≤ κξe−λt, −∞ ≤ t ≤ 0 = t0,
v(t) ≤ κηe−λt, −∞ ≤ t ≤ 0 = t0.

(17)

From Lemma 3, we obtain that

{
u(t) ≤ κξe−λt, t0 ≤ t < t1,
v(t) ≤ κηe−λt, t0 ≤ t < t1.

(18)

Suppose that for l ≤ k, the inequalities

{
u(t) ≤ κμ0μ1 . . . μl−1ξe−λt, tl−1 ≤ t < tl,
v(t) ≤ κμ0μ1 . . . μl−1ηe−λt, tl−1 ≤ t < tl.

(19)

hold, where μ0 = 1. When l = k + 1, we note that

u(tk) = |P̃k(u(t−k ))| ≤ Γku(t
−
k ) ≤ κμ0μ1 . . . μk−1Γkξ lim

t→t−k
e−λt

≤ κμ0μ1 . . . μk−1μkξe−λtk ,
(20)

and

v(tk) = |Q̃k(v(t
−
k ))| ≤ Γ̄kv(t

−
k ) ≤ κμ0μ1 . . . μk−1Γ̄kη lim

t→t−k
e−λt

≤ κμ0μ1 . . . μk−1μkηe−λtk .
(21)

From (20), (21) and μk ≥ 1, we have{
u(t) ≤ κμ0μ1 . . . μk−1μkξe−λt, −∞ ≤ t ≤ tk,
v(t) ≤ κμ0μ1 . . . μk−1μkηe−λt, −∞ ≤ t ≤ tk.

(22)
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Combining (15),(16),(22) and Lemma 3, we obtain that{
u(t) ≤ κμ0μ1 . . . μkξe−λt, tk ≤ t < tk+1,
v(t) ≤ κμ0μ1 . . . μkηe−λt, tk ≤ t < tk+1.

(23)

Applying the mathematical induction, we can obtain the following inequalities

{
u(t) ≤ κμ0μ1 . . . μkξe−λt, t ∈ [tk, tk+1), k ∈ N,
v(t) ≤ κμ0μ1 . . . μkηe−λt , t ∈ [tk, tk+1), k ∈ N.

(24)

According to (C2), we have μk ≤ eμ(tk−tk−1) < eλ(tk−tk−1), so we have

u(t) ≤ κeμt1eμ(t2−t1) . . . eμ(tk−1−tk−2)ξe−λt

= κξeμtk−1e−λt ≤ κξe−(λ−μ)t, t ∈ [tk−1, tk), k ∈ N,

and

v(t) ≤ κeμt1eμ(t2−t1) . . . eμ(tk−1−tk−2)ηe−λt

= κηeμtk−1e−λt ≤ κηe−(λ−μ)t, t ∈ [tk−1, tk), k ∈ N.

That is

{
u(t) ≤ κξe−(λ−μ)t, t ∈ (−∞, tk), k ∈ N,
v(t) ≤ κηe−(λ−μ)t, t ∈ (−∞, tk), k ∈ N.

(25)

It follows that

n∑
i=1

|xi(t) − x∗
i | +

m∑
j=1

|yj(t) − y∗j | =
n∑
i=1

ui(t) +
m∑
j=1

vj(t)

≤
n∑
i=1

κξie−(λ−μ)t +
m∑
j=1

κηje−(λ−μ)t

=

∑n
i=1 ξ i +

∑m
j=1 ηj

min1≤i≤n,1≤j≤m{ξi, ηj} (||φ̃|| + ||ϕ̃||)e−(λ−μ)t

= M(||φ − x∗|| + ||ϕ − y∗||)e−(λ−μ)t,

where M =
∑n

i=1 ξi+
∑m

j=1 ηj

min1≤i≤n,1≤j≤m{ξi,ηj}, then we have

||x(t) − x∗|| + ||y(t) − y∗|| ≤ M
(||φ − x∗|| + ||ϕ − y∗||) e−(λ−μ)t.

The proof is completed.

Remark 2. In Theorem 2, the parameters μk and μ depend on the impulsive distur-

bance of system (1), and l is actually an estimate of exponential convergence rate of

continuous system (2), which depends on the delay kernel functions and system para-

meters. In order to obtain more precise estimate of the exponential convergence rate

of system (1) (or system (2)), we suggest the following optimization problem:

(OP)

{
max λ,

s.t. (C1) holds.
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Obviously, for continuous system (2), we can immediately obtain the following

corollaries.

Corollary 2 Under assumptions (H1) and (H2), if condition (C1) holds, then system

(2) has exactly one globally exponentially stable equilibrium point, and its exponential

convergence rate equals l.
Corollary 3 Under assumptions (H1) and (H2), system (2) has exactly one globally

exponentially stable equilibrium point if C - TL is a nonsingular M-matrix.

Remark 3. Note that Lemma 2 transforms the fuzzy AND (⋀) and the fuzzy OR (⋁)
operation into the SUM operation (∑). So above results can be applied to the following

classical impulsive BAM neural networks with time delays in the leakage terms and

distributed delays:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi(t) = −aixi(t − δi) +
m∑
j=1

aijgj(yj(t))

+
m∑
j=1

αij

+∞∫
0

Kij(s)gj(yj(t − s))ds + Ii, t �= tk

xi(t+) = xi(t−) + Pik(xi(t−)), t = tk, k ∈ N,

ẏj(t) = −bjyj(t − θj) +
n∑
i=1

bjifi(xi(t))

+
n∑
i=1

βji

+∞∫
0

K̄ji(s)fi(xi(t − s))ds + Jj, t �= tk

yj(t+) = yj(t−) +Qjk(yj(t−)), t = tk, k ∈ N

(26)

for i = 1, 2,..., n; j = 1, 2,..., m.

For model (26), it is easy to obtain the following result:

Theorem 3 Under assumptions (H1)-(H3), if the following conditions hold,

(C1’) there exist vectors ξ = (ξ1, ξ2, ..., ξn)
T > 0, h = (h1, h2, ..., hm)

T > 0 and positive

number l > 0 such that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(λ − aieλδi)ξi +
m∑
j=1

(|aij| + |αij|kij(λ)
)
Gjηj < 0, i = 1, 2, . . . ,n,

(λ − bjeλθj)ηj +
n∑
i=1

(
|bji| + |βji|k̄ji(λ)

)
Fiξi < 0, j = 1, 2, . . . ,m;

(C2) μ = sup
k∈N

{
lnμk
tk−tk−1

}
< λ, where μk = max

1≤i≤n,1≤j≤m
{1, γik, γ̄jk}, k Î N ,

then system (26) has exactly one globally exponentially stable equilibrium point, and

its exponential convergence rate equals l - μ.

5 An illustrative example
In order to illustrate the feasibility of our above-established criteria in the preceding

sections, we provide a concrete example. Although the selection of the coefficients and

functions in the example is somewhat artificial, the possible application of our theoreti-

cal theory is clearly expressed.
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Example. Consider the following impulsive BAM FCNNs with time delays in the

leakage terms and distributed delays:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi(t) = −aixi(t − δi) +
2∑
j=1

aijgj(yj(t)) +
2∑
j=1

ãijvj + Ii

+
2∧
j=1

αij

+∞∫
0

Kij(s)gj(yj(t − s))ds +
2∨
j=1

α̃ij

+∞∫
0

Kij(s)gj(yj(t − s))ds

+
2∧
j=1

Tijvj +
2∨
j=1

Hijvj, t �= tk

xi(t+) = xi(t−) + Pik(xi(t−)) = xi(t−) − (1 + e0.125k)(xi(t−) − 1), t = tk,

ẏj(t) = −bjyj(t − θj) +
2∑
i=1

bjifi(xi(t)) +
2∑
i=1

b̃jiui + Jj

+
2∧
i=1

βji

+∞∫
0

K̄ji(s)fi(xi(t − s))ds +
2∨
i=1

β̃ji

+∞∫
0

K̄ij(s)fi(xi(t − s))ds

+
2∧
i=1

T̄jiui +
2∨
i=1

H̄jiui, t �= tk

yj(t+) = yj(t−) +Qjk(yj(t−)) = yj(t−) − (1 + e0.125k)(yj(t−) − 1), t = tk

(27)

for k Î N, i = 1, 2, j = 1, 2, t > 0, t0 = 0, tk = tk-1 + 0.5k, k Î N, where

a1 = 4.5, a2 = 4.5, δ1 = 0.2, δ2 = 0.3, a11 = 4
3 , a12 = − 1

2 ,

a21 = 1
2 , a22 = 2

3 , ã11 = 1, ã12 = −2, ã21 = −2, ã22 = 1,

I1 = 67
12 , I2 = 5

12 , α11 = 1
3 , α12 = − 1

4 , α21 = 1
4 , α22 = 2

3 ,

α̃11 = 1
3 , α̃12 = 1

4 , α̃21 = − 1
4 , α̃22 = 2

3 , T11 = 1, T12 = 0,

T21 = 0, T22 = 1, H11 = 1, H12 = 0, H21 = 0, H22 = 1,

v1 = 1, v2 = 2;

b1 = 4.5, b2 = 4.5, θ1 = 0.2, θ2 = 0.1, b11 = 1
3 , b12 = − 2

3 ,

b21 = 4
3 , b22 = 1

3 , b̃11 = 1, b̃12 = 3, b̃21 = 2, b̃22 = −2,

J1 = − 1
2 , J2 = 7

6 , β11 = 1
3 , β12 = − 1

6 , β21 = 1
3 , β22 = 1

3 ,

β̃11 = 1
3 , β̃12 = 1

6 , β̃21 = 1
3 β̃22 = 1

3 , T̃11 = 1, T̃12 = 0,

T̃21 = 0, T̃22 = 1, H̃11 = 1, H̃12 = 0, H̃21 = 0, H̃22 = 1,

u1 = 1, u2 = 1;

Kij(s) = K̄ij(s) = e−s, fi(s) = gj(s) =
|s+1|−|s−1|

2 , i, j = 1, 2.

From above parameters, we have F1 = F2 = 1, G1 = G2 = 1, and

(kij(λ))2×2 = (k̄ji(λ))2×2 =
( 1

1−λ
1

1−λ
1

1−λ
1

1−λ

)
, Γk = Γ̄k =

(
e0.125k

e0.125k

)
.

Solving the following optimization problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max λ

0 > (λ − a1eλδ1)ξ1 + (|a11| + (|α11| + |α̃11|)k11(λ))G1η1

+(|a12| + (|α12| + |α̃12|)k12(λ))G2η2,

0 > (λ − a2eλδ2)ξ1 + (|a21| + (|α21| + |α̃21|)k21(λ))G1η1

+(|a22| + (|α22| + |α̃22|)k22(λ))G2η2

0 > (λ − b1eλθ1)η1 + (|b11| + (|β11| + |β̃11|)k̄11(λ))F1ξ1
+(|b12| + (|β12| + |β̃12|)k̄12(λ))F2ξ2

0 > (λ − b2eλθ2)η2 + (|b21| + (|β21| + |β̃21|)k̄21(λ))F1ξ1
+(|b22| + (|β22| + |β̃22|)k̄22(λ))F2ξ2,

λ > 0, ξ = (ξ1, ξ2)T > 0, η = (η1, η2)T > 0.
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We obtain that l ≈ 0.3868 > 0, ξ = (1082041, 1327618)T > 0 and h = (716212,

1050021)T > 0, so (C1) holds. From Theorem 1, we know system (27) has a unique

equilibrium point, this equilibrium point is (1, 1, 1, 1)T. Also,

μk = max
1≤i≤2,1≤j≤2

{1, γik, γ̄jk} = e0.125k,

μ = sup
k∈N

lnμk

tk − tk−1
=
0.125k
0.5k

= 0.25 < 0.3868 = λ.

That is, (C2) holds. From Theorem 2, the unique equilibrium point (1, 1, 1, 1)T of

system (27) is globally exponentially stable, and its exponential convergence rate is

about 0.1368. The numerical simulation is shown in Figure 1 and 2.

6 Conclusions
In this paper, a class of impulsive BAM FCNNs with time delays in the leakage terms

and distributed delays has been formulated and investigated. Some new criteria on the

existence, uniqueness and global exponential stability of equilibrium point for the net-

works have been derived by using M-matrix theory and the impulsive delay integro-dif-

ferential inequality. Our stability criteria are delay-dependent and impulse-dependent.

The neuronal output activation functions and the impulsive operators only need to are

Lipschitz continuous, but need not to be bounded and monotonically increasing. Some

restrictions of delay kernel functions are also removed. It is worthwhile to mention

that our technical methods are practical, in the sense that all new stability conditions

are stated in simple algebraic forms and provided a more precise estimate of the expo-

nential convergence rate, so their verification and applications are straightforward and
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Figure 1 Behavior of the state variable x(t) with time impulses.
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convenient. The effectiveness of our results has been demonstrated by the convenient

numerical example.
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