A geometrical constant and normal normal structure in Banach Spaces

Zhanfei Zuo

Correspondence: zuozhanfei@163. com
Department of Mathematics and Computer Science, Chongqing Three Gorges University, Wanzhou 404000, China

Abstract

Recently, we introduced a new coefficient as a generalization of the modulus of smoothness and Pythagorean modulus such as $J_{x, p}(t)$. In this paper, We can compute the constant $J_{X}, p(1)$ under the absolute normalized norms on \mathbb{R}^{2} by means of their corresponding continuous convex functions on [0, 1]. Moreover, some sufficient conditions which imply uniform normal structure are presented. 2000 Mathematics Subject Classification: 46B20. Keywords: Geometrical constant, Absolute normalized norm, Lorentz sequence space, Uniform normal structure

1. Introduction and preliminaries

We assume that X and X^{*} stand for a Banach space and its dual space, respectively. By S_{X} and B_{X} we denote the unit sphere and the unit ball of a Banach space X, respectively. Let C be a non-empty bounded closed convex subset of a Banach space X. A mapping $T: C \rightarrow C$ is said to be non-expansive provided the inequality

$$
\|T x-T y\| \leq\|x-y\|
$$

holds for every $x, y \in C$. A Banach space X is said to have the fixed point property if every non-expansive mapping $T: C \rightarrow C$ has a fixed point, where C is a non-empty bounded closed convex subset of a Banach space X.

Recall that a Banach space X is called uniformly non-square if there exists $\delta>0$ such that $\|x+y\| / 2 \leq 1-\delta$ or $\|x-y\| / 2 \leq 1-\delta$ whenever $x, y \in S_{X}$. A bounded convex subset K of a Banach space X is said to have normal structure if for every convex subset H of K that contains more than one point, there exists a point $x_{0} \in H$ such that

$$
\sup \left\{\left\|x_{0}-y\right\|: y \in H\right\}<\sup \{\|x-y\|: x, y \in H\}
$$

A Banach space X is said to have uniform normal structure if there exists $0<c<1$ such that for any closed bounded convex subset K of X that contains more than one point, there exists $x_{0} \in K$ such that

$$
\sup \left\{\left\|x_{0}-y\right\|: y \in K\right\}<c \sup \{\|x-y\|: x, y \in K\}
$$

It was proved by Kirk that every reflexive Banach space with normal structure has the fixed point property.

SpringerOpen

There are several constants defined on Banach spaces such as the James [1] and von Neumann-Jordan constants [2]. It has been shown that these constants are very useful in geometric theory of Banach spaces, which enable us to classify several important concept of Banach spaces such as uniformly non-squareness and uniform normal structure [3-8]. On the other hand, calculation of the constant for some concrete spaces is also of some interest $[2,5,6,9]$.
Recently, we introduced a new coefficient as a generalization of the modulus of smoothness and Pythagorean modulus such as $J_{X},{ }_{p}(t)$.

Definition 1.1. Let $x \in S_{X}, y \in S_{X}$. For any $t>0,1 \leq p<\infty$ we set

$$
J_{X, p}(t)=\sup \left\{\left(\frac{\|x+t y\|^{p}+\|x-t y\|^{p}}{2}\right)^{\frac{1}{p}}\right\}
$$

Some basic properties of this new coefficient are investigated in [6]. In particular, we compute the new coefficient in the Banach spaces $l_{r}, L_{r}, l_{1}, \infty$ and give rough estimates of the constant in some concrete Banach spaces. In fact, the constant $J_{X, p}(1)$ is also important from the below Corollary in [6].

Corollary 1.2. If $J_{X, p}(1)<2^{1-\frac{1}{p}}\left(1+\omega(X)^{p}\right)^{\frac{1}{p} \text {. Then } R(X)<2 \text {, where } R(X) \text { and } \omega(X), ~(X)}$ stand for García-Falset constant and the coefficient of weak orthogonality, respectively (see $[10,11]$). It is well known that a reflexive Banach space X with $R(X)<2$ enjoys the fixed property (see [10]).

In this paper, we compute the constant $J_{X},{ }_{p}(1)$ under the absolute normalized norms on \mathbb{R}^{2}, and give exact values of the constant $J_{X},{ }_{p}(1)$ in some concrete Banach spaces. Moreover, some sufficient conditions which imply uniform normal structure are presented.
Recall that a norm on \mathbb{R}^{2} is called absolute if $\|(z, w)\|=\|(|z|,|w|)\|$ for all $z, w \in \mathbb{R}$ and normalized if $\|(1,0)\|=\|(0,1)\|$. Let N_{α} denote the family of all absolute normalized norms on \mathbb{R}^{2}, and let Ψ denote the family of all continuous convex functions on $[0,1]$ such that $\psi(1)=\psi(0)=1$ and $\max \{1-s, s\} \leq \psi(s) \leq 1(0 \leq s \leq 1)$. It has been shown that N_{α} and Ψ are a one-to-one correspondence in view of the following proposition in [12].
Proposition 1.3. If $\|\cdot\| \in N_{\alpha}$, then $\psi(s)=\|(1-s, s)\| \in \Psi$. On the other hand, if $\psi(s)$ $\in \Psi$, defined a norm $\|\cdot\|_{\psi}$ as

$$
\|(z, \omega)\|_{\psi}:=\left\{\begin{array}{cl}
(|z|+|\omega|) \psi\left(\frac{|\omega|}{|z|+|\omega|}\right), & (z, \omega) \neq(0,0) \\
0, & (z, \omega)=(0,0)
\end{array}\right.
$$

then the norm $\|\cdot\|_{\psi} \in N_{\alpha}$.
A simple example of absolute normalized norm is usual $l_{r}(1 \leq r \leq \infty)$ norm. From Proposition 1.3, one can easily get the corresponding function of the l_{r} norm:

$$
\psi_{r}(s)=\left\{\begin{array}{l}
\left\{(1-s)^{r}+s^{r}\right\}^{1 / r}, \quad 1 \leq r<\infty \\
\max \{1-s, s\}, \quad r=\infty
\end{array}\right.
$$

Also, the above correspondence enable us to get many non- l_{r} norms on \mathbb{R}^{2}. One of the properties of these norms is stated in the following result.

Proposition 1.4. Let $\psi, \phi \in \Psi$ and $\phi \leq \psi$. Put $M=\max _{0 \leq s \leq 1} \frac{\psi(s)}{\varphi(s)}$, then

$$
\|\cdot\|_{\varphi} \leq\|\cdot\|_{\psi} \leq M\|\cdot\|_{\varphi} .
$$

The Cesàro sequence space was defined by Shue [13] in 1970. It is very useful in the theory of matrix operators and others. Let l be the space of real sequences.

For $1<p<\infty$, the Cesàro sequence space ces $_{p}$ is defined by

$$
\operatorname{ces}_{p}=\left\{x \in l:\|x\|=\|(x(i))\|=\left(\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{i=1}^{n}|x(i)|\right)^{p}\right)^{1 / p}<\infty\right\}
$$

The geometry of Cesàro sequence spaces have been extensively studied in [14-16]. Let us restrict ourselves to the two-dimensional Cesàro sequence space ces ${ }_{p}^{(2)}$ which is just \mathbb{R}^{2} equipped with the norm defined by

$$
\|(x, y)\|=\left(|x|^{p}+\left(\frac{|x|+|y|}{2}\right)^{p}\right)^{1 / p}
$$

2. Geometrical constant $J_{X, p}(1)$ and absolute normalized norm

In this section, we give a simple method to determine and estimate the constant $J_{X, p}$ (1) of absolute normalized norms on \mathbb{R}^{2}. For a norm \| $\left\|\|\right.$ on \mathbb{R}^{2}, we write $J_{X, p}(1)(\| \cdot$
$\|)$ for $J_{X, p}(1)\left(\mathbb{R}^{2},\|\cdot\|\right)$. The following is a direct result of Proposition 2.4 in [6].
Proposition 2.1. Let X be a non-trivial Banach space. Then

$$
J_{X, p}(t)=\sup \left\{\left(\frac{\|x+t y\|^{p}+\|x-t y\|^{p}}{2 \max \left(\left\|\left.x\right|^{p},\right\| y \|^{p}\right)}\right)^{\frac{1}{p}} x, y \in X,\|x\|+\|y\| \neq 0\right\}
$$

Proposition 2.2. Let X be the space l_{r} or $L_{r}[0,1]$ with $\operatorname{dim} X \geq 2$ (see [6])
(1) Let $1<r \leq 2$ and $1 / r+1 / r^{\prime}=1$. Then for all $t>0$
if $1<p<r^{\prime}$ then $J_{X, p}(t)=\left(1+t^{r}\right)^{\frac{1}{r}}$.
if $r^{\prime} \leq p<\infty$ then $J_{X, p}(t) \leq\left(1+K t^{r}\right)^{\frac{1}{r}}$, for some $K \geq 1$.
(2) Let $2 \leq r<\infty, 1 \leq p<\infty$ and $h=\max \{r, p\}$. Then

$$
J_{X, p}(t)=\left(\frac{(1+t)^{h}+|1-t|^{h}}{2}\right)^{\frac{1}{h}} \text { for all } t>0
$$

Proposition 2.3. Let $\phi \in \Psi$ and $\psi(s)=\phi(1-s)$. Then

$$
J_{X, p}(t)\left(\|\cdot\|_{\varphi}\right)=J_{X, p}(t)\left(\|\cdot\|_{\psi}\right)
$$

Proof. For any $x=(a, b) \in \mathbb{R}^{2}$ and $a \neq 0, b \neq 0$, put $\tilde{x}=(b, a)$. Then

$$
\|x\|_{\varphi}=(|a|+|b|) \varphi\left(\frac{|b|}{|a|+|b|}\right)=(|b|+|a|) \psi\left(\frac{|a|}{|a|+|b|}\right)=\|\tilde{x}\|_{\psi} .
$$

Consequently, we have

$$
\begin{aligned}
J_{X, p}(t)\left(\|\cdot\|_{\varphi}\right) & =\sup \left\{\left(\frac{\|x+t y\|^{p}+\|x-t y\|^{p}}{2 \max \left(\|x\|^{p},\|y\|^{p}\right)}\right)^{\frac{1}{p}} x, y \in X,\|x\|+\|y\| \neq 0\right\} \\
& =\sup \left\{\left(\frac{\|\tilde{x}+t \tilde{y}\|^{p}+\|\tilde{x}-t \tilde{y}\|^{p}}{2 \max \left(\|\tilde{x}\|^{p},\|\tilde{y}\|^{p}\right)}\right)^{\frac{1}{p}} \tilde{x}, \tilde{y} \in X,\|\tilde{x}\|+\|\tilde{y}\| \neq 0\right\} \\
& =J_{X, p}(t)\left(\|\cdot\|_{\psi}\right) .
\end{aligned}
$$

We now consider the constant $J_{X, p}(1)$ of a class of absolute normalized norms on \mathbb{R}^{2}. Now let us put

$$
M_{1}=\max _{0 \leq s \leq 1} \frac{\psi_{r}(s)}{\psi(s)} \text { and } M_{2}=\max _{0 \leq s \leq 1} \frac{\psi(s)}{\psi_{r}(s)}
$$

Theorem 2.4. Let $\psi \in \Psi$ and $\psi \leq \psi_{r}(2 \leq r<\infty)$. If the function $\frac{\psi_{r}(s)}{\psi(s)}$ attains its maximum at $s=1 / 2$ and $r \geq p$, then

$$
J_{X, p}(1)\left(\|\cdot\|_{\psi}\right)=\frac{1}{\psi(1 / 2)}
$$

Proof. By Proposition 1.4, we have $\|\cdot\|_{\psi} \leq\|\cdot\|\left\|_{r} \leq M_{1}\right\| \cdot \|_{\psi}$. Let $x, y \in X,(x, y) \neq$ $(0,0)$, where $X=\mathbb{R}^{2}$. Then

$$
\begin{aligned}
\|x+t y\|_{\psi}^{p}+\|x-t y\|_{\psi}^{p} & \leq\|x+t y\|_{r}^{p}+\|x-t y\|_{r}^{p} \\
& \leq 2 J_{X, p}^{p}(t)\left(\|\cdot\| \|_{r}\right) \max \left\{\|x\|_{r}^{p},\|y\|_{r}^{p}\right\} \\
& \leq 2 J_{X, p}^{p}(t)\left(\|\cdot\| \|_{r}\right) M_{1}^{p} \max \left\{x| | x\left\|_{\psi}^{p},\right\| y \|_{\psi}^{p}\right\}
\end{aligned}
$$

from the definition of $J_{X, p}(t)$, implies that

$$
J_{X, p}(t)\left(\|\cdot\|_{\psi}\right) \leq J_{X, p}(t)\left(\|\cdot\|_{r}\right) M_{1}
$$

Note that $r \geq p$ and the function $\frac{\psi_{r}(s)}{\psi(s)}$ attains its maximum at $s=1 / 2$, i.e., $M_{1}=\frac{\psi_{r}(1 / 2)}{\psi(1 / 2)}$. From Proposition 2.2, implies that

$$
\begin{equation*}
J_{X, p}(1)\left(\|\cdot\|_{\psi}\right) \leq J_{X, p}(1)\left(\|\cdot\|_{r}\right) M_{1}=\frac{1}{\psi(1 / 2)} \tag{1}
\end{equation*}
$$

On the other hand, let us put $x=(a, a), y=(a,-a)$, where $a=\frac{1}{2 \psi(1 / 2)}$. Hence $\|x\|_{\psi}=$ $\|y\|_{\psi}=1$, and

$$
\begin{equation*}
\left(\frac{\|x+y\|_{\psi}^{p}+\|x-y\|_{\psi}^{p}}{2}\right)^{\frac{1}{p}}=2 a=\frac{1}{\psi(1 / 2)} \tag{2}
\end{equation*}
$$

From (1) and (2), we have

$$
J_{X, p}(1)\left(\|\cdot\|_{\psi}\right)=\frac{1}{\psi(1 / 2)}
$$

Theorem 2.5. Let $\psi \in \Psi$ and $\psi \geq \psi_{r}(1 \leq r \leq 2)$. If the function $\frac{\psi(s)}{\psi_{r}(s)}$ attains its maximum at $s=1 / 2$ and $1 \leq p<r^{\prime}$, then

$$
J_{X, p}(1)\left(\|\cdot\|_{\psi}\right)=2 \psi(1 / 2)
$$

Proof. By Proposition 1.4, we have $\|\cdot\|_{r} \leq\|\cdot\|_{\mu} \leq M_{2}\|\cdot\| r$ Let $x, y \in X,(x, y) \neq$ $(0,0)$, where $X=\mathbb{R}^{2}$. Then

$$
\begin{aligned}
\|x+t y\|_{\psi}^{p}+\|x-t y\|_{\psi}^{p} & \leq M_{2}^{p}\left(\|x+t y\|_{r}^{p}+\|x-t y\|_{r}^{p}\right) \\
& \leq 2 J_{X, p}^{p}(t)\left(\|\cdot\| \|_{r}\right) M_{2}^{p} \max \left\{\|x\|_{r}^{p},\|y\|_{r}^{p}\right\} \\
& \leq 2 J_{X, p}^{p}(t)\left(\|\cdot\| \|_{r}\right) M_{2}^{p} \max \left\{\|x\|_{\psi}^{p},\|y\|_{\psi}^{p}\right\} .
\end{aligned}
$$

From the definition of $J_{X, p}(t)$, it implies that

$$
J_{X, p}(t)\left(\|\cdot\|_{\psi}\right) \leq J_{X, p}(t)\left(\|\cdot\|_{r}\right) M_{2}
$$

note that $1 \leq p<r^{\prime}$ and the function $\frac{\psi(s)}{\psi_{r}(s)}$ attains its maximum at $s=1 / 2$, i. e., $M_{2}=\frac{\psi(1 / 2)}{\psi_{r}(1 / 2)}$. From Proposition 2.2, it implies that

$$
\begin{equation*}
J_{X, p}(1)\left(\|\cdot\|_{\psi}\right) \leq J_{X, p}(1)\left(\|\cdot\|_{r}\right) M_{2}=2 \psi(1 / 2) . \tag{3}
\end{equation*}
$$

On the other hand, let us put $x=(1,0), y=(0,1)$. Then $\|x\|_{\psi}=\|y\|_{\psi}=1$, and

$$
\begin{equation*}
\left(\frac{\|x+y\|_{\psi}^{p}+\|x-y\|_{\psi}^{p}}{2}\right)^{\frac{1}{p}}=2 \psi(1 / 2) \tag{4}
\end{equation*}
$$

From (3) and (4), we have

$$
J_{X, p}(1)\left(\|\cdot\|_{\psi}\right)=2 \psi(1 / 2)
$$

Lemma 2.6 (see [6]). Let \| \| \| and |.| be two equivalent norms on a Banach space. If $a \mid$. $|\leq||\cdot|| \leq b| \cdot \mid(b \geq a>0)$, then

$$
\frac{a}{b} J_{X, p}(t)(|\cdot|) \leq J_{X, p}(t)(| | \cdot| |) \leq \frac{b}{a} J_{X, p}(t)(|\cdot|) .
$$

Example 2.7. Let $X=\mathbb{R}^{2}$ with the norm

$$
\|x\|=\max \left\{\|x\|_{2}, \lambda\|x\|_{1}\right\}(1 / \sqrt{2} \leq \lambda \leq 1) .
$$

Then

$$
J_{X, p}(1)(\|\cdot\|)=2 \lambda .(1 \leq p<2)
$$

Proof. It is very easy to check that $\|x\|=\max \left\{\|x\|_{2}, \lambda\|x\|_{1}\right\} \in \mathbb{N}_{\alpha}$ and its corresponding function is

$$
\psi(s)=\|(1-s, s)\|=\max \left\{\psi_{2}(s), \lambda\right\} \geq \psi_{2}(s)
$$

Therefore,

$$
\frac{\psi(s)}{\psi_{2}(s)}=\max \left\{1, \frac{\lambda}{\psi_{2}(s)}\right\} .
$$

Since $\psi_{2}(s)$ attains minimum at $s=1 / 2$ and hence $\frac{\psi(s)}{\psi_{2}(s)}$ attains maximum at $s=1 / 2$. Therefore, from Theorem 2.5, we have

$$
J_{X, p}(1)(\|\cdot\|)=2 \psi(1 / 2)=2 \lambda .
$$

Example 2.8. Let $X=\mathbb{R}^{2}$ with the norm

$$
\|x\|=\max \left\{\|x\|_{2}, \lambda\|x\|_{\infty}\right\}(1 \leq \lambda \leq \sqrt{2})
$$

Then

$$
J_{X, p}(1)(\|\cdot\|)=\sqrt{2} \lambda .(1 \leq p \leq 2)
$$

Proof. It is obvious to check that the norm $\|x\|=\max \left\{\|x\|_{2}, \lambda\|x\|_{\infty}\right\}$ is absolute, but not normalized, since $\|(1,0)\|=\|(0,1)\|=\lambda$. Let us put

Then $|.| \in \mathbb{N}_{\alpha}$ and its corresponding function is

$$
\psi(s)=\|(1-s, s)\|=\max \left\{\frac{\psi_{2}(s)}{\lambda}, \psi_{\infty}(s)\right\} \leq \psi_{2}(s)
$$

Then

$$
\frac{\psi_{2}(s)}{\psi(s)}=\min \left\{\lambda, \frac{\psi_{2}(s)}{\psi_{\infty}(s)}\right\}
$$

Consider the increasing continuous function $g(s)=\frac{\psi_{2}(s)}{\psi(s)}(0 \leq s \leq 1 / 2)$. Because $g(0)$ $=1$ and $g(1 / 2)=\sqrt{2}$, there exists a unique $0 \leq a \leq 1$ such that $g(a)=\lambda$. In fact $g(s)$ is symmetric with respect to $s=1 / 2$. Then we have

$$
g(s)= \begin{cases}\frac{\psi_{2}(s)}{\psi(s)}, & s \in[0, a] \cup[1-a, a] \\ \lambda, & s \in[a, 1-a]\end{cases}
$$

Obviously, $g(s)$ attains its maximum at $s=1 / 2$. Hence, from Theorem 2.4 and Lemma 2.6, we have

$$
J_{X, p}(1)(\|\cdot\|)=J_{X, p}(1)(|\cdot|)=\frac{1}{\psi(1 / 2)}=\sqrt{2} \lambda
$$

Example 2.9. Let $X=\mathbb{R}^{2}$ with the norm

$$
\|x\|=\left(\|x\|_{2}^{2}+\lambda\|x\|_{\infty}^{2}\right)(\lambda \geq 0)
$$

Then

$$
J_{X, p}(1)(\|\cdot\|)=2 \sqrt{\frac{1+\lambda}{\lambda+2}}(1 \leq p \leq 2)
$$

Proof. It is obvious to check that the norm $\|x\|=\left(\|x\|_{2}^{2}+\lambda\|x\|_{\infty}^{2}\right)$ is absolute, but not normalized, since $\|(1,0)\|=\|(0,1)\|=(1+\lambda)^{1 / 2}$. Let us put

Therefore, $|.| \in \mathbb{N}_{\alpha}$ and its corresponding function is

$$
\psi(s)=\|(1-s, s)\|=\left\{\begin{array}{l}
{\left[(1-s)^{2}+s^{2} /(1+\lambda)\right]^{1 / 2}, s \in[0,1 / 2]} \\
{\left[s^{2}+(1-s)^{2} /(1+\lambda)\right]^{1 / 2}, s \in[1 / 2,1]}
\end{array}\right.
$$

Obvious $\psi(s) \leq \psi_{2}(s)$. Since $\lambda \geq 0, \frac{\psi_{2}(s)}{\psi(s)}$ is symmetric with respect to $s=1 / 2$, it suffices to consider $\frac{\psi_{2}(s)}{\psi(s)}$ for $s \in[0,1 / 2]$. Note that, for any $s \in[0,1 / 2]$, put $g(s)=\frac{\psi_{2}(s)^{2}}{\psi(s)^{2}}$. Taking derivative of the function $g(s)$, we have

$$
g^{\prime}(s)=\frac{2 \lambda}{1+\lambda} \times \frac{s(1-s)}{\left[(1-s)^{2}+s^{2} /(1+\lambda)\right]^{2}}
$$

We always have $g^{\prime}(s) \geq 0$ for $0 \leq s \leq 1 / 2$. This implies that the function $g(s)$ is increased for $0 \leq s \leq 1 / 2$. Therefore, the function $\frac{\psi_{2}(s)}{\psi(s)}$ attains its maximum at $s=1 / 2$. By Theorem 2.4 and Lemma 2.6, we have

$$
J_{X, p}(1)(\|\cdot\|)=J_{X, p}(1)(|\cdot|)=\frac{1}{\psi(1 / 2)}=2 \sqrt{\frac{1+\lambda}{\lambda+2}} .
$$

Example 2.10. (Lorentz sequence spaces). Let $\omega_{1} \geq \omega_{2}>0,2 \leq r<\infty$. Two-dimensional Lorentz sequence space, i.e. \mathbb{R}^{2} with the norm

$$
\|(z, \omega)\|_{\omega, r}=\left(\omega_{1}\left|x_{1}^{*}\right|^{r}+\omega_{2}\left|x_{2}^{*}\right|^{r}\right)^{1 / r}
$$

where $\left(x_{1}^{*}, x_{2}^{*}\right)$ is the rearrangement of $(|z|,|\omega|)$ satisfying $x_{1}^{*} \geq x_{2}^{*}$, then

$$
J_{X, p}(1)\left(\|(z, \omega)\|_{\omega, r}\right)=2\left(\frac{\omega_{1}}{\omega_{1}+\omega_{2}}\right)^{\frac{1}{r}}(1 \leq p \leq r)
$$

Proof. It is obvious that $||=.\left(\|(z, \omega)\|_{\omega, r}\right) / \omega_{1}^{1 / q} \in \mathbb{N}_{\alpha}$, and the corresponding convex function is given by

$$
\psi(s)=\left\{\begin{array}{l}
{\left[(1-s)^{r}+\left(\omega_{2} / \omega_{1}\right) s^{r}\right]^{1 / r}, s \in[0,1 / 2]} \\
{\left[s^{r}+\left(\omega_{2} / \omega_{1}\right)(1-s)^{r}\right]^{1 / r}, s \in[1 / 2,1] .}
\end{array}\right.
$$

Obviously $\psi(s) \leq \psi_{r}(s)$ and $\Phi(s)=\frac{\psi_{r}(s)}{\psi(s)}$. It suffices to consider $\Phi(s)$ for $s \in[0,1 / 2]$ since $\Phi(s)$ is symmetric with respect to $s=1 / 2$. Note that for $s \in[0,1 / 2]$

$$
\Phi^{r}(s)=\frac{\psi_{r}^{r}(s)}{\psi^{r}(s)}=\frac{(1-s)^{r}+s^{r}}{(1-s)^{r}+\left(\omega_{2} / \omega_{1}\right) s^{r}}=\frac{u(s)}{v(s)} .
$$

Some elementary computation shows that $u(s)-v(s)=\left(1-\left(\omega_{2} / \omega_{1}\right)\right) s^{r}$ attains its maximum and $v(s)$ attains its minimum at $s=1 / 2$. Hence,

$$
\Phi^{r}(s)=\frac{u(s)-v(s)}{v(s)}+1
$$

attains its maximum at $s=1 / 2$ and so does $\Phi(s)$. Then by Theorem 2.4 and Lemma 2.6, we have

$$
J_{X, p}(1)\left(\|(z, \omega)\|_{\omega, r}\right)=J_{X, p}(1)(|.|)=2\left(\frac{\omega_{1}}{\omega_{1}+\omega_{2}}\right)^{\frac{1}{r}} .
$$

Example 2.11. Let X be two-dimensional Cesàro space $\operatorname{ces}_{2}^{(2)}$, then

$$
J_{X, p}(1)\left(\operatorname{ces}_{2}^{(2)}\right)=\sqrt{2+\frac{2 \sqrt{5}}{5}} .(1 \leq p<2) .
$$

Proof. We first define

$$
|x, y|=\left\|\left(\frac{2 x}{\sqrt{5}}, 2 y\right)\right\|_{\operatorname{ces}_{2}^{(2)}}
$$

for $(x, y) \in \mathbb{R}^{2}$. It follows that $\operatorname{ces}_{2}^{(2)}$ is isometrically isomorphic to $\left(\mathbb{R}^{2},||.\right)$ and $|$.$| is$ an absolute and normalized norm, and the corresponding convex function is given by

$$
\psi(s)=\left[\frac{4(1-s)^{2}}{5}+\left(\frac{1-s}{\sqrt{5}}+s\right)^{2}\right]^{\frac{1}{2}}
$$

Indeed, $T: \operatorname{ces}_{2}^{(2)} \rightarrow\left(\mathbb{R}^{2},||.\right)$ defined by $T(x, y)=\left(\frac{x}{\sqrt{5}}, 2 y\right)$ is an isometric isomorphism. We prove that $\psi(s) \geq \psi_{2}(s)$. Note that

$$
\left(\frac{1-s}{\sqrt{5}}+s\right)^{2} \geq\left(\frac{1-s}{\sqrt{5}}\right)^{2}+s^{2}
$$

Consequently,

$$
\psi(s) \geq\left((1-s)^{2}+s^{2}\right)^{1 / 2}=\psi_{2}(s) .
$$

Some elementary computation shows that $\frac{\psi(s)}{\psi_{2}(s)}$ attains its maximum at $s=1 / 2$.
Therefore, from Theorem 2.5, we have

$$
J_{X, p}(1)\left(\operatorname{ces}_{2}^{(2)}\right)=2 \psi(1 / 2)=\sqrt{2+\frac{2 \sqrt{5}}{5}} .
$$

3. Constant and uniform normal structure

First, we recall some basic facts about ultrapowers. Let $l_{\infty}(X)$ denote the subspace of the product space $I_{n \in \mathbb{N}} X$ equipped with the norm $\left\|\left(x_{n}\right)\right\|:=\sup _{n \in \mathbb{N}}\left\|x_{n}\right\|<\infty$. Let \mathcal{U} be an ultrafilter on \mathbb{N} and let

$$
N_{\mathcal{U}}=\left\{\left(x_{n}\right) \in l_{\infty}(X): \lim _{\mathcal{U}}\left\|x_{n}\right\|=0\right\} .
$$

The ultrapower of X, denoted by \tilde{X}, is the quotient space $l_{\infty}(X) / N_{\mathcal{U}}$ equipped with the quotient norm. Write \tilde{x}_{n} to denote the elements of the ultrapower. Note that if \mathcal{U} is non-trivial, then X can be embedded into \tilde{X} isometrically. We also note that if X is super-reflexive, that is $\tilde{X}^{*}=(\tilde{X})^{*}$, then X has uniform normal structure if and only if \tilde{X} has normal structure (see [17]).

Theorem 3.1. Let X be a Banach space with

$$
J_{X, p}(t)<\frac{\sqrt{4+t^{2}}+t}{2}
$$

for some $t \in(0,1]$. Then X has uniform normal structure.
Proof. Observe that X is uniform non-square (see [6]) and then X is super-reflexive, it is enough to show that X has normal structure. Suppose that X lacks normal structure, then by Saejung [18, Lemma 2], there exist $\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3} \in S_{\tilde{X}}$ and $\tilde{f}_{1}, \tilde{f}_{2}, \tilde{f}_{3} \in S_{\widetilde{X} *}$ satisfying:
(1) $\left\|\tilde{x}_{i}-\tilde{x}_{j}\right\|=1$ and $\tilde{f}_{i}\left(\tilde{x}_{j}\right)=0$ for all $i \neq j$.
(2) $\tilde{f}_{i}\left(\tilde{x}_{i}\right)=1$ for $i=1,2,3$.
(3) $\left\|\tilde{x}_{3}-\left(\tilde{x}_{2}+\tilde{x}_{1}\right)\right\| \geq\left\|\tilde{x}_{2}+\tilde{x}_{1}\right\|$.

Let $h(t)=\left(2-t+\sqrt{4+t^{2}}\right) / 2$ and consider three possible cases.
First, if $\left\|\tilde{x}_{1}+\tilde{x}_{2}\right\| \leq h(t)$. In this case, let us put $\tilde{x}=\tilde{x}_{1}-\tilde{x}_{2}$ and $\tilde{y}=\left(\tilde{x}_{1}+\tilde{x}_{2}\right) / h(t)$. It follows that $\tilde{x}, \tilde{y} \in B_{\tilde{X}}$, and

$$
\begin{aligned}
\|\tilde{x}+t \tilde{y}\| & =\left\|(1+(t / h(t))) \tilde{x}_{1}-(1-(t / h(t))) \tilde{x}_{2}\right\| \\
& \geq(1+(t / h(t))) \tilde{f}_{1}\left(\tilde{x}_{1}\right)-(1-(t / h(t))) \tilde{f}_{1}\left(\tilde{x}_{2}\right) \\
& =1+(t / h(t)) \\
\|\tilde{x}-t \tilde{y}\| & =\left\|(1+(t / h(t))) \tilde{x}_{2}-(1-(t / h(t))) \tilde{x}_{1}\right\| \\
& \geq(1+(t / h(t))) \tilde{f}_{2}\left(\tilde{x}_{2}\right)-(1-(t / h(t))) \tilde{f}_{2}\left(\tilde{x}_{1}\right) \\
& =1+(t / h(t)) .
\end{aligned}
$$

Secondly, if $\left\|\tilde{x}_{1}+\tilde{x}_{2}\right\| \geq h(t)$ and $\left\|\tilde{x}_{3}+\tilde{x}_{2}-\tilde{x}_{1}\right\| \leq h(t)$. In this case, let us put $\tilde{x}=\tilde{x}_{2}-\tilde{x}_{3}$ and $\tilde{y}=\left(\tilde{x}_{3}+\tilde{x}_{2}-\tilde{x}_{1}\right) / h(t)$. It follows that $\tilde{x}, \tilde{y} \in B_{\tilde{X}}$, and

$$
\begin{aligned}
\|\tilde{x}+t \tilde{y}\| & =\left\|(1+(t / h(t))) \tilde{x}_{2}-(1-(t / h(t))) \tilde{x}_{3}-(t / h(t)) \tilde{x}_{1}\right\| \\
& \geq(1+(t / h(t))) \tilde{f}_{2}\left(\tilde{x}_{2}\right)-(1-(t / h(t))) \tilde{f}_{2}\left(\tilde{x}_{3}\right)-(t / h(t)) \tilde{f}_{2}\left(\tilde{x}_{1}\right) \\
& =1+(t / h(t)), \\
\|\tilde{x}-t \tilde{y}\| & =\left\|(1+(t / h(t))) \tilde{x}_{3}-(1-(t / h(t))) \tilde{x}_{2}-(t / h(t)) \tilde{x}_{1}\right\| \\
& \geq(1+(t / h(t))) \tilde{f}_{3}\left(\tilde{x}_{3}\right)-(1-(t / h(t))) \tilde{f}_{3}\left(\tilde{x}_{2}\right)-(t / h(t)) \tilde{f}_{3}\left(\tilde{x}_{1}\right) \\
& =1+(t / h(t)) .
\end{aligned}
$$

Thirdly, $\left\|\tilde{x}_{1}+\tilde{x}_{2}\right\| \geq h(t)$ and $\left\|\tilde{x}_{3}+\tilde{x}_{2}-\tilde{x}_{1}\right\| \geq h(t)$. In this case, let us put $\tilde{x}=\tilde{x}_{3}-\tilde{x}_{1}$ and $\tilde{y}=\tilde{x}_{2}$. It follows that $\tilde{x}, \tilde{y} \in S_{\tilde{X}}$, and

$$
\begin{aligned}
\|\tilde{x}+t \tilde{y}\| & =\left\|\tilde{x}_{3}+t \tilde{x}_{2}-\tilde{x}_{1}\right\| \\
& \geq\left\|\tilde{x}_{3}+\tilde{x}_{2}-\tilde{x}_{1}\right\|-(1-t) \\
& \geq h(t)+t-1, \\
\|\tilde{x}-t \tilde{y}\| & =\left\|\tilde{x}_{3}-\left(t \tilde{x}_{2}+\tilde{x}_{1}\right)\right\| \\
& \geq\left\|\tilde{x}_{3}-\left(\tilde{x}_{2}+\tilde{x}_{1}\right)\right\|-(1-t) \\
& \geq h(t)+t-1 .
\end{aligned}
$$

Then, by definition of $J_{X, p}(t)$ and the fact $J_{X, p}(t)=J_{\tilde{X}, p}(t)$,

$$
\begin{aligned}
J_{X, p}(t) & \geq \max \{1+(t / h(t)), h(t)+t-1\} \\
& =\frac{\sqrt{4+t^{2}}+t}{2} .
\end{aligned}
$$

This is a contradiction and thus the proof is complete.

Acknowledgements

The author wish to express their heartfelt thanks to the referees for their detailed and helpful suggestions for revising the manuscript.

Authors' contributions

ZZF designed and performed all the steps of proof in this research and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 1 March 2011 Accepted: 23 June 2011 Published: 23 June 2011

References

1. Gao, J, Lau, KS: On two classes Banach spaces with uniform normal structure. Studia Math. 99, 41-56 (1991)
2. Kato, M, Maligranda, L, Takahashi, Y: On James and Jordan-von Neumann constants and normal structure coefficient of Banach spaces. Studia Math. 144, 275-295 (2001). doi:10.4064/sm144-3-5
3. Zuo, ZF, Cui, Y: On some parameters and the fixed point property for multivalued nonexpansive mapping. J Math Sci Adv Appl. 1, 183-199 (2008)
4. Zuo, ZZ, Cui, Y: A note on the modulus of U-convexity and modulus of W^{*}-convexity. J Inequal Pure Appl Math. 9(4), 1-7 (2008)
5. Zuo, ZF, Cui, Y: Some modulus and normal structure in Banach space. J Inequal Appl. 2009, Article ID 676373 (2009)
6. Zuo, ZF, Cui, Y: A coefficient related to some geometrical properties of Banach space. J Inequal Appl. 2009, Article ID 934321 (2009)
7. Zuo, ZZ, Cui, Y: The application of generalization modulus of convexity in fixed point theory. J Nat Sci Heilongjiang Univ. 2, 206-210 (2009)
8. Zuo, ZZ, Cui, Y: Some sufficient conditions for fixed points of multivalued nonexpansive mappings. Fixed Point Theory Appl. 2009, Article ID 319804 (2009)
9. Llorens-Fuster, E: The Ptolemy and Zbăganu constants of normed spaces. Nonlinear Anal. 72, 3984-3993 (2010). doi:10.1016/j.na.2010.01.030
10. Garcia-Falset, J: The fixed point property in Banach spaces with NUS-property. J Math Anal Appl. 215, 532-542 (1997). doi:10.1006/jmaa.1997.5657
11. Sims, B: A class of spaces with weak normal structure. Bull Aust Math Soc. 50, 523-528 (1994)
12. Bonsall, FF, Duncan, J: Numerical Ranges II. London Mathematical Society Lecture Notes Series, vol. 10. Cambridge University Press, New York (1973)
13. Shue, JS: On the Cesàro sequence spaces. Tamkang J Math. 1, 143-150 (1970)
14. Cui, Y, Jie, L, Pluciennik, R: Local uniform nonsquareness in Cesàro sequence spaces. Comment Math. 27, 47-58 (1997)
15. Cui, Y, Hudik, H: Some geometric properties related to fixed point theory in Cesàro spaces. Collect Math. 50(3), 277-288 (1999)
16. Maligranda, L, Petrot, N, Suantai, S: On the James constant and B-convexity of Cesàro and Cesàro-Orlicz sequence spaces. J Math Anal Appl. 326(1), 312-331 (2007). doi:10.1016/j.jmaa.2006.02.085
17. Khamsi, MA: Uniform smoothness implies super-normal structure property. Nonlinear Anal. 19, 1063-1069 (1992). doi:10.1016/0362-546X(92)90124-W
18. Saejung, S: Sufficient conditions for uniform normal structure of Banach spaces and their duals. J Math Anal Appl. 330, 597-604 (2007). doi:10.1016/j.jmaa.2006.07.087

doi:10.1186/1029-242X-2011-16

Cite this article as: Zuo: A geometrical constant and normal normal structure in Banach Spaces. Journal of Inequalities and Applications 2011 2011:16.

