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Abstract
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1 Introduction
Let {Xn, n ≥ 1} be a sequence of random variables defined on a fixed probability space

(�,F ,P) . The exponential inequality for the partial sums
∑n

i=1
(Xi − EXi) plays an

important role in various proofs of limit theorems. In particular, it provides a measure

of convergence rate for the strong law of large numbers. There exist several versions

available in the literature for independent random variables with assumptions of uni-

form boundedness or some, quite relaxed, control on their moments. If the indepen-

dent case is classical in the literature, the treatment of dependent variables is more

recent.

First, we will recall the definitions of some dependence structure.

Definition 1.1. A finite collection of random variables X1, X2,..., Xn is said to be nega-

tively associated (NA) if for every pair of disjoint subsets A1, A2 of {1, 2,..., n},

Cov{f (Xi : i ∈ A1), g(Xj : j ∈ A2)} ≤ 0, (1:1)

whenever f and g are coordinatewise nondecreasing (or coordinatewise nonincreasing)

such that this covariance exists. An infinite sequence of random variables {Xn, n ≥ 1} is

NA if every finite subcollection is NA.

Definition 1.2. A finite collection of random variables X1, X2,..., Xn is said to be nega-

tively upper orthant dependent (NUOD) if for all real numbers x1, x2,..., xn,

P(Xi > xi, i = 1, 2, . . . ,n) ≤
n∏
i=1

P(Xi > xi), (1:2)
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and negatively lower orthant dependent (NLOD) if for all real numbers x1, x2,..., xn,

P(Xi ≤ xi, i = 1, 2, . . . ,n) ≤
n∏
i=1

P(Xi ≤ xi). (1:3)

A finite collection of random variables X1, X2,..., Xn is said to be negatively orthant

dependent (NOD) if they are both NUOD and NLOD. An infinite sequence {Xn, n ≥ 1}

is said to be NOD if every finite subcollection is NOD.

The concept of NA random variables was introduced by Alam and Saxena [1] and

carefully studied by Joag-Dev and Proschan [2]. Joag-Dev and Proschan [2] pointed out

that a number of well-known multivariate distributions possesses the negative associa-

tion property, such as multinomial, convolution of unlike multinomial, multivariate

hypergeometric, Dirichlet, permutation distribution, negatively correlated normal distri-

bution, random sampling without replacement, and joint distribution of ranks. The

notion of NOD random variables was introduced by Lehmann [3] and developed in

Joag-Dev and Proschan [2]. Obviously, independent random variables are NOD. Joag-

Dev and Proschan [2] pointed out that NA random variables are NOD, but neither

NUOD nor NLOD implies NA. They also presented an example in which X = (X1, X2,

X3, X4) possesses NOD, but does not possess NA. Hence, we can see that NOD is

weaker than NA.

Recently, Giuliano et al. [4] introduced the following notion of acceptability.

Definition 1.3. We say that a finite collection of random variables X1, X2,..., Xn is

acceptable if for any real l,

E exp

(
λ

n∑
i=1

Xi

)
≤

n∏
i=1

E exp(λXi). (1:4)

An infinite sequence of random variables {Xn, n ≥ 1} is acceptable if every finite sub-

collection is acceptable.

Since it is required that the inequality (1.4) holds for all l, Sung et al. [5] weakened

the condition on l and gave the following definition of acceptability.

Definition 1.4. We say that a finite collection of random variables X1, X2,..., Xn is

acceptable if there exists δ >0 such that for any real lÎ (-δ, δ),

E exp

(
λ

n∑
i=1

Xi

)
≤

n∏
i=1

E exp(λXi). (1:5)

An infinite sequence of random variables {Xn, n ≥ 1} is acceptable if every finite sub-

collection is acceptable.

First, we point out that Definition 1.3 of acceptability will be used in the current arti-

cle. As is mentioned in Giuliano et al. [4], a sequence of NOD random variables with a

finite Laplace transform or finite moment generating function near zero (and hence a

sequence of NA random variables with finite Laplace transform, too) provides us an

example of acceptable random variables. For example, Xing et al. [6] consider a strictly

stationary NA sequence of random variables. According to the sentence above, a

sequence of strictly stationary and NA random variables is acceptable.

Another interesting example of a sequence {Zn, n ≥ 1} of acceptable random vari-

ables can be constructed in the following way. Feller [[7], Problem III.1] (cf. also
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Romano and Siegel [[8], Section 4.30]) provides an example of two random variables X

and Y such that the density of their sum is the convolution of their densities, yet they

are not independent. It is easy to see that X and Y are not negatively dependent either.

Since they are bounded, their Laplace transforms E exp(lX) and E exp(lY) are finite

for any l. Next, since the density of their sum is the convolution of their densities, we

have

E exp(λ(X + Y)) = E exp(λX)E exp(λY).

The announced sequence of acceptable random variables {Zn, n ≥ 1} can be now

constructed in the following way. Let (Xk, Yk) be independent copies of the random

vector (X, Y), k ≥ 1. For any n ≥ 1, set Zn = Xk if n = 2k + 1 and Zn = Yk if n = 2k.

Hence, the model of acceptable random variables that we consider in this article (Defi-

nition 1.3) is more general than models considered in the previous literature. Studying

the limiting behavior of acceptable random variables is of interest.

Recently, Sung et al. [5] established an exponential inequality for a random variable

with the finite Laplace transform. Using this inequality, they obtained an exponential

inequality for identically distributed acceptable random variables which have the finite

Laplace transforms. The main purpose of the article is to establish some exponential

inequalities for acceptable random variables under very mild conditions. Furthermore,

we will study the complete convergence for acceptable random variables using the

exponential inequalities.

Throughout the article, let {Xn, n ≥ 1} be a sequence of acceptable random variables

and denote Sn =
∑n

i=1
Xi for each n ≥ 1.

Remark 1.1. If {Xn, n ≥ 1} is a sequence of acceptable random variables, then {-Xn, n

≥ 1} is still a sequence of acceptable random variables. Furthermore, we have for each

n ≥ 1,

E exp

(
λ

n∑
i=1

(Xi − EXi)

)
= exp

(
−λ

n∑
i=1

EXi

)
E exp

(
λ

n∑
i=1

Xi

)

≤
[

n∏
i=1

exp (−λEXi)

][
n∏
i=1

E exp(λXi)

]

=
n∏
i=1

E exp(λ(Xi − EXi)).

Hence, {Xn - EXn, n ≥ 1} is also a sequence of acceptable random variables.

The following lemma is useful.

Lemma 1.1. If X is a random variable such that a ≤ X ≤ b, where a and b are finite

real numbers, then for any real number h,

EehX ≤ b − EX
b − a

eha +
EX − a
b − a

ehb. (1:6)

Proof. Since the exponential function exp(hX) is convex, its graph is bounded above

on the interval a ≤ X ≤ b by the straight line which connects its ordinates at X = a

and X = b. Thus
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ehX ≤ ehb − eha

b − a
(X − a) + eha =

b − X
b − a

eha +
X − a
b − a

ehb,

which implies (1.6).

The rest of the article is organized as follows. In Section 2, we will present some

exponential inequalities for a sequence of acceptable random variables, such as Bern-

stein-type inequality, Hoeffding-type inequality. The Bernstein-type inequality for

acceptable random variables generalizes and improves the corresponding results of

Yang [9] for NA random variables and Wang et al. [10] for NOD random variables. In

Section 3, we will study the complete convergence for acceptable random variables

using the exponential inequalities established in Section 2.

2 Exponential inequalities for acceptable random variables
In this section, we will present some exponential inequalities for acceptable random

variables, such as Bernstein-type inequality and Hoeffding-type inequality.

Theorem 2.1. Let {Xn, n ≥ 1} be a sequence of acceptable random variables with EXi

= 0 and EX2
i = σ 2

i < ∞ for each i ≥ 1. Denote B2
n =
∑n

i=1 σ 2
i for each n ≥ 1. If there

exists a positive number c such that |Xi| ≤ cBn for each 1 ≤ i ≤ n, n ≥ 1, then for any ε

>0,

P
(
Sn/Bn ≥ ε

) ≤
{
exp

[
− ε2

2

(
1 − εc

2

)]
if εc ≤ 1,

exp
(− ε

4c

)
if εc ≥ 1.

(2:1)

Proof. For fixed n ≥ 1, take t >0 such that tcBn ≤ 1. It is easily seen that

| EXk
i | ≤ (cBn)k−2EX2

i , k ≥ 2.

Hence,

EetXi = 1 +
∞∑
k=2

tk

k!
EXk

i ≤ 1 +
t2

2
EX2

i

(
1 +

t
3
cBn +

t2

12
c2B2

n + · · ·
)

≤ 1 +
t2

2
EX2

i

(
1 +

t
2
cBn

)
≤ exp

[
t2

2
EX2

i

(
1 +

t
2
cBn

)]
.

By Definition 1.3 and the inequality above, we have

EetSn = E

(
n∏
i=1

etXi

)
≤

n∏
i=1

EetXi ≤ exp
[
t2

2
B2
n

(
1 +

t
2
cBn

)]
,

which implies that

P
(
Sn/Bn ≥ ε

) ≤ exp
[
−tεBn +

t2

2
B2
n

(
1 +

t
2
cBn

)]
. (2:2)

We take t = ε
Bn

when εc ≤ 1, and take t = 1
cBn

when εc >1. Thus, the desired result

(2.1) can be obtained immediately from (2.2).

Theorem 2.2. Let {Xn, n ≥ 1} be a sequence of acceptable random variables with EXi =

0 and |Xi| ≤ b for each i ≥ 1, where b is a positive constant. Denote σ 2
i = EX2

i and

B2
n =
∑n

i=1 σ 2
i for each n ≥ 1. Then, for any ε >0,
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P (Sn ≥ ε) ≤ exp

{
− ε2

2B2
n +

2
3bε

}
(2:3)

and

P (| Sn |≥ ε) ≤ 2 exp

{
− ε2

2B2
n +

2
3bε

}
. (2:4)

Proof. For any t >0, by Taylor’s expansion, EXi = 0 and the inequality 1 + x ≤ ex, we

can get that for i = 1, 2,..., n,

E exp{tXi} = 1 +
∞∑
j=2

E(tXi)
j

j!
≤ 1+

∞∑
j=2

tjE | Xi|j
j!

= 1 +
t2σ 2

i

2

∞∑
j=2

tj−2E | Xi|j
1
2σ 2

i j!

= 1 +
t2σ 2

i

2
Fi(t) ≤ exp

{
t2σ 2

i

2
Fi(t)

}
,

(2:5)

where

Fi(t) =
∞∑
j=2

tj−2E | Xi|j
1
2σ 2

i j!
, i = 1, 2, . . . ,n.

Denote C = b/3 and Mn = bε
3B2

n
+ 1 . Choosing t >0 such that tC <1 and

tC ≤ Mn − 1
Mn

=
Cε

Cε + B2
n
.

It is easy to check that for i = 1, 2,..., n and j ≥ 2,

E | Xi|j ≤ σ 2
i b

j−2 ≤ 1
2

σ 2
i C

j−2j!,

which implies that for i = 1, 2,..., n,

Fi(t) =
∞∑
j=2

tj−2E | Xi|j
1
2σ 2

i j!
≤

∞∑
j=2

(tC)j−2 = (1 − tC)−1 ≤ Mn. (2:6)

By Markov’s inequality, Definition 1.3, (2.5) and (2.6), we can get

P (Sn ≥ ε) ≤ e−tεE exp {tSn} ≤ e−tε
n∏
i=1

E exp{tXi} ≤ exp
{
−tε +

t2B2
n

2
Mn

}
. (2:7)

Taking t = ε
B2
nMn

= ε
Cε+B2

n
. It is easily seen that tC <1 and tC = Cε

Cε+B2
n
. Substituting

t = ε
B2
nMn

into the right-hand side of (2.7), we can obtain (2.3) immediately. By (2.3), we

have

P (Sn ≤ −ε) = P (−Sn ≥ ε) ≤ exp

{
− ε2

2B2
n +

2
3bε

}
, (2:8)
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since {-Xn, n ≥ 1} is still a sequence of acceptable random variables. The desired

result (2.4) follows from (2.3) and (2.8) immediately. □
Remark 2.1. By Theorem 2.2, we can get that for any t >0,

P (| Sn |≥ nt) ≤ 2 exp

{
− n2t2

2B2
n +

2
3bnt

}

and

P (| Sn |≥ Bnt) ≤ 2 exp

{
− t2

2 + 2
3 · bt

Bn

}
.

It is well known that the upper bound of P (|Sn| ≥ nt) is also 2 exp
{
− n2t2

2B2
n+

2
3 bnt

}
. So

Theorem 2.3 extends corresponding results for independent random variables without

necessarily adding any extra conditions. In addition, it is easy to check that

exp

{
− ε2

2B2
n +

2
3bε

}
< exp

{
− ε2

2(2B2
n + bε)

}
,

which implies that our Theorem 2.2 generalizes and improves the corresponding

results of Yang [9, Lemma 3.5] for NA random variables and Wang et al. [10, Theorem

2.3] for NOD random variables.

In the following, we will provide the Hoeffding-type inequality for acceptable random

variables.

Theorem 2.3. Let {Xn, n ≥ 1} be a sequence of acceptable random variables. If there

exist two sequences of real numbers {an, n ≥ 1} and {bn, n ≥ 1} such that ai ≤ Xi ≤ bi
for each i ≥ 1, then for any ε >0 and n ≥ 1,

P (Sn − ESn ≥ ε) ≤ exp

{
− 2ε2∑n

i=1 (bi − ai)
2

}
, (2:9)

P (Sn − ESn ≤ −ε) ≤ exp

{
− 2ε2∑n

i=1 (bi − ai)
2

}
, (2:10)

and

P (| Sn − ESn |≥ ε) ≤ 2 exp

{
− 2ε2∑n

i=1 (bi − ai)
2

}
. (2:11)

Proof. For any h >0, by Markov’s inequality, we can see that

P (Sn − ESn ≥ ε) ≤ Eeh(Sn−ESn−ε). (2:12)
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It follows from Remark 1.1 that

Eeh(Sn−ESn−ε) = e−hεE
(

n∏
i=1

eh(Xi−EXi)

)
≤ e−hε

n∏
i=1

Eeh(Xi−EXi). (2:13)

Denote EXi = μi for each i ≥ 1. By ai ≤ Xi ≤ bi and Lemma 1.1, we have

Eeh(Xi−EXi) ≤ e−hμi

(
bi − μi

bi − ai
ehai +

μi − ai
bi − ai

ehbi
)

.= eL(hi), (2:14)

where

L(hi) = −hipi + ln(1 − pi + piehi), hi = h(bi − ai), pi =
μi − ai
bi − ai

.

The first two derivatives of L(hi) with respect to hi are

L′(hi) = −pi +
pi

(1 − pi)e−hi + pi
, L′′(hi) =

pi(1 − pi)e−hi[
(1 − pi)e−hi + pi

]2 . (2:15)

The last ratio is of the form u(1 - u), where 0 < u <1. Hence,

L′′(hi) =
(1 − pi)e−hi

(1 − pi)e−hi + pi

(
1 − (1 − pi)e−hi

(1 − pi)e−hi + pi

)
≤ 1

4
. (2:16)

Therefore, by Taylor’s expansion and (2.16), we can get

L(hi) ≤ L(0) + L′(0)hi +
1
8
h2i =

1
8
h2i =

1
8
h2(bi − ai)2. (2:17)

By (2.12), (2.13), and (2.17), we have

P (Sn − ESn ≥ ε) ≤ exp

{
−hε +

1
8
h2

n∑
i=1

(bi − ai)
2

}
. (2:18)

It is easily seen that the right-hand side of (2.18) has its minimum at h = 4ε∑n
i=1 (bi−ai)

2 .

Inserting this value in (2.18), we can obtain (2.9) immediately. Since {-Xn, n ≥ 1} is a

sequence of acceptable random variables, (2.9) implies (2.10). Therefore, (2.11) follows

from (2.9) and (2.10) immediately. This completes the proof of the theorem.

3 Complete convergence for acceptable random variables
In this section, we will present some complete convergence for a sequence of accepta-

ble random variables. The concept of complete convergence was introduced by Hsu

and Robbins [11] as follows. A sequence of random variables {Un, n ≥ 1} is said to con-

verge completely to a constant C if
∑∞

n=1
P(| Un − C | > ε) < ∞ for all ε >0. In view

of the Borel-Cantelli lemma, this implies that Un ® C almost surely (a.s.). The con-

verse is true if the {Un, n ≥ 1} are independent. Hsu and Robbins [11] proved that the

sequence of arithmetic means of independent and identically distributed (i.i.d.) random

variables converges completely to the expected value if the variance of the summands

is finite. Erdös [12] proved the converse. The result of Hsu-Robbins-Erdös is a
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fundamental theorem in probability theory and has been generalized and extended in

several directions by many authors.

Define the space of sequences

H =

{
{bn} :

∞∑
n=1

hbn < ∞ for every 0 < h < 1

}
.

The following results are based on the space of sequences H .

Theorem 3.1. Let {Xn, n ≥ 1} be a sequence of acceptable random variables with EXi

= 0 and |Xi| ≤ b for each i ≥ 1, where b is a positive constant. Assume that∑n
i=1 EX

2
i = O(bn) for some {bn} ∈ H . Then,

b−1
n Sn → 0 completely as n → ∞. (3:1)

Proof. For any ε >0, it follows from Theorem 2.2 that

∞∑
n=1

P (| Sn |≥ bnε) ≤ 2
∞∑
n=1

exp

{
− b2nε

2

2
∑n

i=1 EX
2
i +

2
3bbnε

}

≤ 2
∞∑
n=1

exp{−Cbn} < ∞,

which implies (3.1). Here, C is a positive number not depending on n. □
Theorem 3.2. Let {Xn, n ≥ 1} be a sequence of acceptable random variables with |Xi|

≤ c <∞ for each i ≥ 1, where c is a positive constant. Then, for every {bn} ∈ H ,

(bnn)−1/2(Sn − ESn) → 0 completely as n → ∞. (3:2)

Proof. For any ε >0, it follows from Theorem 2.3 that

∞∑
n=1

P
(
| Sn − ESn |≥ (bnn)

1/2ε
)

≤ 2
∞∑
n=1

[
exp

(
− ε2

2c2

)]bn
< ∞,

which implies (3.2). □
Theorem 3.3. Let {Xn, n ≥ 1} be a sequence of acceptable random variables with EXi

= 0 and EX2
i = σ 2

i < ∞ for each i ≥ 1. Denote B2
n =
∑n

i=1 σ 2
i for each n ≥ 1. For fixed n

≥ 1, there exists a positive number H such that

| EXm
i | ≤ m!

2
σ 2
i H

m−2, i = 1, 2, . . . ,n (3:3)

for any positive integer m ≥ 2. Then,

b−1
n Sn → 0 completely as n → ∞, (3:4)

provided that {b2n/B2
n} ∈ H and {bn} ∈ H .

Proof. By (3.3), we can see that

EetXi = 1 +
t2

2
σ 2
i +

t3

6
EX3

i + · · · ≤ 1 +
t2

2
σ 2
i

(
1 +H | t | +H2t2 + · · ·)
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for i = 1, 2,..., n, n ≥ 1. When | t |≤ 1
2H , it follows that

EetXi ≤ 1 +
t2σ 2

i

2
· 1
1 − H | t | ≤ 1 + t2σ 2

i ≤ et
2σ 2

i , i = 1, 2, . . . ,n. (3:5)

Therefore, by Markov’s inequality, Definition 1.3 and (3.5), we can get that for any x

≥ 0 and | t |≤ 1
2H ,

P

(
|

n∑
i=1

Xi |≥ x

)
= P

(
n∑
i=1

Xi ≥ x

)
+ P

(
n∑
i=1

(−Xi) ≥ x

)

≤ e−|t|xE exp

{
| t |

n∑
i=1

Xi

}
+ e−|t|xE exp

{
| t |

n∑
i=1

(−Xi)

}

≤ e−txE exp

{
| t |

n∑
i=1

Xi

}
+ e−txE exp

{
| t |

n∑
i=1

(−Xi)

}

= e−txE exp

{
t

n∑
i=1

Xi

}
+ e−txE exp

{
t

n∑
i=1

(−Xi)

}

≤ e−tx

(
n∏
i=1

EetXi +
n∏
i=1

Ee−tXi

)

≤ 2 exp
{−tx + t2B2

n

}
.

Hence,

P

(
|

n∑
i=1

Xi |≥ x

)
≤ 2min

|t|≤
1
2H

exp
{−tx + t2B2

n

}
.

If 0 ≤ x ≤ B2
n
H
, then

min
|t|≤ 1

2H

exp
{−tx + t2B2

n

}
= exp

{
− x
2B2

n
x +

x2

4B4
n
B2
n

}
= exp

{
− x2

4B2
n

}
;

if x ≥ B2
n
H
, then

min
|t|≤ 1

2H

exp
{−tx + t2B2

n

}
= exp

{
− 1
2H

x +
1

4H2
B2
n

}
≤ exp

{
− x
4H

}
.

From the statements above, we can get that

P

(
|

n∑
i=1

Xi |≥ x

)
≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
2e

−
x2

4B2
n , 0 ≤ x ≤ B2

n
H ,

2e
−

x
4H , x ≥ B2

n
H ,

which implies that for any x ≥ 0,

P

(
|

n∑
i=1

Xi |≥ x

)
≤ 2 exp

{
− x2

4B2
n

}
+ 2 exp

{
− x
4H

}
.
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Therefore, the assumptions of {bn} yield that

∞∑
n=1

P

(
| 1
bn

n∑
i=1

Xi |≥ ε

)
≤ 2

∞∑
n=1

exp
{
−b2nε

2

4B2
n

}
+ 2

∞∑
n=1

exp
{
−bnε
4H

}
< ∞.

This completes the proof of the theorem. □
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