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Abstract

This article presents an investigation of asymptotic properties of a stochastic ratio-
dependent predator-prey model under regime switching. Both the white and color
noises are taken into account in our model. We obtain the global existence of
positive unique solution of the stochastic model. And we show the solution is
bounded in mean. Moreover, the sufficient conditions for persistence in mean,
extinction are obtained.
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1. Introduction
The dynamic interaction between the predators and their prey has long been one of

the dominant themes in mathematical biology because of its universal existence and

importance. Evidences show that when predators have to search for food (and there-

fore have to search or compete for food), a more suitable functional response depend-

ing on the densities of both the prey and the predator should be introduced in a

realistic model. Such a functional response is called a ratio-dependent functional

response. Arditi and Ginzburg [1] introduced a Michaelis-Menten type ratio-dependent

functional response of the form⎧⎪⎪⎨
⎪⎪⎩

dx
dt

= ax − bx2 − cxy
x +my

,

dy
dt

= −gy +
fxy

x +my
.

(1:1)

where x(t) and y(t), respectively, denote population densities of prey and predator at

time t. Here, g > 0 is the death rate of the predator, a, c, m, and f are positive con-

stants that stand for prey intrinsic growth rate, capturing rate, half capturing saturation

constant, and conversion rate, respectively.

As a matter of fact, population systems is often subject to environmental noise.

Recently, more and more interest is focused on stochastic systems. Maiti et al. [2] con-

sidered the following stochastic model with discrete time-delay:
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⎧⎪⎪⎨
⎪⎪⎩

dx
dt

= x
[
a − bx + η1(t)

] − cxy
x +my

,

dy
dt

= y
[−g + η2(t)

]
+

cx(t − τ )y
x(t − τ ) +my(t − τ )

.
(1:2)

where the perturbed terms h1(t) and h2(t) are uncorrelated Gaussian white noises.

Maiti et al. [2] assumed the Stratonovich interpretation of stochastic differential equa-

tions, and discussed the properties of SDE (1.2) by using transformations.

Guo [3] studied the stochastic model on predator-prey system of two species with

ratio-dependence:⎧⎪⎪⎨
⎪⎪⎩
dx = x

[
(a − bx) − cy

x +my

]
dt + x(σ11x + σ12y)dB(t),

dy = y
[
−g +

fx

x +my

]
dt + y(σ21x + σ22y)dB(t).

(1:3)

where a, d, c, f, g, and m are positive constants.

Taking into account the effect of randomly fluctuating environment, Ji et al. [4] con-

sidered the corresponding autonomous stochastic system described by the Itô equation⎧⎪⎪⎨
⎪⎪⎩
dx = x

[
a − bx − cy

x +my

]
dt + σ1xdB1(t),

dy = y
[
−g +

fx
x +my

]
dt − σ2ydB2(t).

(1:4)

where Bi(t), i = 1, 2, are independent standard Brownian motions.

Now, let us consider another type of environmental noise, namely, the color noise

(for example,[5-10]). The color noise can be illustrated as a switching between two or

more regimes of environmental. Because population may suffer sudden-environmental

changes, e.g., rain falls and changes in nutrition or food resources, etc. In general, the

switching is memory-less, and the waiting time for the next switch is exponential dis-

tributed. Here, we model the regime switching by a finite-state Markov chain. We

assume that there are N regimes, and the switching between these N regimes is gov-

erned by a Markov chain r(t) on the state space S = {1, 2,..., N}. Therefore, when both

the white and color noises are taken into account in the system (1.1). The population

system under regime switching can be described by the stochastic model as follows:⎧⎪⎪⎨
⎪⎪⎩
dx(t) = x(t)[a(r(t)) − b(r(t))x(t) − c(r(t))y(t)

x(t) +m(r(t))y(t)
] dt + σ1(r(t))x(t)dB1(t),

dy(t) = y(t)[−g(r(t)) +
f (r(t))x(t)

x(t) +m(r(t))y(t)
]dt + σ2(r(t))y(t)dB2(t).

(1:5)

where Bi(t), i = 1, 2, are independent standard Brownian motions.

When both the white and color noises are taken into account in our model (1.5), we

obtain the global existence of positive unique solution of the stochastic model, that is,

the solution of the system is positive and not to explode to infinity in a finite time in

Section 3. Section 3 also shows that the solution is bounded in mean. Moreover, the suf-

ficient conditions for persistence in mean, extinction are obtained in Section 4.

For convenience and simplicity in the following discussion, for any sequence c(i), i Î
S, we define
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ĉ = min
i∈S

c(i), č = max
i∈S

c(i).

And throughout the article, we use K to denote a positive constant the exact value of

which may be different in different appearances.

2. Stochastic differential equation under regime switching
Throughout this article, unless otherwise specified, we let (�,F .{Ft}t≥0,P) be a com-

plete probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is

right continuous and F0 contains all P-null sets.). Let r(t), t ≥ 0, be a right-continuous

Markov chain in the probability space tasking values in a finite state space S = {1, 2,...,

N} with generator Γ = (gij)N×N given by

P{α(t + �t) = j|α(t) = i} =
{

γij� + o(�) i �= j,
1 + γii� + o(�) i = j.

where Δ > 0. Here, gij ≥ 0 is the transition rate from i to j if i ≠ j while γii = −
∑
i�=j

γij.

We assume that the Markov chain r(t) is independent of the Brownian motion. And

almost every sample path of r(t) is a right-continuous step function with a finite num-

ber of simple jumps in any finite subinterval of R+.

We assume, as a standing hypothesis in the article, that the Markov chain is irreduci-

ble. The algebraic interpretation of irreducibility is rank (Γ) = N -1. Under this condi-

tion, the Markov chain has a unique stationary distribution π = (π1, π1,..., πN ) Î R1×N

which can be determined by solving the following linear equation

π
 = 0

subject to

N∑
j=1

πj = 1 and πj > 0, ∀j ∈ S.

Consider a stochastic differential equation with Markovian switching

dx(t) = f (x(t), t, r(t))dt + g(x(t), t, r(t))dB(t)

on t ≥ 0 with initial value x(0) = x0 ÎR
n, where

f : Rn × R+ × S → Rn and g : Rn × R+ × S → Rn×m

For the existence and uniqueness of the solution, we should suppose that the coeffi-

cients of the above equation satisfy the local Lipschitz condition and the linear growth

condition. That is, for each k = 1, 2,..., there is hk > 0 such that

|f (x, t, i) − f (y, t, i)| ∨ |g(x, t, i) − g(y, t, i)| ≤ hk|x − y|

for all t ≥ 0, i Î S and those x, y Î Rn with |x| ∨ |y| ≤ k, and there is an h > 0 such that

|f (x, t, i)| ∨ |g(x, t, i)| ≤ h(1 + |x|)

for all (x, t, i) Î Rn × R+ ×S.

Let C2,1(Rn × R+ × S, R+) denote the family of all non-negative functions V (x, t, i) on

Rn × R+ × S which are continuously twice differentiable in x and once differentiable in

t. If V Î C2,1(Rn × R+ × S, R+), define an operator LV from Rn × R+ × S to R by
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LV(x, t, i) = Vt(x, t, i) + Vx(x, t, i)f (x, t, i) +
1
2
trace

[
gT(x, t, i)Vxx(x, t, i)g(x, t, i)

]
+

m∑
j=1

γijV(x, t, j).

In particular, if V is independent of i, that is V (x, t, i) = V (x, t), then

LV(x, t, i) = Vt(x, t) + Vx(x, t, )f (x, t) +
1
2
trace[gT(x, t)Vxx(x, t)g(x, t)].

3. Positive, global and bounded solutions
As x(t), y(t) of the SDE (1.5) are sizes of the species in the system at time t, it is obvious that

the positive solution are of interest. The coefficients of (1.5) are locally Lipschitz continuous

and do not satisfy the linear growth condition, so the solution of (1.5) may explode at a

finite time. The following theorem shows that the solution will not explode at a finite time.

Theorem 3.1. For given initial value X0 = (x0, y0) ∈ R2
+, there is a unique positive

solution X(t) = (x(t), y(t)) to (1.5) on t ≥ 0, and the solution will remain in R2
+with prob-

ability one, namely X(t) ∈ R2
+for all t ≥ 0 almost surely.

Proof The proof is similar to [10,11]. Since the coefficients of the equation are locally

Lipschitz continuous, for given initial value X0 = (x0, y0) ∈ R2
+, there is a unique local

solution X(t) on t Î [0, τe), where τe is the explosion time. To show this solution is glo-

bal, we need to show that τe = +∞ a.s. Let k0 > 0 be sufficiently large for every compo-

nent of x(t) and y(t) all lying within the interval

[
1
k0

, k0

]
. For each integer k ≥ k0,

define the stopping time

τm = inf
{
t ∈ [0, τe) : x(t) /∈

(
1
k
, k

)
or y(t) /∈

(
1
k
, k

)}

where throughout this article we set inf Ø = ∞. Obviously, τk is increasing as k ® ∞.

Let τ∞ = limk®∞τk, whence τ∞ ≤ τe a.s. If we can show that τ∞ = ∞ a.s., then τe = ∞ a.s.

and X(t) ∈ R2
+ a.s. for all t ≥ 0. So we just to prove that τ∞ = ∞ a.s. If not, there is ε Î

(0, 1) and T > 0 such that

P{τ∞ ≤ T} > ε

Hence, there is integer k1 ≥ k0 such that P {τk ≤ T} ≥ ε for all k ≥ k1. Define a func-

tion V : R2
+ → R+ by V (x, y) = (x -1 - ln x) + (y -1 - ln y). The non-negativity of this

function can be seen from

u − 1 − ln u ≥ 0 on u > 0.

If X(t) ∈ R2
+, we obtain that

LV(x, y, i) = a(i)x − b(i)x2 − c(i)xy
x +m(i)y

− a(i) + b(i)x +
c(i)y

x +m(i)y
− g(i)y

+
f (i)xy

x +m(i)y
+ g(i) − f (i)x

x +m(i)y
− σ 2

1 (i) + σ 2
2 (i)

2

≤ K.
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Making use of the generalized Itô formula yields

EV(x(τk ∧ T), y(τk ∧ T)) ≤ V(x0, y0, i0) + KT.

Set Ωk = τk ≤ T for k ≥ k1 then P (Ωk) ≥ ε. Note that for every ω Î Ω, there is x(τk,

ω) or y(τk, ω) equals either k or
1
k
, and hence, V (x(τk, ω)) is no less than either

k − 1 − lnk

or

1
k

− 1 − ln
(
1
k

)
=
1
k

− 1 + ln k.

Therefore,

V(x(τk ∧ T), y(τk ∧ T)) ≥
([

k − 1 − ln k
] ∧ [

1
k

− 1 − ln k]
)
.

It follows from that

[V(x0, y0, i0) + KT] ≥ E[1�kV(x(τk ∧ T), y(τk ∧ T))]

≥ ε([k − 1 − ln k] ∧ [
1
k

− 1 + ln k]).

where 1�k is the indicator function of Ωk. Letting m ® ∞ implies the contradiction

∞ > [V(x0, y0) + KT] = ∞.

So, we have that τ∞ = ∞ a.s. The proof is complete.

Theorem 3.2. For given initial value X0 = (x0, y0) ∈ R2
+and p > 0, the solution X(t) =

(x(t), y(t)) to (1.5) satisfies

lim sup
t→∞

Exp(t) ≤ K, lim sup
t→∞

Ey(t) ≤ K.

Proof Define the function V (t, x) = etxp, by the generalized Itô formula, we obtain

d(etxp(t)) = petxp(t)
[
a(r(t)) − b(r(t))x(t) +

p − 1
2

σ 2
1 (r(t))

− c(r(t))y(t)
x(t) +m(r(t))y(t)

]
dt + σ1(r(t))dB1(t).

Taking expectation on both sides implies

Eetxp(t)−xp0 ≤ E
∫ t

0
pesxp(t)

[
a(r(s)) − b(r(s))x(s) +

p − 1
2

σ 2
1 (r(s))

]
ds ≤ K

∫ t

0
esds ≤ Ket.

Hence,

Exp (t) ≤ K < +∞.

We show that y(t) is bounded in mean as follows. Let V = x +
c(i)y
f (i)

, by the general-

ized Itô formula, we have
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dV = x(a(i) − b(i)x − c(i)y
x +m(i)y

) ds + σ1(i)xdB1(t)

+
c(i)
f (i)

(−g(i) +
f (i)x

x +m(i)y
) dt +

c(i)
f (i)

σ1(i)ydB2(t) +
∑N

j=1
γijV(x, y, j).

where dropping t from x(t) and y(t). So

EV(t) − EV(0) = E
∫ t

0

[
(a(r(t)) + g(r(t)))x − b(r(t))x2 − g(r(t))V(s)

]
ds.

Then,

dEV
dt

= (a(r(t)) + g(r(t)))Ex − b(r(t))Ex2 − g(r(t))EV

≤ (a(r(t)) + g(r(t)))Ex − b(r(t))(Ex)2 − g(r(t))EV.

Obviously, the maximum value of (a(i) + g(i))Ex b(i)(Ex)2 is
(ǎ + ǧ)2

4b̂
. Therefore

dEV
dt

≤ (ǎ + ǧ)2

4b̂
− g(r(t))EV.

By the comparison theorem, we have

lim sup
t→∞

EV(t) ≤ (ǎ + ǧ)2

4b̂ĝ
.

It is clear that

lim sup
t→∞

Ey(t) ≤ K.

So, we complete the proof.

4. Asymptotic behavior
4.1. Limit results

To demonstrate asymptotic properties of the stochastic system (1.5), we discuss the

long time behavior of ln x(t)/t and ln y(t)/t.

Here we impose the following assumption:

(H) â − č

m̂
− σ̌ 2

1

2
> 0, f̂ − ǧ − σ̌ 2

2

2
> 0.

On the one hand, by the comparison theorem of stochastic equations, it is obvious

that

dx ≤ x
[
a (r (t)) − b (r (t)) x

]
dt + σ1 (r (t)) xdB1 (t) .

Denote that X2(t) as the solution to the following stochastic equation.⎧⎨
⎩
dX2 = X2[a(r(t)) − b(r(t))X2] dt + σ1(r(t))X2dB1(t),

X2(0) = x0.
(4:1)

We have

x (t) ≤ X2 (t) , t ∈ [0, +∞), a.s.
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On the other hand, by the comparison theorem of stochastic equations, it is obvious

that we denote X1 as the solution of stochastic differential equation⎧⎪⎪⎨
⎪⎪⎩
dX1 = X1[a(r(t)) − c(r(t))

m(r(t))
− b(r(t))X1] dt + σ1(r(t))X1dB1(t),

X1(0) = x0.

(4:2)

Consequently,

x (t) ≥ X1 (t) , t ∈ [0, +∞), a.s.

To sum up, we have

X1 (t) ≤ x (t) ≤ X2 (t) , t ∈ [0, +∞). a.s. (4:3)

So we have the explicit solutions of X1(t) and X2(t) as follows.

X1(t) =
e

⎡
⎣∫ t

0(a(r(s))−
c(r(s))
m(r(s))

−
σ 2
1 (r(s))
2

)ds+σ1(r(s))dB1(s)

⎤
⎦

1
x0

+
∫ t
0 b(r(s))e

⎡
⎣∫ t

0(a(r(τ))−
c(r(τ ))
m(r(τ ))

−
σ 2
1 (r(τ ))

2
)dτ+σ1(r(τ))dB1(τ)

⎤
⎦
ds

and

X2(t) =
e

⎡
⎣∫ t

0(a(r(s))−
σ 2
1 (r(s))
2

)ds+σ1(r(s))dB1(s)

⎤
⎦

1
x0

+
∫ t
0 b(r(s))e

⎡
⎣∫ t

0(a(r(τ))−
σ 2
1 (r(τ ))

2
)dτ+σ1(r(τ))dB1(τ)

⎤
⎦
ds

Lemma 4.1. Under Assumption (H), for any initial value x0 > 0, the solution X2(t)

satisfies

lim
t→∞

lnX2(t)
t

= 0 a.s.

Proof First, we will show that

lim sup
t→∞

lnX2(t)
t

≤ 0 a.s.

The proof is motivated by Mao and Yuan [8]. Define the Lyapunov function V (t, X2)

= et ln X2, using the generalized Itô formula, we obtain

d(et lnX2) = et[lnX2 + a(r(t)) − b(r(t))X2 − σ 2
1 (r(t))
2

] dt + etσ1(r(t))dB1(t).

where dropping t from X2. Thus

et lnX2 − ln x0 =
∫ t
0 e

s[lnX2 + a(r(s)) − b(r(s))X2 − σ 2
1 (r(s))
2

] ds +M(t).

Lv and Wang Journal of Inequalities and Applications 2011, 2011:14
http://www.journalofinequalitiesandapplications.com/content/2011/1/14

Page 7 of 17



where

M(t) =
∫ t

0
esσ1(r(s))dB1(s),

tje quadratic variation of which is

〈M(t),M(t)〉 = ∫ t
0 e

2sσ 2
1 (r(s))ds.

By virtue of the exponential martingale inequality, for any positive constants T, δ, b,
we have

P

{
sup
0≤t≤T

[M(t) − δ

2
〈M(t),M(t)〉] > β

}
≤ e−δβ .

Choose T = kg , δ= nεe -kδ, and β =
θekδ ln k

εn
, where k Î Z+, 0 <ε < 1, θ > 1 and g > 0

above.

Hence,

P

{
sup
0≤t≤T

[M(t) − nεe−kδ

2
〈M(t),M(t)〉] >

θekδ ln k
εn

}
≤ k−θ .

Obviously, we know
∑∞

k=1 k
−θ < ∞. Applying the Borel-Cantalli lemma, we obtain

that there exists some Ωi ⊂ Ω with P (Ωi) = 1 such that for any ω Î Ωi, an integer ki
= ki(ω) such that for any k >ki, we get

M(t) ≤ nεe−kδ

2
〈M(t),M(t)〉 + θekδ ln k

εn
,

for all 0 ≤ t ≤ kg. Then,

et lnX2 − ln x0 ≤
∫ t

0
es[lnX2 + a(r(s)) − b(r(s))X2 − σ 2

1 (r(s))
2

+
nεes−kδ

2
σ 2
1 (r(s))] ds +

θekδ ln k
ε

.

Note that t Î [0, kg], s Î [0, t] we have

lnX2 + a(i) − b(i)X2 − σ 2
1 (i)
2

+
nεes−kδ

2
σ 2
1 (i) ≤ K.

For all t Î [0, kg] with k >k0(ω), we derive

et lnX2 − ln x0 ≤ ∫ t
0 Ke

sds +
θekδ ln k

ε
= K(et − 1) +

θekδ ln k
ε

.

Thus, for (k -1) g ≤ t ≤ kg, then

lnX2 ≤ e−t ln x0 + K(1 − e−t) +
θekδ ln k

εe(k−1)γ
= e−t ln x0 + K(1 − e−t) +

θeδ ln k
ε

.
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Therefore,

lnX2(t)
ln t

≤ ln x0
et ln t

+
K(1 − e−t)

ln t
+

θeδ ln k
ε ln((k − 1)γ )

.

Letting k ® ∞, that is, t ® ∞ we can imply

lim sup
t→∞

ln X2(t)
ln t

≤ θeγ

ε
.

By making g ↓ 0, ε ↑ 1, and θ ↓ 1, we get

lim sup
t→∞

lnX2(t)
ln t

≤ 1.

Consequently,

lim sup
t→∞

lnX2(t)
t

= lim sup
t→∞

ln X2(t)
ln t

lim sup
t→∞

ln t
t

≤ lim sup
t→∞

ln t
t

= 0.

as desired.

Thus, it remains to show that lim lim inft→∞
lnX2(t)

t
≥ 0 a.s. It is clear that the

quadratic variation of the stochastic integral
∫ t
0 σ1(r(s))dB1(s) is

∫ t
0 σ 2

1 (r(s)) ds ≤ Kt.

Hence, the strong law of large numbers of local martingales yields that

1
t

∫ t
0 σ1(r(s))dB1(s) → 0 a.s. t → ∞.

Hence, for any ε > 0, there exists some positive T < ∞ such that∣∣∣∫ t
0 σ1(r(s))dB1(s)

∣∣∣ < εt a.s. for any t ≥ T.

and for any t >s ≥ T, we have∣∣∣∫ t
s σ1(r(s))dB1(s)

∣∣∣ < ε(s + t) a.s.

Then, for any t >T

1
X2(t)

=
1

X2(T)
e

⎡
⎣∫ t

T −(a(r(s))−
σ 2
1 (r(s))
2

)ds−σ1(r(s))dB1(s)

⎤
⎦

+
∫ t

T
b(r(s))e

⎡
⎣∫ t

s −(a(r(τ))−
σ 2
1 (r(τ ))

2
)dτ−σ1(r(τ))dB1(τ)

⎤
⎦
ds

≤ frac1X2(T)e

⎡
⎣∫ t

T −(a(r(s))−
σ 2
1 (r(s))
2

)ds+ε(t+T)

⎤
⎦

+
∫ t

T
b(r(s))e

⎡
⎣∫ t

s −(a(r(τ))−
σ 2
1 (r(τ ))

2
)dτ+ε(t+s)

⎤
⎦
ds.
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Therefore,

e−2ε(t+T) 1
X2(t)

≤ 1
X2(T)

e

⎡
⎣∫ t

T −(a(r(s))−
σ 2
1 (r(s))
2

)ds−ε(t+T)

⎤
⎦

+
∫ t

T
b(r(s))e

⎡
⎣∫ t

s −(a(r(τ))−
σ 2
1 (r(τ ))

2
)dτ−ε(t−s)−2εT

⎤
⎦

≤ K < ∞.

That is

1
X2(t)

≤ Ke2ε(t+T) a.s.

Then,

ln
1

X2(t)
t

≤ 1
t

[
lnK + 2ε(t + T)

]
a.s.

Thus,

lim inf
t→∞

lnX2(t)
t

≥ −2ε a.s.

Since ε is arbitrary, we conclude that

lim inf
t→∞

lnX2(t)
t

≥ 0 a.s.

as required.

Lemma 4.2. Under Assumption (H), for any initial value x0 > 0, the solution X1(t)

satisfies

lim
t→∞

lnX2(t)
t

≥ 0 a.s.

Proof Under the condition â − ĉ
�

m
− σ̂ 2

1

2
> 0, by the same way of Lemma 4.1, we can

imply the desired assertion.

Theorem 4.3. Assume the conditions (H) hold. Then for any initial value x0 > 0, the

solution x(t) to (1.5) satisfies

lim
t→∞

ln x(t)
t

= 0 a.s. (4:4)

Proof By (4.3), Lemmas 4.1 and 4.2, we can conclude the assertion.

Now, let us continue to consider the asymptotic behavior of the species y(t). By the

comparison theorem of stochastic equations, we have

dy(t) ≤ (−g(r(t))y(t) +
f (r(t))
m(r(t))

X2(t))dt + σ2(r(t))y(t)dB2(t).
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Denote Y2(t) as the solution to the stochastic equation as follows.⎧⎪⎪⎨
⎪⎪⎩
dY2 = [−g(r(t))Y2 +

f (r(t))
m(r(t))

X2(t)]dt + σ2Y2dB2(t),

Y2(0) = y0.

We have

y (t) ≤ Y2 (t) , t ∈ [0, +∞), a.s.

On the other hand, applying the comparison theorem again, denote Y1 as the solu-

tion of stochastic equation⎧⎪⎪⎨
⎪⎪⎩
dY1 = Y1[−g(r(t)) + f (r(t)) − f (r(t))m(r(t))y(t)

X1
] dt + σ2Y1dB2(t),

Y1(0) = y0.

Consequently,

y (t) ≤ Y1 (t) , t ∈ [0, + ∞), a.s.

To sum up, we have

Y1 (t) ≤ y (t) ≤ Y2 (t) , t ∈ [0, + ∞). a.s. (4:5)

Moreover, Y1(t) and Y2(t) have the have the following explicit solutions, respectively:

Y1(t) =
e

⎡
⎣∫ t

T(−g(r(s))+f (r(s))−
σ 2
2 (r(s))
2

)ds+σ2(r(s))dB2(s)

⎤
⎦

1
y0

+
∫ t
T

f (r(s))m(r(s))
X1(s)

e

⎡
⎣∫ t

0(−g(r(τ))+f (r(τ))−
σ 2
2 (r(τ ))

2
)dτ+σ2(r(τ))dB2(τ)

⎤
⎦
ds

.

and

Y2(t) = Y2(T)e

⎡
⎣∫ t

T −(g(r(s))+
σ 2
2 (r(s))
2

)ds−σ2(r(s))dB2(s)

⎤
⎦

+
∫ t

T

f (r(s))
m(r(s))

X2(s)e

⎡
⎣∫ t

s −(g(r(τ))+
σ 2
2 (r(τ ))

2
)dτ−σ2(r(τ))dB2(τ)

⎤
⎦
ds.

Lemma 4.4. Under Assumption (H), for any initial value y0 > 0, the solutions Y1(t)

and Y2(t) satisfy

lim sup
t→∞

ln Y2(t)
t

≤ 0 a.s.

and

lim inf
t→∞

ln Y1(t)
t

≥ 0 a.s.

Proof It is clear that the quadratic variation of the stochastic integral∫ t

0
σ2(r(s))dB2(s) is

∫ t
0 σ 2

2 (r(s))ds ≤ Kt. hence, the strong law of large numbers of local
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martingales yields that

1
t

∫ t
0 σ2(r(s))dB2(s) → 0 a.s. t → ∞.

Hence, for any ε > 0, there exists some positive T < ∞ such that∣∣∣∫ t
0 σ2(r(s))dB2(s)

∣∣∣ < εt a.s. for any t ≥ T.

and for any t >s ≥ T, we have∣∣∣∣
∫ t

s
σ2(r(s))dB2(s)

∣∣∣∣ < ε(s + t) a.s.

It follows from Lemma 4.1 that for any ε > 0, there exists T > 0 such that

−ε ≤ lnX2(t)
t

< ε a.s. for t > T.

that is

e−εt < X2 (t) < e−εt a.s.

Thus, for t ≥ T

Y2(t) = Y2(T)e

⎡
⎣∫ t

T −(g(r(s))+
σ 2
2 (r(s))
2

)ds−σ2(r(s))dB2(s)

⎤
⎦

+
∫ t

T

f (r(s))X2(s)
m(r(s))

e

⎡
⎣∫ t

s −(g(r(τ))+
σ 2
2 (r(τ ))

2
)dτ−σ2(r(τ))dB2(τ)

⎤
⎦
ds

≤ Y2(T)e

⎡
⎣∫ t

T −(g(r(s))+
σ 2
2 (r(s))
2

)ds+ε(t+T)

⎤
⎦

+
∫ t

T

f (r(s))
m(r(s))

eεse

⎡
⎣∫ t

T −(g(r(τ))+
σ 2
2 (r(τ ))

2
)dτ+ε(t+s)

⎤
⎦
ds.

So

e−3ε(t+T)Y2(t) ≤ Y2(T)e
−

⎡
⎣∫ t

T(g(r(s))+
σ 2
2 (r(s))
2

)ds

⎤
⎦

× e−2ε(t+T)

+
∫ t

T

f (r(s))
m(r(s))

e
−

⎡
⎣∫ t

T(g(r(τ))+
σ 2
2 (r(τ ))

2
)dτ

⎤
⎦

× e−3εT × e−2ε(t−s)ds

≤ K.

Therefore,

Y2 (t) ≤ Ke3ε(t+T)a.s.

Hence,

ln Y2(t)
t

≤ lnK
t

+
3ε(t + T)

t
a.s.
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Letting t ® ∞, we have

lim sup
t→∞

ln Y2(t)
t

≤ 3ε a.s.

Since ε is arbitrary, we obtain

lim sup
t→∞

ln Y2(t)
t

≤ 0 a.s.

Next, we will show that

lim inf
t→∞

ln Y1(t)
t

≥ 0 a.s.

Obviously, it follows from Lemma 4.2 that for arbitrary ε > 0, there exists T > 0 such

that

e−εt < X1(t) < eεt a.s. for t > T.

Hence,

1
Y1(t)

=
1

Y1(T)
e
−

⎡
⎣∫ t

T(−g(r(s))+f (r(s))+
σ 2
2 (r(s))
2

)ds+σ2(r(s))dB2(s)

⎤
⎦

+
∫ t

T

f (r(s))m(r(s))
X1(s)

e
−

⎡
⎣∫ t

s (−g(r(τ))+f (r(s))−
σ 2
2 (r(τ ))

2
)dτ+σ2(r(τ))dB2(τ)

⎤
⎦
ds

≤ 1
Y1(T)

e
−

⎡
⎣∫ t

T(−g(r(s))+f (r(s))−
σ 2
2 (r(s))
2

)ds+ε(t+T)

⎤
⎦

+
∫ t

T
f (r(s))m(r(s))eεse

−
⎡
⎣∫ t

T(−g(r(τ))+f (r(s))−
σ 2
2 (r(τ ))

2
)dτ+ε(t+s)

⎤
⎦
ds.

Then,

e−3ε(t+T)Y1(t) ≤ 1
Y1(T)

e
−

⎡
⎣∫ t

T(−g(r(s))+f (r(s))−
σ 2
2 (r(s))
2

)ds

⎤
⎦

× e−2ε(t+T)

+
∫ t

T
f (r(s))m(r(s))e

−
⎡
⎣∫ t

T(−g(r(τ))+f (r(τ))−
σ 2
2 (r(τ ))

2
)dτ

⎤
⎦

× e−3εT × e−2ε(t−s)ds

≤ K < ∞.

we obtain

1
Y1(t)

≤ Ke3ε(t+T) a.s.

Hence,

−ln Y1(t)
t

≤ ln K
t

+
3ε(t + T)

t
a.s.
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Letting t ® ∞, we have

lim inf
t→∞

ln Y1(t)
t

≥ −3ε a.s.

Since ε is arbitrary, we obtain

lim inf
t→∞

ln Y1(t)
t

≥ 0 a.s.

as required.

Theorem 4.5. Under Assumption (H), for any initial value y0 > 0, the solution y(t) to

(1.5) has the property

lim
t→∞

ln y(t)
t

= 0 a.s. (4:6)

Proof It follows from (4.5) and Lemma 4.4 that

0 ≤ lim inf
t→∞

ln Y1(t)
t

≤ lim inf
t→∞

ln y(t)
t

≤ lim sup
t→∞

ln y(t)
t

≤ lim sup
t→∞

ln Y2(t)
t

≤ 0 a.s.

Consequently,

lim
t→∞

ln y(t)
t

= 0 a.s.

The proof is complete.

4.2. Persistent in mean

As we know, the property of persistence is more desirable since it represents the long-

term survival to a population dynamics. Now, we present the definition of persistence

in mean proposed in Ji et al. [4] and [12].

Definition 4.6. System (1.5) is said to be persistent in mean, if

lim inf
t→∞

∫ t
0 x(s)ds

t
> 0, lim inf

t→∞
1
t

∫ t
0

y(s)
x(s)

ds > 0 a.s.

Theorem 4.7. Assume the condition (H) hold. Then system (1.5) is persistent in mean.

Proof Define the function V = ln x, by the generalized Itô formula, we get

ln x(t) − ln x0 =
∫ t

0
[a(r(s)) − σ 2

1 (r(s))
2

] ds −
∫ t

0
b(r(s))x(s)ds

−
∫ t

0

c(r(s))y(s)
x(st) +m(r(s))y(s)

ds +
∫ t

0
σ1(r(s))dB1(s).

Thus,∫ t

0
b(r(s))x(s)ds = −ln x(t) + ln x0 +

∫ t

0
[a(r(s)) − σ 2

1 (r(s))
2

] ds

−
∫ t

0

c(r(s))y(s)
x(s) +m(r(s))y(s)

ds +
∫ t

0
σ1(r(s))dB1(s).

Dividing both sides by t, letting t ® ∞ and by the strong law of large numbers and

Theorem 4.3, we obtain
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lim
t→∞

∫ t
0 b(r(s))x(s)ds

t
= lim

t→∞
1
t

∫ t
0 [a(r(s)) − σ 2

1 (r(s))
2

]ds− lim
t→∞

1
t

∫ t
0

c(r(s))y(s)
x(s) +m(r(s))y(s)

ds.

Since the Markov chain r(·) is irreducible, then

lim
t→∞

∫ t
0 b(r(s))x(s)ds

t
=

N∑
i=1

πi[a(i) − σ 2
1 (i)
2

] − lim
t→∞

1
t

∫ t
0

c(r(s))y(s)
x(s) +m(r(s))y(s)

ds.

Therefore,

0 <

N∑
i=1

πi[a(i) − c(i)
m(i)

− σ 2
1 (i)
2

] ≤ lim
t→∞

∫ t
0 b(r(s))x(s)ds

t
≤

N∑
i=1

πi[a(i) − σ 2
1 (i)
2

].

That is

lim sup
t→∞

∫ t
0 x(s)ds

t
≤ 1

b̂

N∑
i=1

πi[a(i) − σ 2
1 (i)
2

] a.s.

and

lim inf
t→∞

∫ t
0 x(s)ds

t
≥ 1

�

b

N∑
i=1

πi[a(i) − c(i)
m(i)

− σ 2
1 (i)
2

] > 0 a.s.

Moreover, define the function V = ln y, using the generalized Itô formula, we have

ln y(t) − ln y0 = −
∫ t

0
[g(r(s)) +

σ 2
2 (r(s))
2

] ds

+
∫ t

0

f (r(s))x(s)
x(s) +m(r(s))y(s)

ds +
∫ t

0
σ2(r(s))dB2(s).

So, we have∫ t

0

f (r(s))x(s)
x(s) +m(r(s))y(s)

ds = ln y(t) − ln y0 +
∫ t

0
[g(r(s)) +

σ 2
2 (r(s))
2

] ds

−
∫ t

0
σ2(r(s))dB2(s).

Dividing both sides by t, letting t ® ∞ and by the strong law of large numbers and

Theorem 4.5, we have

lim
t→∞

1
t

∫ t
0

f (r(s))x(s)
x(s) +m(r(s))y(s)

ds = lim
t→∞

1
t

∫ t
0 [g(r(s)) +

σ 2
2 (r(s))
2

] ds.

Note that the Markov chain r(·) is irreducible, then

lim
t→∞

1
t

∫ t
0

f (r(s))x(s)
x(s) +m(r(s))y(s)

ds =
N∑
i=1

πi[g(i) +
σ 2
2 (i)
2

].

Obviously

lim
t→∞

1
t

∫ t
0

f (r(s))m(r(s))y(s)
x(s) +m(r(s))y(s)

ds = lim
t→∞

∫ t
0 f (r(s))ds

t
− lim

t→∞
1
t

∫ t
0

f (r(s))m(r(s))y(s)
x(s) +m(r(s))y(s)

ds.
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Then,

lim
t→∞

1
t

∫ t
0

f (r(s))m(r(s))y(s)
x(s) +m(r(s))y(s)

ds =
N∑
i=1

πi[f (i) − g(i) − σ 2
2 (i)
2

].

And we can imply

lim inf
t→∞ (f̌ m̌)

1
t

∫ t

0

y
x
ds ≥ lim

t→∞
1
t

∫ t

0

f (r(s))m(r(s))y
x +m(r(s))y

ds =
N∑
i=1

πi[f (i)−g(i)−σ 2
2 (i)
2

] > 0.

where dropping s from x(s) and y(s). Hence

lim inf
t→∞

1
t

∫ t

0

y(s)
x(s)

ds ≥ 1
�

f
�

m

N∑
i=1

πi[f (i) − g(i) − σ 2
2 (i)
2

] > 0.

So, the system is persistent in mean.

4.3. Extinction

In Section 4.2, under the condition (H), we show that the system is persistent in mean.

To a large extent, (H) as the condition that stands for small environmental noises.

That is, small stochastic perturbation does not change the persistence of the system.

Here, we will consider that large noises may make the system extinct.

Theorem 4.7. Assume the condition �

a − σ̂ 2
1

2
< 0,

�

f − ĝ − σ̂ 2
2

2
< 0 hold. Then system

(1.5) will become extinct exponentially with probability one.

Proof Define the function V = ln x, by the generalized Itô formula, we get

ln x(t) − ln x0 =
∫ t

0
[a(r(s)) − σ 2

1 (r(s))
2

] ds −
∫ t

0
b(r(s))x(t)ds

−
∫ t

0

c(r(s))y(s)
x(s) +m(r(s))y(s)

ds +
∫ t

0
σ1(r(s))dB1(s).

Thus,

ln x(t) − ln x0 ≤ ∫ t
0 [a(r(s)) − σ 2

1 (r(s))
2

] ds +
∫ t
0 σ1(r(s))dB1(s).

By the strong law of large numbers of martingales, we have

lim
t→∞

1
t

∫ t
0 σ1(r(s))dB1(s) = 0 a.s.

Therefore,

lim inf
t→∞

ln x(t)
t

≤ lim
t→∞

∫ t

0
[a(r(s)) − σ 2

1 (r(s))
2

] ds =
N∑
i=1

πi[a(i) − σ 2
1 (i)
2

] < 0 a.s.

On the other hand, by the generalized Itô formula, we derive

ln y(t) − ln y0 = −
∫ t

0
[g(r(s)) +

σ 2
2 (r(s))
2

] ds

+
∫ t

0

f (r(s))x(s)
x(s) +m(r(s))y(s)

ds +
∫ t

0
σ2(r(s))dB2(s).

Lv and Wang Journal of Inequalities and Applications 2011, 2011:14
http://www.journalofinequalitiesandapplications.com/content/2011/1/14

Page 16 of 17



So

ln y(t) − ln y0 ≤ ∫ t
0 [f (r(s)) − g(r(s)) +

σ 2
2 (r(s))
2

] ds +
∫ t
0 σ2(r(s))dB2(s).

Applying the strong law of large numbers of martingales again, then

lim inft→∞
ln y(t)

t
≤ limt→∞

∫ t

0
[f (r(s)) − g(r(s)) +

σ 2
2 (r(s))
2

] ds

=
∑N

i=1
πi[f (i) − g(i) − σ 2

1 (i)
2

] < 0 a.s.

The proof is complete.

5. Conclusions
Both the white and color noises are taken into account in our model in this article. It

tells us that when the intensities of environmental noises are not too big, some nice

properties such as non-explosion, boundedness, and permanence are desired. However,

Theorem 4.7 reveals that a large white noise will force the population to become

extinct while the population may be persistent under a relatively small noises.
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