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Abstract

In this paper, we study the concept of weak sharp minima using two different
approaches. One is transforming weak sharp minima to an optimization problem;
another is using conjugate functions. This enable us to obtain some new
characterizations for weak sharp minima.
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1 Introduction
The notion of weak sharp minima plays an important role in the analysis of the per-

turbation behavior of certain classes of optimization problems as well as in the conver-

gence analysis of algorithms. Of particular note in this fields is the paper by Burke and

Ferris [1], which gave an extensive exposition of the notation and its impacted on con-

vex programming and convergence analysis. Since then, this notion was extensively

studied by many authors, for example, necessary or sufficient conditions of weak sharp

minima for nonconvex programming [2,3], and necessary and sufficient conditions of

local weak sharp minima for sup-type (or lower-C1) functions [4,5]. Recent develop-

ment of weak sharp minima and its related to other issues can be found in [5-8].

A closed set S̄ ⊆ Rn is said to be a set of weak sharp minima for a function f : ℝn ®
ℝ relative to a closed set S ⊆ ℝn with S̄ ⊆ S, if there is an a >0 such that

f (x) ≥ f (y) + αdist(x, S̄), ∀x ∈ Sandy ∈ S̄, (1:1)

where dist(x, S̄) denotes the Euclidean distance from x to S̄, i.e.,

dist(x, S̄) = inf{‖ x − y ‖ | y ∈ S̄}.

An ordinary way to deal with weak sharp minima is using the tools of variational

analysis, such as subdifferentials and normal cones or various generalized derivatives

and tangent cones. However, we study in this paper the concept of weak sharp minima

from a new perspective. The nonconvex and convex cases are treated separately. Speci-

fically, for the nonconvex case, we establish the close relationship between weak sharp

minima and the generalized semi-infinite max-min programming (see (2.2) below). To

the best of our knowledge, these results do not appear explicitly in the literature. For

the convex case, we use conjugate functions to characterize weak sharp minima. This

gives a unified way to deal with different problems, such as convex inequality system
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and affine convex inclusion. Finally, applications of weak sharp minima to algorithm

analysis for solving variational inequality problem are given.

We first recall some preliminary notions and results, which will be used throughout

this paper. Given a set A ⊂ ℝn, we denote its closure and convex hull as clA and

convA, respectively. Denote its polar cone as

A0 = {x ∈ Rn | 〈x, y〉 ≤ 0, ∀y ∈ A}.

The indicator function and support function of A are defined by

δ(x | A) =
{
0, ifx ∈ A,
+∞, otherwise

and

σ (w | A) = sup{〈w, x〉 | x ∈ A}.

The conjugate function of a function f : ℝn ® ℝ is

f ∗(x∗) = sup
x∈Rn

{〈x∗, x〉 − f (x)},

and the biconjugate function is defined as f**(x) = (f*)*(x), i.e., the conjugate of f*.

The inf-convolution operation between f1 and f2 is

(f1�f2)(x) = inf{f1(x1) + f2(x2) | x = x1 + x2}.

The rest of the paper is organized as follows. The relationship between weak sharp

minima and generalized semi-infinite programming is established in Section 2. In Sec-

tion 3, we characterize the weak sharpness by using conjugate duality.

2 Nonconvex case
In this section, we show that the concept of weak sharp minima can be translated

equivalently to a generalized semi-infinite max-min programming. Given a >0, define

a set-valued mapping as

Sα(x) = {y ∈ S | f (y) + α ‖ x − y ‖ ≤ f (x)}.

Clearly, this set is nonempty, since x Î Sa(x) for all a >0. Let f̄ stand for the optimal

value of f over S. Some equivalent expressions of weak sharpness in terms of Sa are

given below.

Theorem 2.1. Let f be a lower semi-continuous function. The following statements are

equivalent:

(a). S̄is a set of weak sharp minima;

(b). There exists some a >0 such that Sα(x) ∩ S̄ = ∅for all x Î S;

(c). There exists some a >0 such that, for any x Î S, one has

min{f (y) | y ∈ Sα(x)} = f̄ .

Proof. (a) ⇒ (b). If S̄ is weak sharpness, it is easy to see that there exists a >0 such

that

f (x) ≥ f̄ + αdist(x, S̄), ∀x ∈ S.

Zhou and Xu Journal of Inequalities and Applications 2011, 2011:137
http://www.journalofinequalitiesandapplications.com/content/2011/1/137

Page 2 of 9



If x ∈ S̄, then x Î Sa(x) for any a >0 by definition. Thus, the conclusion is true. If

x ∈ S\S̄, let x̄ ∈ PS̄(x), the projection of x onto S̄. Then, the above inequality implies

that

f (x) ≥ f (x̄) + α ‖ x − x̄ ‖,

i.e, x̄ ∈ Sα(x). Thus, Sα(x) ∩ S̄ = ∅.

(b) ⇒ (c). It is elementary.

(c) ⇒ (a). Choose x Î S. The definition of infimum guarantees the existence of a

sequence {yn} ⊆ Sa(x) such that f(yn) approaches to f̄ . Since yn Î Sa(x), then

f̄ + α ‖ x − yn ‖ ≤ f (yn) + α ‖ x − yn ‖ ≤ f (x), (2:1)

where the first step comes from the fact that yn Î S and f̄ is the optimal value. Thus,

α ‖ x − yn ‖ ≤ f (x) − f̄ , which means the boundness of {yn}. Passing to a subsequence

if necessary, we can assume that {yn} converges to a limit point ȳ. We claim that

ȳ ∈ Sα(x), since Sa(x) is closed, due to the lower semi-continuity of f. Using this prop-

erty again, we have

f (ȳ) ≤ lim
n→+∞ f (yn) = f̄ .

On the other hand, since f̄ is the optimal value, then f (ȳ) ≥ f̄ . Hence, f (ȳ) = f̄ , i.e.,

ȳ ∈ S̄. Taking limits in (2.1) yields f̄ + α ‖ x − ȳ ‖ ≤ f (x). Therefore,

αdist(x | S̄) ≤ α ‖ x − ȳ ‖
≤ f (x) − f̄ ,

where the first step is due to the fact that ȳ ∈ S̄. Since x is an arbitrary element in S,

then the above inequality means that S̄ is weakly sharp. □
The foregoing theorem shows that the concept of weak sharp minima can be con-

verted into a class of optimization problems with the same optimal value. Based on

this fact, we further derive the following result.

Theorem 2.2. Let f be a lower semi-continuous function. Then, the following state-

ments are equivalent:

(a). S̄is a set of weak sharp minima;

(b). There exists a >0 such that f̄ is the optimal value of the following generalized

semi-infinite max-min programming

max
x∈S

min
y∈Sα(x)

f (y). (2:2)

Proof. It is easy to see that the following estimate

max
x∈S

min
y∈Sα(x)

f (y) = f̄

coincides with

min
y∈Sα(x)

f (y) = f̄ , ∀x ∈ S,
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since f̄ is the optimal value of f over S. Therefore, the desired result follows from

Theorem 2.1. □
To the best of our knowledge, the connection between weak sharp minima and the

generalized semi-infinite programming is not stated explicitly in the literature. This

result makes it possible to characterize weak sharpness by using the theory of general-

ized semi-infinite programming [9-11] and vice verse. In addition, the condition

imposed in the foregoing theorem only needs the function to be lower semi-continu-

ous, a rather weak condition in optimization. Hence, our result is applicable even for

the case where the subgradient of f does not exist, while in [2-6], f is required, at least,

to be subdifferentiable.

3 Convex case
We turn our attention in this section to the case where f and S are convex. In particular,

we characterize the concept of weak sharp minima via conjugate function. This way enable

us to deal with several different problems, such as convex inequality system and affine

convex inclusion. Denote byB the unit ball in ℝn, i.e.,B = {x ∈ Rn | ‖ x ‖ ≤ 1}. The follow-
ing simple result can be found in [12]. The proof is given here for completeness.

Lemma 3.1. Let f be a closed convex function and S be a closed convex set. Then, S̄is

a set of weak sharp minima if and only if there exists some a >0 such that

(f ∗�σS)(x) + f̄ ≤ σS̄(x), ∀x ∈ αB.

Proof. Using the indicator function, it is easy to see that (1.1) is equivalent to saying

the existence of a >0 such that

f (x) + δS(x) ≥ f̄ + αdist(x, S̄), ∀x ∈ Rn.

Note that the left function is closed convex, since f is proper closed convex and S is

closed convex. Therefore, according to Legendre-Fenchel transform [[13], Theorem

11.1], the above formula can be rewritten equivalently as

(f + δS)∗(x) ≤ (f̄ + αdist(· | S̄))∗(x), ∀x ∈ Rn,

which, together with the conjugacy correspondence between support function and

indicator function and the fact that dist(x, S̄) = (σB�δS̄)(x) [[14], Section 5], implies

(f ∗�σS)(x) ≤ α(δB + σS̄)
( x

α

)
− f̄ .

Invoking the positive homogeneity of support function [[14], Theorem 13.2] yields

the result as desired. □
Other deep characterizations of weak sharp minima can be found in [15,16]. Since

the concept of weak sharp minima is closely related to error bounds, we shall use the

above result to study the error bounds for convex inequality system and affine convex

inclusion, respectively.

3.1 Special cases

3.1.1 Convex inequality system

We first consider a convex inequality system as follows

fi(x) ≤ 0, ∀i ∈ I, (3:1)
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where fi is a closed convex function and I is an arbitrary (possible infinite) index set.

Let f (x) = max
i∈I

fi(x). Then, the solution set of (3.1) is S = {x Î ℝn|f(x) ≤ 0}. We say

that (3.1) has a global error bound if there exists a >0 such that

dist(x, S) ≤ αf (x)+, ∀x ∈ Rn, (3:2)

where f(x)+ = max{f (x), 0}.

Theorem 3.2. The system (3.1) has a global error bound if and only if there exists a
>0 such that

σS(x) ≥ inf
λ∈[0,1]

(λf )∗(x), ∀x ∈ αB.

where

f ∗(x) = cl(conv{f ∗
i | i ∈ I})(x).

Proof. Dividing by a in (3.2) and taking the conjugate duality on the both sides yields

σS(x) ≥ (f (·)+)∗(x) = (max{f (x), g(x)})∗(x), ∀x ∈ αB,

where we let g(x) = 0 for all x. According to [[14], Theorem 16.5], we known that

(f (·)+)∗(x) = inf{λf ∗(x1) + (1 − λ)g∗(x2)|x = λx1 + (1 − λ)x2,λ ∈ [0, 1]}
= inf

λ∈[0,1]
λf ∗(x/λ)

= inf
λ∈[0,1]

(λf )∗(x),

where the second step follows from the fact g* = δ{0}. The desired result follows from

[[14], Theorem 16.5]. □
The foregoing result is applicable for the case where the algebra interior of the sys-

tem (3.1) is empty.

3.1.2 Affine convex inclusion

Consider an affine convex inclusion as follows

Ax − b ∈ C, (3:3)

where A is a real systemical matrix in ℝn×n and C ⊆ ℝn is a nonempty, closed, and

convex set. Denote by S the solution set. The system (3.3) is said to has a global error

bound if there exists a >0 such that

αdist(x, S) ≤ dist(Ax − b | C), ∀x ∈ Rn. (3:4)

Theorem 3.3. Let A be an inverse matrix. Then, the affine convex inclusion has a glo-

bal error bound if and only if there exists a >0 with a ≤ 1/||A-1|| such that

σS(x) ≥ σC(A−1x) + 〈x,A−1b〉, ∀x ∈ αB.

Proof. Let f(x) = dist(Ax - b|C). Taking the conjugate duality on both sides of (3.4)

yields

σS(x) ≥ f ∗(x), ∀x ∈ αB.

On the other hand, since a ≤ 1/||A-1||, it then follows that

‖ A−1x ‖≤‖ A−1 ‖ ‖ x ‖≤ 1, ∀x ∈ αB. (3:5)
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Therefore, for x ∈ αB, we have

f ∗(x) = sup
x∗

{〈x∗, x〉 − f (x∗)}, by letting y = Ax∗ − b

= sup
y

{〈x,A−1(y + b)〉 − dist(y | C)}

= sup
y

{〈A−1x, y〉 − dist(y | C)} + 〈x,A−1b〉

= (δB + σC)(A−1x) + 〈x,A−1b〉
= σC(A−1x) + 〈x,A−1b〉,

where the last step comes from (3.5). This completes the proof. □
When C is negative orthant, the concept of global error bounds for affine convex

inclusion is also referred to as Hoffman bounds in honor of his seminal work [17]. His-

torically, this is the most intensively studied case. We do not attempt a review of the

enormous literature on this case or even on the slightly more general polyhedral case.

Rather, our focus is on the case where C is only assumed to be convex.

As mentioned in Introduction, the concept of weak sharp minima plays an important

role in the convergence analysis of optimization algorithm. Hence, we investigate the

impact of weak sharp minima for solving variational inequality problem (VIP), which

is to find a vector x* Î X such that

〈F(x∗), x − x∗〉 ≥ 0, ∀x ∈ X,

where X is a nonempty closed convex set in ℝn and F is a mapping from X into ℝn.

Denote by X* the solution set of (VIP). Due to the absence of objective function in

(VIP), Marcotte and Zhu [18] adopted the following geometric characterization as the

definition of weak sharpness, i.e, the solution set X_ of VIP is said to be weakly sharp if

−F(x∗) ∈ int
⋂
x∈X∗

(TX(x)
⋂

NX∗(x))0, ∀x∗ ∈ X∗. (3:6)

Here, we further introduce two extended version, uniformly weak sharp minima and

locally weakly sharp. More precisely, we say that X* is a uniformly weak sharp minima

of VIP if there exists a >0 such that

−F(x) + αB ⊂
⋂
x∈X∗

(TX(x)
⋂

NX∗(x))0, ∀x ∈ X∗. (3:7)

We say that x̄ ∈ X∗ is locally weakly sharp of VIP if there exists δ >0 such that

−F(x̄) ∈ int
⋂

x∈X∗∩B(x̄,δ)
(TX(x)

⋂
NX∗(x))0. (3:8)

Clearly, (3.8) is weaker than (3.6), because the latter corresponds to δ = ∞ and x̄
must be taken over whole solution set X*.

Theorem 3.4. Let {xk} ⊂ X be a iterative sequence generalized by some algorithm. If

either

(i). X* is uniformly weakly sharp, and

‖ F(xk) − F(zk) ‖→ 0 as k → ∞ (3:9)

Zhou and Xu Journal of Inequalities and Applications 2011, 2011:137
http://www.journalofinequalitiesandapplications.com/content/2011/1/137

Page 6 of 9



where zk Î PX*(x
k); or

(ii). {xk} converges to some x̄ ∈ X∗, x̄is locally weakly sharp, and F is continuous over

X;

then xk Î X* for all k sufficiently large if and only if

lim
k→∞

PTX(xk)(−F(xk)) = 0. (3:10)

Proof. The necessity is trial, since xk Î X* is equivalent to saying -F(xk) Î NX(x
k),

which further implies that PTX(xk)(−F(xk)) = 0.

We now show the sufficiency. First assume that (i) holds. Suppose, on the contrary,

that there exists a subsequence {xk}K such that xk ∉ X* for all k ∈ K, where K is an

infinite subset of {1, 2, ...}. For any k ∈ K, there exists zk Î X* (not necessarily unique)

such that ||xk - zk|| = dist(xk, X*), i.e., zk Î PX*(x
k). Note that xk − zk ∈ N̂X∗(zk) by

[[13], Example 6.16] and that N̂X∗(zk) ⊆ NX∗(zk) by [[13], Proposition 6.5]. It then fol-

lows that xk - zk Î NX*(z
k) ∩ TX(z

k) and zk - xk Î TX(x
k).

Invoking (3.7), i.e., there exists a >0 such that

−F(zk) + αB ⊂ (TX(zk) ∩ NX∗(zk))0, (3:11)

which further implies

〈
−F(zk) + α

xk − zk

‖ xk − zk ‖ , x
k − zk

〉
≤ 0.

Therefore,

α ≤
〈
F(zk), xk−zk

‖xk−zk‖
〉

=
〈
−F(xk), zk−xk

‖zk−xk‖
〉
+

〈
F(xk) − F(zk), zk−xk

‖zk−xk‖
〉

≤ max{〈−F(xk), d〉 | d ∈ TX(xk), ‖ d ‖≤ 1}+ ‖ F(xk) − F(zk) ‖
= ‖ PTX(xk)(−F(xk)) ‖ + ‖ F(xk) − F(zk) ‖ .

Taking the limit as k ∈ K approaches ∞, it follows from (3.9) and (3.10) that a ≤ 0,

which leads to a contradiction.

If the condition (ii) holds, we must have, as shown above, that zk converges to x̄ as

well, since ‖ zk − x̄ ‖≤‖ zk − xk ‖ + ‖ xk − x̄ ‖≤ 2 ‖ xk − x̄ ‖. Hence, as k is large

enough, we must have zk ∈ B(x̄, δ). Thus, (3.8) means the existence of a >0 such that

−F(x̄) + αB ⊂ (TX(zk) ∩ NX∗(zk))0.

Since F is continuous, then

‖ F(xk) − F(zk) ‖≤‖ F(xk) − F(x̄) ‖ + ‖ F(zk) − F(x̄) ‖→ 0 as k ® ∞. Hence, using the

argument following (3.11) by replacing zk by x̄ (in the left of (3.11)) yields a contradic-

tion. This completes the proof. □
Finally, let us compare our result with that given in [18], where the finite termination

property is established under the assumption that (i) F is pseudomonotone+, i.e., for

any x, y Î X
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〈F(x), y − x〉 ≥ 0 ⇒ 〈F(y), y − x〉 ≥ 0,

and

〈F(x), y − x〉 ≥ 0 and 〈F(y), y − x〉 = 0 ⇒ F(y) = F(x),

(ii) X* is weak sharp minima; (iii) dist(xk|X*) converges to zero, and F is uniformly

continuous over some open set containing xk and X*. Indeed, according to [[18], Theo-

rem 3.1], we know that F is a constant over X* when F is pseudomonotone+. Using this

fact, the concept of uniformly weak sharp minima reduces to weak sharp minima.

Meanwhile, it is easy to see that condition (iii) given in [18] implies (3.9). In addition,

we further consider the case when xk has a limit point under a weaker version of weak

sharp minima.
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