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Abstract
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1 Introduction and main results
In this paper, by meromorphic functions, we will always mean meromorphic functions

in the complex plane. We adopt the standard notations in the Nevanlinna theory of

meromorphic functions as explained in [1-3]. It will be convenient to let E denote any

set of positive real numbers of finite linear measure, not necessarily the same at each

occurrence. For a non-constant meromorphic function h, we denote by T(r, h) the

Nevanlinna characteristic of h and by S(r, h) any quantity satisfying S(r, h) = o{T(r, h)},

as r ® ∞, r ∉ E.

Let f and g be two non-constant meromorphic functions and let a be a finite com-

plex value. We say that f and g share a CM, provided that f - a and g - a have the

same zeros with the same multiplicities. Similarly, we say that f and g share a IM, pro-

vided that f - a and g - a have the same zeros ignoring multiplicities. In addition, we

say that f and g share ∞ CM, if 1/f and 1/g share 0 CM, and we say that f and g share

∞ IM, if 1/f and 1/g share 0 IM (see [3]). Suppose that f and g share a IM. Throughout

this paper, we denote by N̄L

(
r,

1
f − a

)
the reduced counting function of those com-

mon a-points of f and g in |z| <r, where the multiplicity of each such a-point of f is

greater than that of the corresponding a-point of g, and denote by N11

(
r,

1
f − a

)
the

counting function for common simple 1-point of both f and g. In addition, we need

the following three definitions:

Definition 1.1 Let f be a non-constant meromorphic function, and let p be a positive

integer and a Î C ∪ {∞}. Then by Np)(r, 1/(f - a)), we denote the counting function of

those a-points of f (counted with proper multiplicities) whose multiplicities are not
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greater than p, by N̄p)(r, 1/(f − a)) we denote the corresponding reduced counting

function (ignoring multiplicities). By N(p(r,1/(f - a)), we denote the counting function

of those a-points of f (counted with proper multiplicities) whose multiplicities are not

less than p, by N̄(p(r, 1/(f − a)) we denote the corresponding reduced counting func-

tion (ignoring multiplicities), where and what follows,

Np)(r,1/(f - a)), N̄p)(r, 1/(f − a)),N(p(r,1/(f - a)), N̄(p(r, 1/(f − a)) mean Np)(r,f ), N̄p)(r, f ),N(p(r,f ),

and N̄(p(r, f ), respectively, if a = ∞.

Definition 1.2 Let f be a non-constant meromorphic function, and let a be any value

in the extended complex plane, and let k be an arbitrary nonnegative integer. We

define

δk(a, f ) = 1 − lim
n→∞

Nk

(
r,

1
f − a

)
T(r, f )

,
(1)

where

Nk

(
r,

1
f − a

)
= N̄

(
r,

1
f − a

)
+ N̄(2

(
r,

1
f − a

)
+ · · · + N̄(k

(
r,

1
f − a

)
. (2)

Remark 1.1. From (1) and (2), we have 0 ≤ δk(a, f) ≤ δk-1(a, f) ≤ δ1(a, f) ≤ Θ(a, f) ≤ 1.

Definition 1.3 Let f be a non-constant meromorphic function, and let a be any value

in the extended complex plane, and let k be an arbitrary nonnegative integer.

We define

�k)(a, f ) = 1 − lim
n→∞

N̄k)

(
r,

1
f − a

)
T(r, f )

.
(3)

Remark 1.2. From (3), we have 0 ≤ Θ(a, f) ≤ Θk)(a, f) ≤ Θk-1) (a, f) ≤ Θ1)(a, f) ≤ 1.

Definition 1.4 Let k be a positive integer. Let f and g be two non-constant mero-

morphic functions such that f and g share the value 1 IM. Let z0 be a 1-point of f with

multiplicity p, and a 1-point of g with multiplicity q. We denote by N̄f>k

(
r,

1
g − 1

)
the reduced counting function of those 1-points of f and g such that

p > q = k. N̄g>k

(
r,

1
f − 1

)
is defined analogously.

It is natural to ask the following question:

Question 1.1 What can be said about the relationship between two meromorphic

functions f,g when two differential polynomials, generated by f and g, respectively,

share certain values?

Regarding Question 1.1, we first recall the following result by Yang and Hua [4]:

Theorem A. Let f(z) and g(z) be two non-constant meromorphic functions, n ≥ 11

an integer and a Î C - {0}. If fn f’ and gn g’ share the value a CM, then either f = tg for

a constant t with tn+1 = 1 or g(z) = c1e
cz and f(z) = c2e

-cz, where c, c1and c2 are con-

stants satisfying (c1 c2)
n+1 c2 = -a2.

Considering kth derivative instead of 1st derivative Fang [5] proved the following

theorems.
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Theorem B. Let f(z) and g(z) be two non-constant entire functions, and let n, k be

two positive integers with n > 2k + 4. If [fn](k) and [gn](k) share 1 CM, then either f = tg

for a constant t with tn = 1 or f(z) = c1e
cz and g(z) = c2e

-cz, where c, c1 andc2 are con-

stants satisfying ( -1)k(c1 c2)
n(nc)2k = 1.

Theorem C. Let f(z) and g(z) be two non-constant entire functions, and let n, k be

two positive integers with n ≥ 2k + 8. If [fn(z)(f(z) - 1)](k) and [gn(z)(g(z) - 1)](k) share 1

CM, then f(z) ≡ g(z).

In 2008, Banerjee [6] proved the following theorem.

Theorem D. Let f and g be two transcendental meromorphic functions, and let n, k

be two positive integers with n ≥ 9k + 14. Suppose that [fn](k) and [gn](k) share a non-

zero constant b IM, then either f = tg for a constant t with tn = 1 or f(z) = c1e
cz and g

(z) = c2e
-cz, where c, c1 and c2 are constants satisfying ( -1)k(c1 c2)

n(nc)2k = b2.

Recently, Lahiri and Sahoo [7] proved the following theorem.

Theorem E. Let f and g be two non-constant meromorphic functions, and α( �≡ 0,∞)

be a small function of f and g. Let n and m(≥ 2) be two positive integers with n > max

{4, 4m + 22 - 5Θ(∞, f) - 5Θ(∞, g) -min[Θ(∞, f), Θ(∞, g)]}. If fn(fm - a)f’ and gn(gm - a)g’

share a IM for a non-zero constant a, then either f ≡ g or f ≡ -g.

Also, the possibility f ≡ -g does not arise if n and m are both even, both odd or n is

even and m is odd.

One may ask, what can be said about the relationship between f and g, if we relax

the nature of sharing values of Theorem D and Theorem E ? In this paper, we prove:

Theorem 1.1. Let f(z) and g(z) be two non-constant meromorphic functions, and let

n(≥ 1), k(≥ 1) and m(≥ 0) be three integers. Let [fn(f - 1)m](k) and [gn(g - 1)m](k) share

the value 1 IM. Then, one of the following holds:

(i) When m = 0 and n > 9k + 14, then either f(z) = c1e
cz and g(z) = c2e

-cz, where c,

c1 andc2 are constants satisfying (-1)k(c1 c2)
n(nc)2k = 1 or f = tg for a constant t

with tn = 1.

(ii) When m = 1, n > 9k + 18 and �(∞, f ) >
2
n
, then f ≡ g.

(iii) When m ≥ 2, n > 4m + 9k + 14, then f ≡ g or f and g satisfies the algebraic

equation R(x, y) = xn(x - 1)m - yn(y - 1)m = 0.

Theorem 1.2. Let f(z) and g(z) be two non-constant meromorphic functions, and let

m, n(≥ 2) and k be three positive integers such that n > 4m + 9k + 14. If [fn(fm - a)](k)

and [gn(gm - a)](k) share the value 1 IM, where a(≠ 0) is a finite complex number, then

either f ≡ g or f ≡ -g.

The possibility f ≡ -g does not arise if n and m are both odd or if n is even and m is

odd or if n is odd and m is even.

Remark 1.3. If m = 0, m = 1, then the cases become Theorem 1.1 (i) (ii).

Theorem 1.3. Let f(z) and g(z) be two non-constant entire functions, and let n(≥ 1),

k(≥ 1) and m(≥ 0) be three integers. Let [fn(f - 1)m](k) and [gn(g - 1)m](k) share the value

1 IM. Then, one of the following holds:
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(i) When m = 0 and n > 5k + 7, then either f(z) = c1e
cz and g(z) = c2e

-cz, where c,

c1andc2 are constants satisfying ( -1)k(c1 c2)
n(nc)2k = 1 or f = tg for a constant t

with tn = 1.

(ii) When m ≥ 1, n > 4m + 5k + 7, then f ≡ g or f and g satisfies the algebraic equa-

tion R(x, y) = xn(x - 1)m - yn(y - 1)m = 0.

Theorem 1.4. Let f(z) and g(z) be two non-constant entire functions, and let m, n(≥

1) and k be three positive integers such that n > 4m + 5k + 7. If [fn(fm - a)](k) and [gn

(gm - a)](k) share the value 1 IM, where a(≠ 0) is a finite complex number, then either

f ≡ g or f ≡ -g.

The possibility f ≡ -g does not arise if n and m are both odd or if n is even and m is

odd or if n is odd and m is even.

Remark 1.4. If m = 0, then the cases becomes Theorem 1.3 (i).

2 Some lemmas
Lemma 2.1. (See [2,3].) Let f(z) be a non-constant meromorphic function, k a positive

integer and let c be a non-zero finite complex number. Then,

T(r, f ) ≤ N̄(r, f ) +N
(
r,
1
f

)
+N

(
r,

1
f (k) − c

)
− N

(
r,

1
f (k+1)

)
+ S(r, f )

≤ N̄(r, f ) +Nk+1

(
r,
1
f

)
+ N̄

(
r,

1

f (k) − c

)
− N0

(
r,

1

f (k+1)

)
+ S(r, f ).

(4)

where N0

(
r,

1
f (k+1)

)
is the counting function, which only counts those points such

that f(k+1) = 0 but f(f(k)-c) ≠ 0

Lemma 2.2. (See [8].) Let f(z) be a non-constant meromorphic function, and let k be

a positive integer.

Suppose that f (k) �≡ 0, then

N
(
r,

1
f (k)

)
≤ N

(
r,
1
f

)
+ kN̄(r, f ) + S(r, f ).

Lemma 2.3. (See [9].) Let f(z) be a non-constant meromorphic function, s, k be two

positive integers, then

Ns

(
r,

1
f (k)

)
≤ kN̄(r, f ) +Ns+k

(
r,
1
f

)
+ S(r, f ).

Clearly, N̄
(
r,

1
f (k)

)
= N1

(
r,

1
f (k)

)
.

Lemma 2.4. (See [10].) Let f, g share (1,0). Then

(i) N̄f>1

(
r,

1
g − 1

)
≤ N̄

(
r,
1
f

)
+ N̄(r, f ) − N0

(
r,

1
f ′

)
+ S(r, f ),,

(ii) N̄g>1

(
r,

1
f − 1

)
≤ N̄

(
r,
1
g

)
+ N̄(r, g) − N0

(
r,

1
g′

)
+ S(r, g).

Lemma 2.5. Let f(z) and g(z) be two non-constant meromorphic functions such that

f(k) and g(k) share 1 IM, where k be a positive integer. If
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� = (2k+4)�(∞, g)+(2k+3)�(∞, f )+δk+2(0, g)+δk+2(0, f )+δk+1(0, f )+2δk+1(0, g) > 4k+11

then either f(k)g(k) ≡ 1 or f ≡ g.

Proof. Let

�(z) =
f (k+2)

f (k+1)
− 2

f (k+1)

f (k) − 1
− g(k+2)

g(k+1)
+ 2

g(k+1)

g(k) − 1
. (5)

Clearly m(r, F) = S(r, f) + S(r, g). We consider the cases �(z) �≡ 0 and F(z) ≡ 0.

Let �(z) �≡ 0, then if z0 is a common simple 1-point of f(k) and g(k), substituting their

Taylor series at z0 into (5), we see that z0 is a zero of F(z). Thus, we have

N11

(
r,

1
f (k) − 1

)
= N11

(
r,

1
g(k) − 1

)
≤ N̄

(
r,

1
�

)
≤ T(r,�)+O(1) ≤ N(r,�)+S(r, f )+S(r, g). (6)

Our assumptions are that F(z) has poles, all simple only at zeros of f(k+1)and g(k+1)

and poles of f and g, and 1-points of f whose multiplicities are not equal to the multi-

plicities of the corresponding 1-points of g. Thus, we deduce from (5) that

N(r,�) ≤ N̄(r, f ) + N̄(r, g) + N̄(k+2

(
r,
1
f

)
+ N̄(k+2

(
r,
1
g

)
+N0

(
r,

1
f (k+1)

)

+N0

(
r,

1

g(k+1)

)
+ N̄L

(
r,

1

f (k) − 1

)
+ N̄L

(
r,

1

g(k) − 1

)
.

(7)

here N0

(
r,

1
f (k+1)

)
has the same meaning as in Lemma 2.1. From Lemma 2.1, we

have

T(r, g) ≤ N̄(r, g) +Nk+1

(
r,
1
g

)
+ N̄

(
r,

1
g(k) − 1

)
− N0

(
r,

1
g(k+1)

)
+ S(r, g). (8)

Since

N̄
(
r,

1
g(k) − 1

)
= N11(

(
r,

1
g(k) − 1

)
+ N̄(2

(
r,

1
f (k) − 1

)
+ N̄g(k)>1

(
r,

1
f (k) − 1

)
. (9)

Thus, we deduce from (6)-(9) that

T(r, g) ≤ 2N̄(r, g) + N̄(r, f ) +Nk+1

(
r,
1
g

)
+ N̄(k+2

(
r,
1
f

)
+ N̄(k+2

(
r,
1
g

)
+N0

(
r,

1
f (k+1)

)
+ N̄(2

(
r,

1
f (k) − 1

)

+ N̄L

(
r,

1

f (k) − 1

)
+ N̄L

(
r,

1

g(k) − 1

)
+ N̄g(k)>1

(
r,

1

f (k) − 1

)
+ S(r, f ) + S(r, g).

(10)

From the definition of N0

(
r,

1
f (k+1)

)
, we see that

N0

(
r,

1
f (k+1)

)
+ N̄(2

(
r,

1
f (k) − 1

)
+N(2

(
r,

1
f (k)

)
− N̄(2

(
r,

1
f (k)

)
≤ N

(
r,

1
f (k+1)

)
.

The above inequality and Lemma 2.2 give

N0

(
r,

1
f (k+1)

)
+ N̄(2

(
r,

1
f (k) − 1

)
≤ N

(
r,

1
f (k+1)

)
− N(2

(
r,

1
f (k)

)
+ N̄(2

(
r,

1
f (k)

)

≤ N
(
r,

1

f (k)

)
− N(2

(
r,

1

f (k)

)
+ N̄(2

(
r,

1

f (k)

)
+ N̄(r, f ) + S(r, f )

≤ N̄
(
r,

1

f (k)

)
+ N̄(r, f ) + S(r, f ).

(11)
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Substituting (11) in (10), we get

T(r, g) ≤ 2N̄(r, g) + N̄(r, f ) +Nk+1

(
r,
1
g

)
+ N̄(k+2

(
r,
1
f

)
+ N̄(k+2

(
r,
1
g

)
+ N̄

(
r,

1
f (k)

)
+ N̄(r, f )

+ N̄L

(
r,

1

f (k) − 1

)
+ N̄L

(
r,

1

g(k) − 1

)
+ N̄g(k)>1

(
r,

1

f (k) − 1

)
+ S(r, f ) + S(r, g)

≤ 2N̄(r, g) + 2N̄(r, f ) +Nk+2

(
r,
1
g

)
+ N̄(k+2

(
r,
1
f

)
+ N̄

(
r,

1

f (k)

)
+ N̄L

(
r,

1

f (k) − 1

)

+ N̄L

(
r,

1

g(k) − 1

)
+ N̄g(k)>1

(
r,

1

f (k) − 1

)
+ S(r, f ) + S(r, g).

(12)

According to Lemma 2.3,

N̄
(
r,

1
f (k)

)
= N1

(
r,

1
f (k)

)
≤ Nk+1

(
r,
1
f

)
+ kN̄(r, f ) + S(r, f ). (13)

Therefore,

N̄L

(
r,

1
f (k) − 1

)
≤ N

(
r,

1
f (k) − 1

)
− N̄

(
r,

1
f (k) − 1

)

≤ N

(
r,

f (k)

f (k+1)

)
≤ N

(
r,
f (k+1)

f (k)

)
+ S(r, f )

≤ N̄
(
r,

1

f (k)

)
+ N̄(r, f ) + S(r, f )

≤ Nk+1

(
r,
1
f

)
+ (k + 1)N̄(r, f ) + S(r, f ).

similarly,

N̄L

(
r,

1
g(k) − 1

)
≤ Nk+1

(
r,
1
g

)
+ (k + 1)N̄(r, g) + S(r, g).

Combining the above inequality, Lemma 2.4 and (12), we obtain

T(r, g) ≤ (2k + 4)N̄(r, g) + (2k + 3)N̄(r, f ) +Nk+2

(
r,
1
g

)
+Nk+2

(
r,
1
f

)

+Nk+1

(
r,
1
f

)
+ 2Nk+1

(
r,
1
g

)
− N0

(
r,

1
g(k+1)

)
+ S(r, f ) + S(r, g)

≤ (2k + 4)N̄(r, g) + (2k + 3)N̄(r, f ) +Nk+2

(
r,
1
g

)
+Nk+2

(
r,
1
f

)

+Nk+1

(
r,
1
f

)
+ 2Nk+1

(
r,
1
g

)
+ S(r, f ) + S(r, g).

Without loss of generality, we suppose that there exists a set I with infinite measure

such that T(r, f) ≤ T(r, g) for r Î I. Hence,

T(r, g) ≤ {(2k + 4)[1 − �(∞, g)] + (2k + 3)[1 − �(∞, f )] + [1 − δk+2(0, g)] + [1 − δk+2(0, f )]

+ [1 − δk+1(0, f )] + 2[1 − δk+1(0, g)] + ε}T(r, g) + S(r, g).

for Î I and 0 <ε < Δ - (4k +11)

Therefore, we can get T(r, g) ≤ S(r, g),r Î I, by the condition, a contradiction.

Hence, we get F(z) ≡ 0. Then, by (5), we have

f (k+2)

f (k+1)
− 2f (k+1)

f (k) − 1
≡ g(k+2)

g(k+1)
− 2g(k+1)

g(k) − 1
.
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By integrating two sides of the above equality, we obtain

1
f (k) − 1

=
bg(k) + a − b

g(k) − 1
. (14)

where a(≠ 0) and b are constants. We consider the following three cases:

Case 1. b ≠ 0 and a = b

(i) If b = -1, then from (14), we obtain that f(k)g(k) ≡ 1.

(ii) If b ≠ -1, then from (14), we get

f (k) =
(1 + b)g(k) − 1

bg(k)
. (15)

From (15), we get

N̄
(
r,

1
g(k) − 1/(1 + b)

)
= N̄

(
r,

1
f (k)

)
. (16)

Combing (13) (16) and Lemma 2.1, we have

T(r, g) ≤ N̄(r, g) +Nk+1

(
r,
1
g

)
+ N̄

(
r,

1
g(k) − 1/(b + 1)

)
− N0

(
r,

1
g(k+1)

)
+ S(r, g)

≤ N̄(r, g) +Nk+1

(
r,
1
g

)
+ kN̄(r, f ) +Nk+1

(
r,
1
f

)
+ S(r, f ) + S(r, g).

(17)

From (17), we get

�(∞, g) + k�(∞, f ) + δk+1(0, g) + δk+1(0, f ) ≤ k + 2.

By the condition, we get a contradiction.

Case 2. b ≠ 0 and a ≠ b.

(i) If b = -1, then a ≠ 0, from (14) we obtain

f (k) =
a

a + 1 − g(k)
. (18)

From (18), we get

N̄
(
r,

1
g(k) − (a + 1)

)
= N̄(r, f ). (19)

From (19) and Lemma 2.1 and in the same manner as in the proof of (17), we get

T(r, g) ≤ N̄(r, g) +Nk+1

(
r,
1
g

)
+ N̄

(
r,

1
g(k) − (a + 1)

)
+ S(r, g)

≤ N̄(r, g) +Nk+1

(
r,
1
g

)
+ N̄(r, f ) + S(r, g).

Using the argument as in case 1, we get a contradiction.
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(ii) If b ≠ -1, then from (14), we get

f (k) −
(
1 +

1
b

)
=

−a

b2[g(k) +
a − b
b

]
. (20)

From (20), we get

N̄

⎡
⎢⎢⎣r,

1

g(k) +
(
a − b
b

)
⎤
⎥⎥⎦ = N̄

[
f (k) −

(
1 +

1
b

)]
= N̄(r, f (k)) = N̄(r, f ). (21)

Using the argument as in case 1, we get a contradiction.

Case 3. b = 0. From (14), we obtain

f (k) =
1
a
g(k) + 1 − 1

a
, (22)

f =
1
a
g + p(z). (23)

where p(z) is a polynomial with its degree ≤ k. If p(z) �≡ 0, then by second funda-

mental theorem for small functions, we have

T(r, g) ≤ N̄(r, g) + N̄
(
r,
1
g

)
+ N̄

(
r,

1
g + ap(z)

)
+ S(r, g)

≤ N̄(r, g) + N̄
(
r,
1
g

)
+ N̄

(
r,
1
f

)
+ S(r, g).

(24)

Using the argument as in Case 1, we get a contradiction. Therefore, p(z) ≡ 0. So

from (22) and (23), we obtain a = 1 and so f ≡ g. This proves the lemma.

Lemma 2.6. Let f(z) and g(z) be two non-constant entire functions such that f(k) and

g(k) share 1 IM, where k be a positive integer. If

� = δk+2(0, g) + δk+2(0, f ) + δk+1(0, f ) + 2δk+1(0, g) > 4

then either f(k)g(k) ≡ 1 or f ≡ g.

Proof. Since f and g are entire functions, we have N̄(r, f ) = 0 and N̄(r, g) = 0. Pro-

ceeding as in the proof of Lemma 2.5, we obtain conclusion of Lemma 2.6.

Lemma 2.7. (See [11].) Let f(z) be a non-constant entire function, and let k(≥ 2) be a

positive integer. If f f(k) ≠ 0, then f = eaz+b,where a ≠ 0, b are constants.

Lemma 2.8. (See [12].) Let f(z) be a non-constant meromorphic function. Let k be a

positive integer, and let c be a non-zero finite complex number. Then,

T(r, anf n + an−1f
n−1 + · · · + a0) = nT(r, f ) + S(r, f ).

3 Proof of theorems
3.1 Proof of Theorem 1.1

Let F = fn(f - 1)m and G = gn(g - 1)m.
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By Lemma 2.8, we have

�(∞, F) = 1 − lim
n→∞

N̄(r, F)
T(r, F)

= 1 − lim
n→∞

N̄(r, f n(f − 1)m)
(m + n)T(r, f )

≥ 1 − lim
n→∞

T(r, f )
(m + n)T(r, f )

≥ n +m − 1
m + n

,

δk+1(0, F) = 1 − lim
n→∞

Nk+1

(
r,
1
F

)
T(r, F)

= 1 − lim
n→∞

Nk+1

(
r,

1
f n(f − 1)m

)
(m + n)T(r, f )

≥ 1 − (k +m + 1)T(r, f )
(m + n)T(r, f )

≥ n − k − 1
m + n

,

Similarly,

�(∞,G) ≥ n +m − 1
m + n

, δk+1(0,G) ≥ n − k − 1
m + n

, δk+2(0, F) ≥ n − k − 2
m + n

, δk+2(0,G) ≥ n − k − 2
m + n

.

Therefore,

� = (2k + 4)�(∞,G) + (2k + 3)�(∞, F) + δk+2(0,G) + δk+2(0, F) + δk+1(0, F) + 2δk+1(0,G)

≥ (2k + 4) · m + n − 1
m + n

+ (2k + 3) · m + n − 1
m + n

+
n − k − 2
m + n

+
n − k − 2
m + n

+
n − k − 1
m + n

+ 2 · n − k − 1
m + n

If n > 4m + 9k + 14, we obtain Δ > 4k + 11.

So by Lemma 2.5, we get either F(k) G (k) ≡ 1 or F ≡ G.

Case 1. F(k)G(k) ≡ 1, that is,

(f n(f − 1)m)(k)(gn(g − 1)m)(k) ≡ 1. (25)

Case 1.1 when m = 0, that is,

(f n)(k)(gn)(k) ≡ 1. (26)

Next, we prove f ≠ 0, ∞ and g ≠ 0, ∞.

Suppose that f has a zero z0 of order p, then z0 is a pole of g of order q. By (26), we

get np - k = nq + k, i.e., n(p - q) = 2k, which is impossible since n > 9k + 14.

Therefore, we conclude that f ≠ 0 and g ≠ 0.

Similarly, Suppose that f has a pole z′0 of order p’, then z′0 is a zero of g of order q’.

By (26), we get np’ + k = nq’ - k, i.e., n(q’ - p’) = 2k, which is impossible since n > 9k +

14.

Therefore, we conclude that f ≠ ∞ oo and g ≠ ∞.

From (26), we get

(f n)(k) �= 0 and (gn)(k) �= 0. (27)

From (26)-(27) and Lemma 2.7, we get that f(z) = c1e
cz and g(z) = c2e

-cz, where c, c1
and c2 are three constants satisfying ( -1)k(c1 c2)

n(nc)2k = 1.

Case 1.2 when m ≥ 1
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Let f has a zero z1 of order p1. From (25), we get z1 is a pole of g. Suppose that z1 is

a pole of g of order q1. Again by (25), we obtain np1 - k = nq1 + mq1 + k, i.e., n(p1 -

q1) = mq1 + 2k, which implies that p1 ≥ q1 + 1 and mq1 + 2k ≥ n. From n > 4m + 9k

+ 14, we can deduce p1 ≥ 6.

Let f - 1 has a zero z2 of order p2, then z2 is a zero of [fn(f - 1)m](k) of order mp2 - k.

Therefore from (25), we obtain z2 is a pole of g of order q2. Again by (25), we obtain

mp2 - k = (n + m)q2 + k, i.e., mp2 = (n + m)q2 + 2k, i.e., p2 ≥ m + n
m

+
2k
m
.

Let z3 be a zero of f’ of order p3 that not a zero of f(f - 1), as above, we obtain from

(25), p3 - (k - 1) = (n + m)q3 + k, i.e., p3 ≥ n + m + 2k - 1.

Moreover, in the same manner as above, we have similar results for the zeros of [gn

(g-1)m](k).

On the other hand, Suppose z4 is a pole of f, from (25), we get z4 is a zero of [gn(g -

1)m](k).

Thus,

N̄(r, f ) ≤ N̄
(
r,
1
g

)
+ N̄

(
r,

1
g − 1

)
+ N̄

(
r,

1
g′

)

≤ 1
6
N

(
r,
1
g

)
+

m
m + n + 2k

N
(
r,

1
g − 1

)
+

1
n +m + 2k − 1

N
(
r,

1
g′

)
.

We get

N̄(r, f ) ≤
(
1
6
+

m
m + n + 2k

+
1

n +m + 2k − 1

)
T(r, g) + S(r, g).

From this and the second fundamental theorem, we obtain

T(r, f ) ≤ N̄(r, f ) + N̄
(
r,

1
f − 1

)
+ N̄

(
r,
1
f

)
+ S(r, f )

≤
(
1
6
+

m
m + n + 2k

+
1

n +m + 2k − 1

)
T(r, g) +

(
1
6
+

m
m + n + 2k

)
T(r, f ) + S(r, f ) + S(r, g).

Similarly, we have

T(r, g) ≤
(
1
6
+

m
m + n + 2k

+
1

n +m + 2k − 1

)
T(r, f )+

(
1
6
+

m
m + n + 2k

)
T(r, g)+S(r, f )+S(r, g).

We can deduce from above

T(r, f )+T(r, g) ≤
(
1
3
+

2m
m + n + 2k

+
1

n +m + 2k − 1

)
[T(r, f )+T(r, g)]+S(r, f )+S(r, g).

Since n > 4m + 9k + 14, we obtain

T(r, f ) + T(r, g) ≤
(
1
3
+

2
31

+
1
30

)
[T(r, f ) + T(r, g)] + S(r, f ) + S(r, g).

i.e., 0.57[T(r, f) + T(r, g)] ≤ S(r, f) + S(r, g),

which is contradiction.

Case 2. F ≡ G, i.e.,

f n(f − 1)m ≡ gn(g − 1)m. (28)
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Now we consider following three cases.

Case 2.1 when m = 0, then from (28), we get f = tg for a constant t such that tn =

1.

Case 2.2 when m = 1, then from (28), we have

f n(f − 1) ≡ gn(g − 1). (29)

Suppose f �≡ g. Let h =
f
g
be a constant. Then from (29), it follows that h ≠ 1, hn ≠ 1,

hn+1 ≠ 1 and g =
1 − hn

1 − hn+1
= constant, a contradiction. So we suppose h is not a con-

stant. Since f �≡ g, we have h �≡ 1.

From (29), we obtain g =
1 − hn

1 − hn+1
and f =

h(1 − hn)
1 − hn+1

. Hence, it follows that T(r, f) =

nT(r, h) + S(r, f).

By the second fundamental theorem, we have

N̄(r, f ) =
n∑
i=1

N̄
(
r,

1
h − ai

)
≥ (n − 2)T(r, h) + S(r, f )

where ai(≠ 1) (i = 1, 2,..., n) are distinct roots of the equation hn+1 = 1.

So we obtain

�(∞, f ) = 1 − N̄(r, f )
T(r, f )

≤ 2
n
,

which contradicts the assumption �(∞, f ) >
2
n
, thus f ≡ g.

Case 2.3 when m ≥ 2, then from (28), we obtain

f n[f m+ · · ·+(−1)iCm−i
m f m−i+ · · ·+(−1)m] ≡ gn[gm+ · · ·+(−1)iCm−i

m gm−i+ · · ·+(−1)m]. (30)

Let h =
f
g
, if h is a constant, then substituting f = gh into (30), we deduce

gn+m(hn+m − 1) · · · + (−1)iCm−i
m gm+n−i(hn+m−i − 1) + · · · + (−1)mgn(hn − 1) = 0,

which implies h = 1. Thus, f(z) ≡ g(z). If h is not a constant, then we know by (30)

that f and g satisfies the algebraic equation R(f, g) ≡ 0, where

R(w1,w2) = wn
1(w1 − 1)m − wn

2(w2 − 1)m.

This completes the proof of Theorem 1.1.

3.2 Proof of Theorem 1.2

Consider F = fn(fm - a), G = gn(gm - a), then F(k) and G(k) share 1 IM.

By Lemma 2.8, we have

�(∞, F) = 1 − lim
n→∞

N̄(r, F)
T(r, F)

= 1 − lim
n→∞

N̄(r, f n(f m − a))
(m + n)T(r, f )

≥ 1 − lim
n→∞

T(r, f )
(m + n)T(r, f )

≥ m + n − 1
m + n

,
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and

δk+1(0, F) = 1 − lim
n→∞

Nk+1

(
r,
1
F

)
T(r, F)

= 1 − lim
n→∞

Nk+1

(
r,

1
f n(f m − a)

)
(m + n)T(r, f )

≥ 1 − lim
n→∞

(k +m + 1)T(r, f )
(m + n)T(r, f )

≥ n − k − 1
m + n

.

Similarly,

�(∞,G) ≥ m + n − 1
m + n

, δk+1(0,G) ≥ n − k − 1
m + n

, δk+2(0, F) ≥ n − k − 2
m + n

, δk+2(0,G) ≥
n − k − 2
m + n

.

Therefore,

� = (2k + 4)�(∞,G) + (2k + 3)�(∞, F) + δk+2(0,G) + δk+2(0, F) + δk+1(0, F) + 2δk+1(0,G)

≥ (2k + 4) · m + n − 1
m + n

+ (2k + 3) · m + n − 1
m + n

+
n − k − 2
m + n

+
n − k − 2
m + n

+
n − k − 1
m + n

+ 2 · n − k − 1
m + n

Since n > 4m + 9k + 14, we get Δ > 4k + 11, then by Lemma 2.5, we obtain either F
(k)G(k) ≡ 1 or F ≡ G.

Let F(k)G(k) ≡ 1, i.e.,

[f n(f m − a)](k)[gn(gm − a)](k) ≡ 1, (31)

We can rewrite (31) as

[f n(f − a1) · · · (f − am)](k)[gn(g − a1) · · · (g − am)](k) ≡ 1, (32)

where a1, a2,..., am are roots of wm - a = 0.

By the similar argument for (32) of case 1.2 of Theorem 1.1, the case F(k)G(k) ≡ 1

does not arise.

Let F ≡ G, i.e.,

f n(f m − a) ≡ gn(gm − a). (33)

Obviously, if m and n are both odd or if m is odd and n is even or if m is even and n

is odd, then f ≡ - g contradicts F ≡ G. Let f �≡ g and f �≡ −g. We put h =
f
g
, then h �≡ 1

and h �≡ −1. So from (33), we get gm =
a(1 − hn)
1 − hn+m

.

Since g is non-constant, we see that h is not a constant. Again since gm has no sim-

ple pole, h - hk has no simple zero, where hk = exp
(
2πki
n +m

)
and k = 1, 2,..., n + m - 1.

Hence, �(hk, h) ≥ 1
2
for k = 1,2,...,n + m - 1, which is impossible.

Therefore either f ≡ g or f ≡ - g.

This completes the proof of Theorem 1.2.

3.3 Proof of Theorem 1.3

Since f and g are entire functions, we have N(r, f) = N(r, g) = 0. Proceeding as in the

proof of Theorem 1.1 and applying Lemma 2.6, we obtain that Theorem 1.3 holds.
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3.4 Proof of Theorem 1.4

Since f and g are entire functions, we have N(r, f) = N(r, g) = 0. Proceeding as in the

proof of Theorem 1.2 and applying Lemma 2.6, we can easily prove Theorem 1.4.
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