
RESEARCH Open Access

Coincidence theorems and minimax inequalities
in abstract convex spaces
Yeol Je Cho1, Mohsen Rostamian Delavar2, Seyed Asghar Mohammadzadeh3 and Mehdi Roohi4*

* Correspondence: m.roohi@gu.ac.ir
4Department of Mathematics,
Faculty of Sciences Golestan
University, P.O.Box. 155, Gorgan,
Iran
Full list of author information is
available at the end of the article

Abstract

In this paper, we deal with the notion of abstract convex spaces via minimal spaces
as an extended version of other forms of convexity and establish some well-known
results such as coincidence theorems for the classes m-KKM and ms-KKM of
multimaps and Ky Fan’s type minimax inequality.

Mathematics Subject Classification (2000): 26A51; 26B25; 54H25; 55M20; 47H10;
54A05.

Keywords: abstract convexity, abstract convex space, KKM theorem, coincidence the-
orem, minimax inequality

1 Introduction
Many problems in nonlinear analysis can be solved by showing the nonemptyness of

the intersection of certain family of subsets of an underlying set. Each point of the

intersection can be a fixed point, a coincidence point, an equilibrium point, a saddle

point and an optimal point or others of the corresponding equilibrium problem under

consideration.

The first remarkable result on the nonempty intersection was the celebrated Knaster-

Kuratowski-Mazurkiewicz theorem (simply, KKM principle) in 1929 [1], which concerns

with certain types of multimaps called the KKM maps later. The KKM theory first called

by Park in [2] and [3] was the study of KKM maps and their applications. At the begin-

ning, the theory was mainly devoted to study on convex subsets of topological vector

spaces. Later, it has been extended to convex spaces by Lassonde [4], to C-spaces (or

H-spaces) by Horvath [5-8] and to others.

In 1993, Park and Kim [9] introduced the concept of generalized convex spaces, and

the KKM theory is extended to generalized convex (G-convex) in a sequence of papers

by many authors (for details, see [2,3,9] and [10]) and the references cited therein.

Note that, in the KKM theory, there have appeared a number of coincidence theorems

with many significant applications.

In 1996, since Chang and Yen [11] introduced the class KKM(X, Y) of multimaps, it

was developed by many authors. Recently, Lin et al. [12] studied the class KKM(X, Y)

in topological vector space and proved some KKM type coincidence and fixed point

theorems. In all KKM type theorems, the convexity plays important role and so many

efforts have done to establish KKM type theorems without convexity structure. For
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example, see KKM type theorems in minimal generalized convex spaces [13-15],

G-convex spaces [9], FC-spaces [16] and topological ordered spaces [17].

Recently, Zafarani [18] and Park [19] have introduced a new concept of abstract con-

vex space and certain broad classes KC and KO of multimaps (having the KKM prop-

erty). With this new concept, the KKM type maps were used to obtain matching

theorems, coincidence theorems, fixed point theorems and others.

In this paper, by using the concept of abstract convexity and minimal spaces, the

classes m- KKM(X, Y) and ms-KKM(X, Y, Z) as a generalization of KKM(X, Y) and

s-KKM(X, Y, Z) are introduced. Some generalized KKM and s-KKM type theorems for

minimal transfer closed valued multimaps are established. As applications, some new

coincidence theorems and a new version of Ky Fan’s minimax theorem are obtained.

2 Preliminaries
A multimap F : X ⊸ Y is a function from a set X into the power set of Y. For any A ⊆ X,

set F(A) = ⋃xÎA F(x). Define the graph of F as GF = {(x, y) Î X × Y : y Î F(x)}. Furthermore,

for any x Î X, define Fc(x) = {y Î Y : y ∉ F(x)} and, for any y Î Y, F-(y) = {x Î X : y Î F(x)}

and F*(y) = {x Î X : y ∉ F(x)}. Note that F*(y) = X\F-(y) for any y Î Y. For any set D, put

〈D〉 as the family of all nonempty finite subsets of D.

Proposition 2.1. [20]Suppose F, G : X ⊸ Y are two multimaps. Then we have the

following.

(1) for each x Î X, F(x) ⊆ G(x) if and only if G*(y) ⊆ F*(y) for each y Î Y,

(2) y ∉ F(x) if and only if x Î F*(y),

(3) for each x Î X, (F*)*(x) = F(x),

(4) for each x ∈ X, F(x) �= ∅if and only if
⋂
y∈Y

F∗(y) = ∅ ,
(5) for each y Î Y, (Fc)*(y) = F-(y),

(6) for each y Î Y, (F-)c(y) = F*(y).

A family M ⊆ P(X) is said to be a minimal structure on , X if ∅,X ∈ M . In this

case, (X,M) is called a minimal space. For example, let (X, τ) be a topological space,

then τ, SO(X), PO(X), aO(X) and bO(X) are minimal structures on X [21]. In a minimal

space (X,M) , A ∈ P(X) is called an m-open set if A ∈ M and also B ∈ P(X) is

called an m-closed set if Bc ∈ M . Set m - Int(A) = ∪{U : U ⊆ A,U ∈ M} and

m - Cl(A) = ∩{B : A ⊆ B,Bc ∈ M} . Notice that, for any set A ⊆ X, m-Cl(A) (resp.,

m-Int(A)) is not necessarily m-closed (resp., m-open).

It is not hard to see that there are many minimal spaces which are not topological

space. Furthermore, in the following example, it is shown that there are some linear

minimal spaces which are not topological vector space. Moreover in [13], there is a

minimal G-convex space which is not G-convex space (see [9] and [13]).

Definition 2.2[22]. Let (X,M) and (Y,N ) be two minimal spaces. A function

f : (X,M) → (Y,N ) is called minimal continuous (briefly m-continuous) if

f−1(U) ∈ M for any U ∈ N .

Example 2.3[13]. Consider the real field ℝ. Clearly M = {(a, b) : a, b ∈ � ∪ {±∞}} is a

minimal structure on ℝ. We claim that M is a linear minimal structure on ℝ. For this,

we must prove that, two operations + and · are m-continuous. Suppose (x0, y0) Î + -1(a, b)
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and so x0 + y0 Î (a, b). Put ε = min{x0 + y0 - a, b - (x0 + y0)} and so x0 ∈ (x0 − ε
2 , x0 +

ε
2)

and y0 ∈ (y0 − ε
2 , y0 +

ε
2). Hence,

x0 + y0 ∈
((

x0 − ε

2
, x0 +

ε

2

)
+

(
y0 − ε

2
, y0 +

ε

2

))
⊆ (a, b);

which implies that + -1(a, b) is m-open in the minimal product space ℝ × ℝ; that is + is

m-continuous. Also, suppose (a0, x0) Î ·-1(a, b). Since a0x0 Î (a, b) and lims,t®0(a0 - s)(x0 -

t) = a0x0, so one can find some 0 <δ for which |a0 - s| <δ and |x0 - t| <δ imply that a <

(a0 - s)(x0 - t) <b. Therefore, (a0, x0) Î (a0 - δ, a0 + δ) · (x0 - δ, x0 + δ) ⊆ (a, b); i.e., ·-1(a, b)

is m-open in the minimal product space ℝ × ℝ, which implies that the operation · is

m-continuous.

For the main results in this paper, we recall some basic definitions and results. More

details can be found in [13,15,21-24] and [22] and references therein.

Proposition 2.4. [21]For any two sets A and B,

(1) m-Int(A) ⊆ A and m-Int(A) = A if A is an m-open set.

(2) A ⊆ m-Cl(A) and A = m-Cl(A) if A is an m-closed set.

(3) m-Int(A) ⊆ m-Int(B) and m-Cl(A) ⊆ m-Cl(B) if A ⊆ B.

(4) m-Int(m-Int(A)) = m-Int(A) and m-Cl(m-Cl(B)) = m-Cl(B),

(5) (m-Cl(A))c = m-Int(Ac) and (m-Int(A))c = m-Cl(Ac).

Definition 2.5[14]. Let X be a nonempty set and Y be a minimal space. A multimap

F : X ⊸ Y is said to be

(1) minimal transfer open valued if, for each x Î X and y Î F(x), there exists x0 Î
X such that y Î m-Int(F(x0)).

(2) minimal transfer closed valued if, for any x Î X and y ∉ F(x), there exists x0 Î
X such that y ∉ m-Cl(F(x0)).

Theorem 2.6. Suppose that X is a nonempty set and Y is a minimal space. Then the

following are equivalent.

(1) The multimap F : X ⊸ Y is minimal transfer closed valued,

(2) ⋂xÎX F(x) = ⋂xÎX m-Cl(F(x)),

(3) ⋃xÎX Fc(x) = ⋃xÎX m-Int(Fc(x)),

(4) ⋃xÎX Fc(x) = ⋃xÎX (m-Cl(F(x)))c,

(5) Fc is minimal transfer open valued.

Proof. See theorems 2.1, 2.2 and 2.3 in [14].

Definition 2.7[22]. For a minimal space (X,M) ,

(1) a family A = {Aj : j ∈ J} of m-open sets in X is called an m-open cover of K if

K ⊆ ⋃jÎJ Aj. Any subfamily of A which is also an m-open cover of K is called a

subcover of A for K,

(2) a subset K of X is m-compact whenever given any m-open cover of K has a

finite subcover.
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Definition 2.8. Suppose that X is a nonempty set and Y is a minimal space. A multi-

map T : X ⊸ Y is called m-compact if m-Cl(T(X)) is an m-compact subset of Y.

Lemma 2.9. [15]Suppose that (X,M) is an m-compact minimal space and {Ai : i Î I}

is a family of subsets of X. If {m-Cl(Ai): i Î I} has the finite intersection property, then⋂
i∈I m − Cl(Ai) �=∅. .

3 Coincidence theorems in abstract convex spaces
Now, we give some definitions for the results in this section as follows.

Definition 3.1[19]. An abstract convex space (X, D, Γ) consists of two nonempty sets

X, D and a multimap Γ: 〈D〉 ⊸ X. In case to emphasize X ⊇ D, (X, D, Γ) will be denoted

by (X ⊇ D, Γ); and if X = D, then (X ⊇ X; Γ) by (X, Γ). If D ⊆ X and E ⊆ X, then E is

called abstract convex if Γ(A) ⊆ E for each A Î 〈D ∩ E〉. Obviously, for any B ⊆ D, we

can define CoΓ(B) = ⋃{ΓA | A Î 〈B〉}.

Motivated by the results of Chang et al. [23], we introduce a new definition about

the family of multimaps with the ms-KKMC (ms-KKMO) property in minimal abstract

convex space as follows.

Definition 3.2. Let Y be a nonempty set, Z be a minimal space, s : Y ® D be a func-

tion and (X, D, Γ) be an abstract convex space. Let T : X ⊸ Z and F : Y ⊸ Z be two

multimaps. we say that F is generalized s-KKM with respect to T if

T(�(s(A))) ⊆ F(A) for any A ∈ 〈Y〉.

The multimap T has ms-KKMC (resp. ms-KKMO) property if the following condi-

tions.

(1) for any y Î D, F(y) = m-Cl(Ay) (resp. F(y) = m-Int(Ay)) for some Ay ⊆ Z,

(2) F is generalized s-KKM with respect to T,

imply that the family {F(y): y Î D} has the finite intersection property.

Set

(1) ms-KKMC(X, Y, Z) = {T : X ⊸ Z : T has ms-KKMC property},

(2) ms-KKMO(X, Y, Z) = {T : X ⊸ Z : T has ms-KKMO property}.

Remark 3.3. Note that

(1) If D = Y and the function s : Y ® D is the identity map IdD, the class ms-

KKMC(X, Y, Z) reduces to the class m-KKMC(X, Z) introduced and investigated in

[13-15].

(2) The classes m-KKMC(X, Y) and ms-KKMC(X, Y, Z) generalize the classes KKM

(X, Y) and s-KKM(X, Y, Z) in G-convex spaces and their subclasses (see [24]), in

topological space.

Proposition 3.4. Suppose that X is a minimal space and A, B ⊆ X such that B is

m-compact and m-Cl(A) ⊆ B. Then m-Cl(A) is m-compact.

Proof. Suppose that m-Cl(A) ⊆ ⋃iÎI Gi for any m-open cover {Gi : i Î I}. Since B ⊆ m-Cl

(A) ∪ (m-Cl(A))c, we have B ⊆ m-Cl(A) ∪ m-Int(Ac). From the definition of “m-Int”, it

follows that
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B ⊆
⋃
i∈I

Gi ∪ m - Int
(
Ac) ⊆

⋃
i∈I

Gi ∪
⋃
j∈J

{
Uj : Uj ∈ M,Uj ⊆ Ac}.

Thus the compactness of B implies that

B ⊆
n⋃
i=1

Gi ∪
m⋃
j=1

{Uj : Uj ∈ M,Uj ⊆ Ac} ⊆
n⋃
i=1

Gi ∪ m - Int(Ac).

Therefore, we have B ⊆ ⋃n
i=1 Gi ∪ (m - Cl(A))c , which implies that

m − Cl(A) = B ∩ m - Cl(A) ⊆ ⋃n
i=1 Gi . Hence m-Cl(A) is m-compact. This completes

the proof.

Theorem 3.5. Let (X, D, Γ) be an abstract convex space and Z be a minimal space.

Suppose that s : Y ® D is a mapping, T Î ms-KKMC(X, Y, Z) is an m-compact map-

ping such that F : Y ⊸ Z is generalized s-KKM with respect to T. Then we have

m - Cl(T(Co�(s(Y)))) ∩ ⋂
y∈Y

m - Cl(F(y)) �= ∅.

Proof. Consider the multimap G : Y ⊸ m-Cl(T(CoΓ(s(Y)))) defined by

G(y) = m - Cl(m - Cl(T(Co�(s(Y)))) ∩ F(y))

for any y Î Y. It is easy to check that G is well defined. Since F is generalized s-KKM

with respect to T, for any A Î 〈Y〉, T(Γ(s(A))) ⊆ F(A). Also, T(Γ(s(A))) ⊆ m-Cl(T(CoΓ(s

(Y)))) for each A Î 〈Y〉. Hence T(Γ(s(A))) ⊆ m-Cl(m-Cl(T(CoΓ(s(Y)))) ∩ F(A)) = G(A)

and so G is generalized s-KKM with respect to T. Since T Î ms-KKMC(X, Y, Z), it fol-

lows that {G(y) = m-Cl(m-Cl(T(CoΓ(s(Y)))) ∩ F(Y)): y Î Y} has the finite intersection

property in m-Cl(T(CoΓ(s(Y)))), which is an m-compact subset of Z by Proposition 3.4.

Thus it follows from Lemma 2.9 that
⋂

y∈Y m - Cl(m - Cl(T(Co�(s(Y))) ∩ F(y)) �= ∅ ,
which, from Proposition 2.4, we have

⋂
y∈Y m - Cl(T(Co�(s(Y))) ∩ m - Cl(F(y)) �= ∅ .

Therefore, we have m - Cl(T(Co�(s(Y))) ∩
⋂

y∈Y m - Cl(F(y)) �= ∅ . This completes the

proof.

Theorem 3.6. Let (X, D, Γ) be an abstract convex space and Z be a minimal space.

Suppose that s : Y ® D is a mapping and T Î ms-KKMC(X, Y, Z) is m-compact. If a

multimap F : Y ⊸ Z satisfies the following conditions.

(1) F is minimal transfer closed valued,

(2) F is generalized s-KKM with respect to T.

Then m - Cl(T(Co�(s(Y))) ∩
⋂

y∈Y F(y) �= ∅ .

Proof. It follows from Theorem 3.5 and the part (2) of Theorem 2.6.

Corollary 3.7. Let (X, D, Γ) is an abstract convex space and Y is a minimal space.

Let T Î m-KKMC(X, Y) be m-compact. If a multimap F : D ⊸ Y satisfies the following

conditions.

(1) F is minimal transfer closed valued,

(2) F is generalized KKM with respect to T.
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Then m - Cl(T(Co�(D))) ∩ ⋂
x∈D F(x) �= ∅ .

Proof. All conditions of Theorem 3.6 are satisfied for D instead of Y and for Y

instead of Z, where s is the identity map on D. Therefore, one can deduce that

m - Cl(T(Co�(D))) ∩ ⋂
x∈D F(x) �= ∅ .

Remark 3.8. Note that

(1) Theorem 3.5 generalizes Theorem 4.3 in [23] in convex space, theorems 13 and

14 in [25] in L-convex spaces, theorems 3.2 and 3.3 in [26], Theorem 3.2 in [27] in

FC-spaces, Theorem 1 in [28] in G-convex spaces and Corollary 1.1 in [29] in

abstract convex minimal spaces.

(2) Theorem 3.6 generalizes Theorem 3.1 in [26] and [27], without the assumption

“compactly” in FC-spaces and Corollary 3.1 [29] in abstract convex minimal spaces.

(3) Corollary 3.7 generalizes Theorem 2.2 in [12] from convex spaces to abstract

convex spaces and also from the class KKM(X, Y) in convex spaces to the class m-

KKM(X, Y) in abstract convex spaces.

(4) The compactness condition of multimap T in Theorem 3.5 and Theorem 3.6

can be replaced by the coercivity condition (see [24]) in minimal spaces. However,

we use this condition in the following theorems.

Theorem 3.9. Let (X, D, Γ) be an abstract convex space and Y be a minimal space.

Let T Î m-KKMC(X, Y) be m-compact. If F, G, H : D ⊸ Y are three multimaps satisfy-

ing the following conditions.

(1) F is minimal transfer closed valued,

(2) F*(y) ⊆ G*(y) and H*(y) ⊆ T*(y) for any y Î Y,

(3) CoΓ(G*(y)) ⊆ H*(y) for any y Î Y.

Then m - Cl(T(Co�(D))) ∩ ⋂
x∈D F(x) �= ∅ .

Proof. We claim that G is generalized KKM with respect to T. To see this, suppose

that there exists A Î 〈D〉 such that T(Γ(A)) ⊈ ⋃xÎA G(x). Then there exist x̄ ∈ �(A)

and ȳ ∈ T(x̄) such that ȳ /∈ G(x) for all x Î A. Hence x ∈ G∗(ȳ) for all x Î A and so

A ⊆ G∗(ȳ) . From (3), we have x̄ ∈ �(A) ⊂ H∗(ȳ) and then the condition (2) implies

that x̄ ∈ T∗(ȳ) . Thus it follows that ȳ /∈ T(x̄) , which is a contradiction. Therefore, G is

generalized KKM with respect to T. Since G*(y) ⊆ F*(y) for all y Î Y, from Proposition

2.1, F is generalized KKM with respect to T. Now, all conditions of Corollary 3.7 hold

and hence m - Cl(T(Co�(D))) ∩ ⋂
x∈D F(x) �= ∅ . This completes the proof.

Remark 3.10. According to the Remark 3.8, Theorem 3.9 generalizes the main theo-

rem in [30] in FC-spaces, also it generalizes Theorem 2 in [31].

Theorem 3.11. Let (X, D, Γ) be an abstract convex space and Y be a minimal space.

Let T Î m-KKMC(X, Y) be m-compact. If F : D ⊸ Y and H, P : Y ⊸ D are three multi-

maps satisfying the following conditions.

(1) F is minimal transfer closed valued and D ≠ F-(y) for all y Î Y,

(2) H*(x) ⊆ F(x) for any x Î D,
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(3) CoΓ(H(y)) ⊆ P(y) for all y Î Y.

Then there exists (x̄, ȳ) ∈ D × Y such that ȳ ∈ T(x̄)and x̄ ∈ P(ȳ) .

Proof. By the condition (2), it is easy to see that F*(y) ⊆ (H*)*(y) for all y Î Y. Now,

suppose that the conclusion does not hold, that is T(x) ∩ P−(x) = ∅ for all x Î D.

Choose x Î P(y). Then y Î P-(x) and so y ∉ T(x), which gives x Î T*(y). Thus P(y) ⊂
T*(y) for all y Î Y. The condition (3) implies that CoΓ((H*)*(y)) ⊆ (P*)*(y) for all y Î Y.

Hence all conditions of Theorem 3.9 are satisfied for P* and H*, which implies that

m − Cl(T(�(s(Y)))) ∩ ⋂
x∈D F(x) �= ∅ and so there exists y0 Î m-Cl(T(CoΓ(D))) such

that y0 Î F(x) for all x Î D. This means that D = F-(y0), which contradicts the condi-

tion (1). Therefore, there exists (x̄, ȳ) ∈ D × Y such that ȳ ∈ T(x̄) and x̄ ∈ P(ȳ) . This

completes the proof.

Theorem 3.12. Let (X, D, Γ) be an abstract convex space and Y be a minimal space.

Let T Î m-KKMC(X, Y) be m-compact. If H, P, Q : Y ⊸ D are three multimaps satisfy-

ing the following conditions.

(1) Q- is minimal transfer open valued and Q(y) �= ∅ for all y Î Y,

(2) H*(x) ⊆ Q*(x) for all x Î D,

(3) CoΓ(H(y)) ⊆ P(y) for all y Î Y.

Then there exists (x̄, ȳ) ∈ D × Y such that ȳ ∈ T(x̄)and x̄ ∈ P(ȳ) .

Proof. The condition (1) and Theorem 2.6 imply that Q* is minimal transfer closed

valued. By the definition of Q*, (Q*)- = D\Q(y) and so D ≠ (Q*)-(y) for all y Î Y. By

applying Theorem 3.11 with Q* instead of F, there exists (x̄, ȳ) ∈ D × Y such that

ȳ ∈ T(x̄) and x̄ ∈ P(ȳ) . This completes the proof.

Remark 3.13. Theorem 3.12 generalizes Theorem 2.5 in [12] from convex spaces to

abstract convex spaces and from the class KKM(X, Y) in convex spaces to the class m-

KKM(X, Y) in abstract convex spaces.

Lemma 3.14. Let (X ⊇ D, Γ) be an abstract convex space and Y be a minimal space.

Let T Î m-KKMC(X, Y). If M is an abstract convex subset of X, then T/M Î m- KKMC

(M, Y).

Proof. Set D’ = D ∩ M and let Γ’: 〈D’〉 ⊸ M be the multimap defined by Γ’(A) = Γ(A)

for any A Î 〈D’〉. Consider a multimap F : M ⊸ Y defined by F(x) = m-Cl(Ax) for all x

Î M. Then F is generalized KKM with respect to T|M. Now, define the multimap G :

D ⊸ Y by

G(x) =
{
F(x), if x ∈ D′,
Y, if x ∈ D\ D′.

It is not hard to check that G is generalized KKM with respect to T. Since T Î m-

KKMC(X, Y), the family {G(x): x Î D} has the finite intersection property and so {F(x):

x Î D’} has the finite intersection property. Then T|M Î m-KKMC(M, Y). This com-

pletes the proof.

In the results on the KKM and coincidence type theorems mentioned above, it is

assumed that T Î ms-KKMC(X, Y, Z) or T Î m-KKMC(X, Y) is an m-compact
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multimap, but, when it is not m-compact, we can use the coercivity conditions instead

of the m-compactness condition of T as follows.

Proposition 3.15[14]. Let X and Y be two minimal spaces. Then the following state-

ments for a multimap F : X ⊸ Y are equivalent.

(1) F- : Y ⊸ X is minimal transfer open valued and F(x) �= ∅ for all x Î X.

(2) X = ⋃{m-Int (F-(y)): y Î Y}.

Definition 3.16[32]. Let (X,M) be a minimal space and Y be a nonempty subset of

X. The family M|Y = {U ∩ Y : U ∈ M} is called induced minimal structure by M on

Y. (Y,M|Y) is called minimal subspace of (X,M) . Also, for any subset A of X we

define m - IntY(A) = ∪{V : V ∈ M|Y and V ⊆ A}.

Lemma 3.17. Let (X,M) be a minimal space and A be a nonempty subset of X.

Then we have

m - Int(A)∩B ⊆ m - IntB(A ∩ B).

Proof. From Definition 3.16, we have

m - Int (A) ∩ B =
⋃ {

U : U ∈ M andU ⊆ A
} ∩ B

=
⋃ {

U ∩ B : U ∈ M andU ⊆ A
}

⊆
⋃ {

G : G ∈ M|B andG ⊆ A ∩ B
}

= m - IntB (A ∩ B) .

Theorem 3.18. Let (X ⊇ D, Γ) be an abstract convex space, Y be a minimal space

and T Î m-KKMC(X, Y). If H, P, Q: Y ⊸ D are three multimaps satisfying the following

conditions.

(1) Q- is minimal transfer open valued and Q(y) �= ∅ for all y Î Y,

(2) H*(x) ⊆ Q* (x) for all x Î D,

(3) CoΓ (H(y)) ⊆ P(y) for all y Î Y,

(4) for each m-compact subset C ⊆ D, m-Cl(T(C)) is m-compact in Y,

(5) there is an m-compact subset K ⊆ Y such that, for any A Î 〈D〉, there is an m-

compact abstract convex subset LA ⊆ D containing A such that

T(LA)\K ⊆ ∪x∈LAm - Int(Q−(x)).

Then there exists (x̄, ȳ) ∈ D × Y such that ȳ ∈ T(x̄) and x̄ ∈ P(ȳ) .

Proof. The condition (1) and Proposition 3.15 imply that Y = ⋃xÎD m-Int(Q- (x)) and

so we have

K =
⋃
x∈D

m - Int(Q−(x)) ∩ K ⊆
⋃
x∈D

m - Int(Q−(x)) =
⋃
x∈D

⋃
j∈Jx

Ux,j,

where Ux, j is m-open and Ux,j ⊆ Q-(x). Since K is an m-compact subset of Y,

K ⊆ ∪n
i=1Uxi,ji ⊆ ∪n

i=1 m - Int(Q−(xi))- for ji ∈ Jxi .

On the other hand, by the condition (5), there exists an m-compact abstract convex

subset LA of D containing A such that T(LA)\K ⊆ ∪x∈LAm - Int(Q−(x)) . Thus we have
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T(LA) ⊆
⋃
x∈LA

m - Int(Q−(x)) ∪ K =
⋃
x∈LA

m - Int(Q−(x))∪
n⋃
i=1

m − Int(Q−(xi)),

where xi Î A ⊆ LA. Then T(LA) ⊆ ∪x∈LAm - Int(Q−(x)) . By Lemma 3.17, it follows

that

T(LA) =
⋃
x∈LA

m - Int(Q−(x)) ∩ T(LA) ⊆ ⋃
x∈LA

m - IntT(LA)(Q−(x) ∩ T(LA)) ⊆ T(LA).

From the condition (4), it follows that m-Cl(T(LA)) is m-compact subset of Y. More-

over, since LA is an abstract convex subset of X, applying Lemma 3.14,

T|LA ∈ m - KKMC(LA,Y) .

Now, consider three multimaps P̄, Q̄, H̄ : T(LA) � LA defined by P̄(y) = P(y) ∩ LA ,

Q̄(y) = Q(y) ∩ LA and H̄(y) = H(y) ∩ LA for all y Î T(LA). Then T|LA , P̄ , Q̄ and H̄

satisfy in all conditions of Theorem 3.12 (notice Proposition 3.15) and hence there

exist ȳ ∈ T(LA) ⊆ Y and x̄ ∈ LA ⊆ D such that ȳ ∈ T|LA(x̄) = T(x̄) and

x̄ ∈ P̄(ȳ) ⊆ P(ȳ) . This completes the proof.

Corollary 3.19. Let (X ⊇ D, Γ) be an abstract convex space, Y be a minimal space

and T Î m-KKMC(X, Y). If P, Q : Y ⊸ D are two multimaps satisfying the following

conditions.

(1) Q- is minimal transfer open valued and Q(y) �= ∅ for all y Î Y,

(2) CoΓ(Q(y)) ⊆ P(y) for all y Î Y,

(3) for each m-compact subset C ⊆ D, m-Cl(T(C)) is m-compact in Y,

(4) there exists an m-compact subset K ⊆ Y such that, for any A Î 〈D〉, there exists

an m-compact abstract convex subset LA ⊆ D containing A satisfying

T(LA)\K ⊆ ∪x∈LAm - Int(Q−(x)) .

Then there exists (x̄, ȳ) ∈ D × Y such that ȳ ∈ T(x̄)and x̄ ∈ P(ȳ) .

Proof. Letting H* = Q* in Theorem 3.18, the conclusion follows.

Remark 3.20. Theorem 3.18 and Corollary 3.19 generalize Theorem 2.6 in [12] from

the class of convex spaces to the class of abstract convex spaces under the weaker

assumptions.

4 Applications to minimax inequalities
Fan’s minimax inequality [33] has played very important roles in the study of modern

nonlinear analysis and especially in mathematical economics. Moreover, some general

minimax theorems and extensions of these inequalities have been obtained for the

functions with KKM property under the various weaker conditions in many spaces

with the convex structure (see [10] and [34-39]).

In this section, we prove some results to obtain Ky Fan’s type minimax theorem as

follows.

Theorem 4.1. Let (X ⊇ D, Γ) be an abstract convex space, Y be a minimal space and

T : X ⊸ Y is a multimap and T Î m-KKMC(X, Y). If G, H : D ⊸ Y are two multimaps

satisfying the following conditions.
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(1) G*(y) ⊆ T*(y) for all y Î Y,

(2) CoΓ (H*(y)) ⊆ G* (y) for all y Î Y,

(3) H is minimal transfer closed valued,

(4) for any m-compact subset C ⊆ D, m-Cl(T(C)) is m-compact in Y,

(5) there exists an m-compact subset K ⊆ Y such that, for any A Î 〈D〉, there exists

an m-compact abstract convex subset LA ⊆ D containing A satisfying

T(LA) ∩ ⋂
x∈LA m - Cl(H(x)) ⊆ K .

Then
⋂

x∈D H(x) �= ∅ .

Proof. Suppose that
⋂

x∈D H(x) = ∅ . For all y Î Y, there exists x Î D such that y ∉
H(x) and so x Î H*(y). Thus H* is nonempty valued. Since H is minimal transfer

closed valued, from Lemma 2.6 and Proposition 2.1, it follows that Hc = (H*)- is mini-

mal transfer open valued and m-Cl(H(x)) = (m-Int((H*)-(x)))c for all x Î D. Hence,

from the condition (5), there exists an m-compact subset K ⊆ Y such that, for any A Î
〈D〉, there exists an m-compact abstract convex subset LA ⊆ D containing A such that

T(LA)\K ⊆ ∪x∈LA m - Int(H∗)−(x)) . Applying Corollary 3.19 for (G*, H*) instead of (P,

Q), there exists (x̄, ȳ) ∈ D × Y such that ȳ ∈ T(x̄) and x̄ ∈ G∗(ȳ) . Thus x̄ /∈ T∗(ȳ) and

x̄ ∈ G∗(ȳ) , which contradicts the condition (1). Therefore,
⋂

x∈D H(x) �= ∅ .
Corollary 4.2. Let (X ⊇ D, Γ) be an abstract convex space, Y be a minimal space and

T Î m-KKMC(X, Y). If H : D ⊸ Y is a multimap satisfying the following conditions.

(1) CoΓ (H*(y)) ⊆ T* (y) for all y Î Y,

(2) H is minimal transfer closed valued,

(3) for any m-compact subset C ⊆ D, m-Cl(T(C)) is m-compact in Y,

(4) there exists an m-compact subset K ⊆ Y such that, for any A Î 〈D〉, there exists

an m-compact abstract convex subset LA ⊆ D containing A

satisfyingT(LA) ∩ ⋂
x∈LA m - Cl(H(x)) ⊆ K .

Then
⋂

x∈D H(x) �= ∅ .

Proof. Letting G = T|D in Theorem 4.1, we can get the conclusion.

Lemma 4.3. Let (X, Γ) is an abstract convex space and Y be a nonempty set. If T, S :

X ⊸ Y are two multimaps, then the following statements are equivalent.

(1) CoΓ (T*(y)) ⊆ S* (y) for each y Î Y.

(2) For any A Î 〈X〉, S(Γ(A)) ⊆ T(A).

Proof. (1) ⇒ (2): Let A Î 〈X〉 and y Î S(Γ(A)). Then there exists x Î Γ(A) such that y

Î S(x). Hence, from the definition of S−, x ∈ �(A) ∩ S−(y) �= ∅ . So, it follows from

Proposition 2.1 that Γ(A) ⊈ S*(y). From (1), it follows that A ⊈ T*(y) and so

A ∩ T−(y) �= ∅ . Choose z Î A∩T-(y). Then y Î T(z) ⊆ T(A). This means that S(Γ(A)) ⊆
T(A) and so (1) ⇒ (2) is proved.

(2) ⇒ (1): Choose y Î Y such that ∪A∈〈T∗(y)〉�(A) = Co�(T∗(y)) � S∗(y) . Then there

exist A Î 〈T*(y)〉 and x Î Γ(A) such that x ∉ S*(y), which implies that y Î S(x) ⊆ S

(Γ(A)). On the other hand, A Î 〈T*(y)〉 implies that A ⊆ D \ T-(y) and so
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A ∩ T−(y) = ∅ . Thus it follows that y ∉ T (A) and hence S(Γ(A)) ⊈ T(A), which this

contradicts (2).

Remark 4.4. Note that

(1) If X = D, then, by Lemma 4.3, in the condition (2) of Theorem 4.1, we can put

G(Γ(A)) ⊆ H(A) for all A Î 〈D〉 and so T(Γ(A)) ⊆ H(A) for all A Î 〈D〉 instead of

the condition (1) in Corollary 4.2.

(2) Theorem 4.1 and Corollary 4.2 are generalizations of Theorem 3.3 and Corol-

lary 3.2 in [40] respectively.

Definition 4.5. Let (X ⊇ D, Γ) be an abstract convex space, Y be a nonempty set and

f be a real-valued bifunction defined on X × Y. Then f is said to be

(1) quasi-abstract convex in the first variable if, for all y Î Y and g Î ℝ, the set (x

Î X : f(x, y) <g} is abstract convex.
(2) quasi-abstract concave in the first variable if, for all y Î Y and g Î ℝ, the set (x

Î X : f(x, y) >g} is abstract convex.

Definition 4.6. Let X, Y be minimal spaces and f be a real-valued bifunction defined

on X × Y. Then f is said to be

(1) strongly path minimal transfer lower semi-continuous in the first variable

(shortly, spmt l.s.c.) if, for any (x, y) Î X × Y and ε > 0, there exists an m-open set

N(x) containing x in X and there exists y’ Î Y such that f(x, y) <f(x’, y’) + ε for any

x’ Î N(x).

(2) strongly path minimal transfer upper semi-continuous in the first variable

(shortly, spmt u.s.c.) if the function - f is l.s.c. in the first variable.

Theorem 4.7. Let (X ⊇ D, Γ) be an abstract convex space, Y be a minimal space and

T Î m-KKMC(X, Y). If f, g : D × Y ® ℝ are two functions and γ = inf(x,y)∈GT f (x, y)

satisfying the following conditions.

(1) for any m-compact subset C ⊆ D, m-Cl(T(C)) is m-compact in Y,

(2) f(x, y) ≤ g(x, y) for all (x, y) Î D × Y,

(3) f is quasi-abstract convex in the first variable,

(4) g is spmt u.s.c in the second variable,

(5) there exists an m-compact subset K ⊆ Y such that, for any A Î 〈D〉, there exists

an m-compact abstract convex subset LA ⊆ D containing A such that, for all

ȳ ∈ T(LA)\K , there exists x Î LA such that ȳ ∈ m - Int{y : g(x, y) < γ }. Then
inf

(x,y)∈GT

f (x, y) ≤ sup
y∈Y

inf
x∈D

g(x, y).

Proof. Consider the multimap H : D ⊸ Y defined by

H(x) = {y ∈ Y : g(x, y) ≥ γ }

for all x Î D. We claim that Co�(H∗(ȳ)) ⊆ T∗(ȳ) for all y Î Y. Suppose that this is

not the case, so there exists ȳ ∈ Y such that Co�(H∗(ȳ)) � T∗(ȳ) or

Je Cho et al. Journal of Inequalities and Applications 2011, 2011:126
http://www.journalofinequalitiesandapplications.com/content/2011/1/126

Page 11 of 14



x̄ /∈ X\T−(ȳ). . Thus there exist A ∈ 〈D\H−(ȳ)〉 and x̄ ∈ �(A) such that x̄ /∈ X\T−(ȳ).

Then ȳ ∈ T(x̄) , which implies that (x̄, ȳ) ∈ GT .

On the other hand, from A ⊆ D\H−(ȳ) , we have A ∩ H−(ȳ) = ∅ . It follows that

ȳ /∈ H(A) and hence g(x, ȳ) < γ , for all x Î A. By the condition (2), we have

f (x, ȳ) < γ for all x Î A. The condition (3) implies that f (x, ȳ) < γ for all x Î Γ(A).

Therefore, f (x̄, ȳ) < γ , which contradicts γ = inf(x,y)∈GT f (x, y) . Thus it follows that

CoΓ (H*(y)) ⊆ T*(y) for all y Î Y.

To prove that H is minimal transfer closed valued, suppose that (x, y) Î D × Y and y

∉ H(x) and hence g(x, y) <g. By the condition (4), setting ε = g - g(x, y), there exist x’ Î
D and an m-open set N(y) containing y such that

−g(x, y) < −g(x′, y′) + ε = −g(x′, y′) + γ − g(x, y)

for all y’ Î N(y). Thus g(x’, y’) <g for all y’ Î N(y) and so N(y) ∩ H(x′) = ∅ . It follows
that N(y) ⊆ (H(x’))c and so we have

y ∈ N(y) ⊆ m - Int((H(x′))c) = (m - Cl(H(x′)))c.

Therefore, y ∉ m-Cl(H(x’)). From the condition (5), it follows that

T(LA)\K ⊆ ∪x∈LAm - Int(Hc(x)) , which implies that T(LA)\K ⊆ (∩x∈LAm - Cl(Hc(x))

or T(LA) ∩ ∩x∈LAm - Cl(H(x)) ⊆ K . Thus the condition (5) is equivalent to the condi-

tion (4) in Corollary 4.2 for multimap H.

Now, applying Corollary 4.2, we have ∩
x∈D

H(x) �= ∅ . There exists y’ Î Y such that g(x,

y’) ≥ g for all x Î D and so sup
y∈Y

inf
x∈D

g(x, y) ≥ γ . This implies that

inf
(x,y)∈GT

f (x, y) ≤ sup
y∈Y

inf
x∈D

g(x, y).

Remark 4.8. Note that

(1) The conditions (2) and (3) in Theorem 4.7 are satisfied if we assume that f is g-

quasiconvex in the first variable, that is, for any y Î Y and A Î 〈D〉, we have

f (x, y) ≤ max
x∈A

g(x, y) for all x Î Γ(A).

(2) Theorem 4.7 is a generalization of Theorem 1 in [41], Theorem 8 in [39] and

Theorem 6.4 in [42].
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