A half-discrete Hilbert-type inequality with a homogeneous kernel and an extension

Bicheng Yang ${ }^{1 *}$ and Qiang Chen ${ }^{2}$

* Correspondence: bcyang@gdei. edu.cn
${ }^{1}$ Department of Mathematics, Guangdong University of Education Guangzhou, Guangdong 510303, P. R. China
Full list of author information is available at the end of the article

Abstract

Using the way of weight functions and the technique of real analysis, a half-discrete Hilbert-type inequality with a general homogeneous kernel is obtained, and a best extension with two interval variables is given. The equivalent forms, the operator expressions, the reverses and some particular cases are considered.
2000 Mathematics Subject Classification: 26D15; 47A07.
Keywords: Hilbert-type inequality, homogeneous kernel, weight function, equivalent form, reverse

1 Introduction

Assuming that $p>1, \frac{1}{p}+\frac{1}{q}=1, f(\geq 0) \in L^{p}\left(R_{+}\right), g(\geq 0) \in L^{q}\left(R_{+}\right)$, $\|f\|_{p}=\left\{\int_{0}^{\infty} f^{p}(x) \mathrm{d} x\right\}^{\frac{1}{p}}>0,\|g\|_{q}>0$, we have the following Hardy-Hilbert's integral inequality [1]:

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x) g(y)}{x+y} \mathrm{~d} x \mathrm{~d} y<\frac{\pi}{\sin (\pi / p)}\|f\|_{p}\|g\|_{q} \tag{1}
\end{equation*}
$$

where the constant factor $\frac{\pi}{\sin (\pi / p)}$ is the best possible. If $a_{m}, b_{n} \geq 0$, $b=\left\{b_{n}\right\}_{n=1}^{\infty} \in l^{q}, \quad b=\left\{b_{n}\right\}_{n=1}^{\infty} \in l^{q},\|a\|_{p}=\left\{\sum_{m=1}^{\infty} a_{m}^{p}\right\}^{\frac{1}{p}}>0,\|b\|_{q}>0$, then we still have the following discrete Hardy-Hilbert's inequality with the same best constant factor $\frac{\pi}{\sin (\pi / p)}$:

$$
\begin{equation*}
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_{m} b_{n}}{m+n}<\frac{\pi}{\sin (\pi / p)}\|a\|_{p}\|b\|_{q} . \tag{2}
\end{equation*}
$$

For $p=q=2$, the above two inequalities reduce to the famous Hilbert's inequalities. Inequalities (1) and (2) are important in analysis and its applications [2-4].

In 1998, by introducing an independent parameter $\lambda \in(0,1]$, Yang [5] gave an extension of (1) for $p=q=2$. Refinement and generalizing the results from [5], Yang [6] gave some best extensions of (1) and (2) as follows: If $\lambda_{1}, \lambda_{2} \in \mathbf{R}, \lambda_{1}+\lambda_{2}=\lambda, k_{\lambda}(x$,
$y)$ is a non-negative homogeneous function of degree $-\lambda$ satisfying for any $x, y, t>0, k_{\lambda}$
$(t x, \quad t y)=t^{-\lambda} \quad k_{\lambda} \quad(x, \quad y), \quad k\left(\lambda_{1}\right)=\int_{0}^{\infty} k_{\lambda}(t, 1) t^{\lambda_{1}-1} \mathrm{~d} t \in R_{+}, \quad \phi(x)=x^{p\left(1-\lambda_{1}\right)-1}$,
$f(\geq 0) \in L_{p, \phi}\left(R_{+}\right)=\left\{f \mid\|f\|_{p, \phi}:=\left\{\int_{0}^{\infty} \phi(x)|f(x)|^{p} \mathrm{~d} x\right\}^{\frac{1}{p}}<\infty\right\}$,
$f(\geq 0) \in L_{p, \phi}\left(R_{+}\right)=\left\{f \mid\|f\|_{p, \phi}:=\left\{\int_{0}^{\infty} \phi(x)|f(x)|^{p} \mathrm{~d} x\right\}^{\frac{1}{p}}<\infty\right\}, g(\geq 0) \in L_{q, y,},\|f\|_{p, \varphi}, \|$ $g \|_{q, y}>0$, then we have

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} k_{\lambda}(x, y) f(x) g(y) \mathrm{d} x \mathrm{~d} y<k\left(\lambda_{1}\right)| | f\left\|_{p, \phi}| | g\right\|_{q, \psi} \tag{3}
\end{equation*}
$$

where the constant factor $k\left(\lambda_{1}\right)$ is the best possible. Moreover, if $k_{\lambda}(x, y)$ is finite and $k_{\lambda}(x, y) x^{\lambda_{1}-1}\left(k_{\lambda}(x, y) y^{\lambda_{2}-1}\right)$ is decreasing with respect to $x>0(y>0)$, then for $a_{m}, b_{n} \geq$ 0, $a=\left\{a_{m}\right\}_{m=1}^{\infty} \in l_{p, \phi}=\left\{a \mid\|a\|_{p, \phi}:=\left\{\sum_{n=1}^{\infty} \phi(n)\left|a_{n}\right|^{p}\right\}^{\frac{1}{p}}<\infty\right\}, b=\left\{b_{n}\right\}_{n=1}^{\infty} \in l_{q, \psi},\|a\|$ ${ }_{p, \varphi},\|b\|_{q, \Psi}>0$, we have

$$
\begin{equation*}
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} k_{\lambda}(m, n) a_{m} b_{n}<k\left(\lambda_{1}\right)\|a\|_{p, \phi}\|b\|_{q, \psi} \tag{4}
\end{equation*}
$$

with the best constant factor $k\left(\lambda_{1}\right)$. Clearly, for $\lambda=1, k_{1}(x, y)=\frac{1}{x+y}, \lambda_{1}=\frac{1}{q}$, $\lambda_{2}=\frac{1}{p}$ (3) reduces to (1), and (4) reduces to (2). Some other results about Hilberttype inequalities are provided by [7-15].
On half-discrete Hilbert-type inequalities with the non-homogeneous kernels, Hardy et al. provided a few results in Theorem 351 of [1]. But they did not prove that the constant factors are the best possible. And, Yang [16] gave a result by introducing an interval variable and proved that the constant factor is the best possible. Recently, Yang [17] gave the following half-discrete Hilbert's inequality with the best constant factor $B\left(\lambda_{1}, \lambda_{2}\right)\left(\lambda, \lambda_{1}>0,0<\lambda_{2} \leq 1, \lambda_{1}+\lambda_{2}=\lambda\right)$:

$$
\begin{equation*}
\int_{0}^{\infty} f(x) \sum_{n=1}^{\infty} \frac{a_{n}}{(x+n)^{\lambda}} \mathrm{d} x<B\left(\lambda_{1}, \lambda_{2}\right)\|f\|_{p, \varphi}\|a\|_{q, \psi} \tag{5}
\end{equation*}
$$

In this article, using the way of weight functions and the technique of real analysis, a half-discrete Hilbert-type inequality with a general homogeneous kernel and a best constant factor is given as follows:

$$
\begin{equation*}
\int_{0}^{\infty} f(x) \sum_{n=1}^{\infty} k_{\lambda}(x, n) a_{n} \mathrm{~d} x<k\left(\lambda_{1}\right)\|f\|_{p, \varphi}\|a\|_{q, \psi} \tag{6}
\end{equation*}
$$

which is a generalization of (5). A best extension of (6) with two interval variables, some equivalent forms, the operator expressions, the reverses and some particular cases are considered.

2 Some lemmas

We set the following conditions:
Condition (i) $v(y)\left(y \in\left[n_{0}-1, \infty\right)\right)$ is strictly increasing with $v\left(n_{0}-1\right) \geq 0$ and for any fixed $x \in(b, c), f(x, y)$ is decreasing for $y \in\left(n_{0}-1, \infty\right)$ and strictly decreasing in an interval of $\left(n_{0}-1, \infty\right)$.
Condition (ii) $v(y)\left(y \in\left[n_{0}-\frac{1}{2}, \infty\right)\right)$ is strictly increasing with $v\left(n_{0}-\frac{1}{2}\right) \geq 0$ and for any fixed $x \in(b, c), f(x, y)$ is decreasing and strictly convex for $y \in\left(n_{0}-\frac{1}{2}, \infty\right)$.
Condition (iii) There exists a constant $\beta \geq 0$, such that $v(y)\left(y \in\left[n_{0}-\beta, \infty\right)\right)$ is strictly increasing with $v\left(n_{0}-\beta\right) \geq 0$, and for any fixed $x \in(b, c), f(x, y)$ is piecewise smooth satisfying

$$
R(x):=\int_{n_{0}-\beta}^{n_{0}} f(x, y) \mathrm{d} y-\frac{1}{2} f\left(x, n_{0}\right)-\int_{n_{0}}^{\infty} \rho(y) f_{y}^{\prime}(x, y) \mathrm{d} y>0,
$$

where $\rho(y)\left(=y-[y]-\frac{1}{2}\right)$ is Bernoulli function of the first order.
Lemma 1 If $\lambda_{1}, \lambda_{2} \in \mathbf{R}, \lambda_{1}+\lambda_{2}=\lambda, k_{\lambda}(x, y)$ is a non-negative finite homogeneous function of degree $-\lambda$ in $\mathrm{R}_{+}^{2}, u(x)(x \in(b, c),-\infty \leq b<c \leq \infty)$ and $v(y)\left(y \in\left[n_{0}, \infty\right), n_{0}\right.$ $\in \mathbf{N})$ are strictly increasing differential functions with $u\left(b^{+}\right)=0, v\left(n_{0}\right)>0, u\left(c^{-}\right)=v(\infty)$ $=\infty$, setting $K(x, y)=k_{\lambda}(u(x), v(y))$, then we define weight functions $\omega(n)$ and $\omega(x)$ as follows:

$$
\begin{align*}
& \omega(n):=[v(n)]^{\lambda_{2}} \int_{b}^{c} K(x, n)[u(x)]^{\lambda_{1}-1} u^{\prime}(x) \mathrm{d} x, n \geq n_{0}(n \in \mathrm{~N}), \tag{7}\\
& \varpi(x):=[u(x)]^{\lambda_{1}} \sum_{n=n_{0}}^{\infty} K(x, n)[v(n)]^{\lambda_{2}-1} v^{\prime}(n), x \in(b, c) . \tag{8}
\end{align*}
$$

It follows

$$
\begin{equation*}
\omega(n)=k\left(\lambda_{1}\right):=\int_{0}^{\infty} k_{\lambda}(t, 1) t^{\lambda_{1}-1} \mathrm{~d} t . \tag{9}
\end{equation*}
$$

Moreover, setting $f(x, y):=[u(x)]^{\lambda_{1}} K(x, y)[v(y)]^{\lambda_{2}-1} v^{\prime}(y)$, if $k\left(\lambda_{1}\right) \in R_{+}$and one of the above three conditions is fulfilled, then we still have

$$
\begin{equation*}
\nabla(x)<k\left(\lambda_{1}\right)(x \in(b, c)) . \tag{10}
\end{equation*}
$$

Proof. Setting $t=\frac{u(x)}{v(n)}$ in (7), by calculation, we have (9).
(i) If Condition (i) is fulfilled, then we have

$$
\begin{gathered}
\varpi(x)=\sum_{n=n_{0}}^{\infty} f(x, n)<[u(x)]^{\lambda_{1}} \int_{n_{0}-1}^{\infty} K(x, y)[v(y)]^{\lambda_{2}-1} v^{\prime}(y) \mathrm{d} y \\
t=u(x) / v(y) \int_{0}^{\frac{u(x)}{v\left(n_{0}-1\right)}} k_{\lambda}(t, 1) t^{\lambda_{1}-1} \mathrm{~d} t \leq k\left(\lambda_{1}\right) .
\end{gathered}
$$

(ii) If Condition (ii) is fulfilled, then by Hadamard's inequality [18], we have

$$
\begin{gathered}
\varpi(x)=\sum_{n=n_{0}}^{\infty} f(x, n)<\int_{n_{0}-\frac{1}{2}}^{\infty} f(x, y) \mathrm{d} y \\
\stackrel{\frac{u(x)}{v\left(n_{0}-\frac{1}{2}\right)}}{t=u(x) / v(y)} \int_{0}^{=} k_{\lambda}(t, 1) t^{\lambda_{1}-1} \mathrm{~d} t \leq k\left(\lambda_{1}\right) .
\end{gathered}
$$

(iii) If Condition (iii) is fulfilled, then by Euler-Maclaurin summation formula [6], we have

$$
\begin{aligned}
\varpi(x) & =\sum_{n=n_{0}}^{\infty} f(x, n) \\
& =\int_{n_{0}}^{\infty} f(x, y) \mathrm{d} y+\frac{1}{2} f\left(x, n_{0}\right)+\int_{n_{0}}^{\infty} \rho(y) f^{\prime}(x, y) \mathrm{d} y \\
& =\int_{n_{0}-\beta}^{\infty} f(x, y) \mathrm{d} y-R(x) \\
& \frac{u(x)}{v\left(n_{0}-\beta\right)} \\
& =\int_{0} k_{\lambda}(t, 1) t^{\lambda_{1}-1} \mathrm{~d} t-R(x) \\
& \leq k\left(\lambda_{1}\right)-R(x)<k\left(\lambda_{1}\right) .
\end{aligned}
$$

The lemma is proved.
Lemma 2 Let the assumptions of Lemma 1 be fulfilled and additionally, $p>0(p \neq 1)$, $\frac{1}{p}+\frac{1}{q}=1, a_{n} \geq 0, n \geq n_{0}(n \in \mathbf{N}), f(x)$ is a non-negative measurable function in (b, c). Then, (i) for $p>1$, we have the following inequalities:

$$
\begin{align*}
J_{1}: & =\left\{\sum_{n=n_{0}}^{\infty} \frac{v^{\prime}(n)}{[v(n)]^{1-p \lambda_{2}}}\left[\int_{d}^{c} K(x, n) f(x) \mathrm{d} x\right]^{p}\right\}^{\frac{1}{p}} \tag{11}\\
& \leq\left[k\left(\lambda_{1}\right)\right]^{\frac{1}{q}}\left\{\int_{d}^{c} \varpi(x) \frac{[u(x)]^{p\left(1-\lambda_{1}\right)-1}}{\left[u^{\prime}(x)\right]^{p-1}} f^{p}(x) \mathrm{d} x\right\}^{\frac{1}{p}},
\end{align*}
$$

$$
\begin{align*}
L_{1}: & =\left\{\int_{b}^{c} \frac{[\varpi(x)]^{1-q} u^{\prime}(x)}{[u(x)]^{1-q \lambda_{1}}}\left[\sum_{n=n_{0}}^{\infty} K(x, n) a_{n}\right]^{q} \mathrm{~d} x\right\}^{\frac{1}{q}} \tag{12}\\
& \leq\left\{k\left(\lambda_{1}\right) \sum_{n=n_{0}}^{\infty} \frac{[v(n)]^{q\left(1-\lambda_{2}\right)-1}}{\left[v^{\prime}(n)\right]^{q-1}} a_{n}^{q}\right\}^{\frac{1}{q}} ;
\end{align*}
$$

(ii) for $0<p<1$, we have the reverses of (11) and (12).

Proof (i) By Hölder's inequality with weight [18] and (9), it follows

$$
\begin{aligned}
& {\left[\int_{b}^{c} K(x, n) f(x) \mathrm{d} x\right]^{p}=}\left\{\int _ { b } ^ { c } K (x , n) \left[\frac{[u(x)]^{\left(1-\lambda_{1}\right) / q}}{[v(n)]^{\left(1-\lambda_{2}\right) / p}}\left[\frac{\left.v^{\prime}(n)\right]^{1 / p}}{\left[u^{\prime}(x)\right]^{1 / q}} f(x)\right]\right.\right. \\
& \times\left[\frac{[v(n)]^{\left(1-\lambda_{2}\right) / p}}{[u(x)]^{\left(1-\lambda_{1}\right) / q}\left[u^{\prime}(x)\right]^{1 / q}}\left[v^{\prime}(n)\right]^{1 / p}\right. \\
&d x\}^{p} \\
& \leq \int_{b}^{c} K(x, n) \frac{[u(x)]^{\left(1-\lambda_{1}\right)(p-1)} v^{\prime}(n)}{[v(n)]^{1-\lambda_{2}}\left[u^{\prime}(x)\right]^{p-1}} f^{p}(x) \mathrm{d} x \\
& \times\left\{\int_{b}^{c} K(x, n) \frac{[v(n)]^{\left(1-\lambda_{2}\right)(q-1)} u^{\prime}(x)}{[u(x)]^{1-\lambda_{1}}\left[\nu^{\prime}(n)\right]^{q-1}} \mathrm{~d} x\right\}^{p-1} \\
&=\left\{\frac{\omega(n)[v(n)]^{q\left(1-\lambda_{2}\right)-1}}{\left[v^{\prime}(n)\right]^{q-1}}\right\}^{p-1} \int_{b}^{c} K(x, n) \frac{\left.[u(x)]^{\left(1-\lambda_{1}\right)(p-1)}\right)}{[v(n)]^{1-\lambda_{2}}\left[(n) f u^{\prime}(x)\right]^{p-1}(x)} \mathrm{d} x \\
&= \frac{\left[k\left(\lambda_{1}\right)\right]^{p-1}}{\left.[v(n)]^{p-1}\right]^{p-1} v^{\prime}(n)} \int_{b}^{c} K(x, n) \frac{[u(x)]^{\left(1-\lambda_{1}\right)(p-1)} v^{\prime}(n)}{[v(n)]^{1-\lambda_{2}}\left[u^{\prime}(x)\right]^{p-1} f^{p}(x) \mathrm{d} x .}
\end{aligned}
$$

Then, by Lebesgue term-by-term integration theorem [19], we have

$$
\begin{aligned}
J_{1} & \leq\left[k\left(\lambda_{1}\right)\right]^{\frac{1}{q}}\left\{\sum_{n=n_{0}}^{\infty} \int_{b}^{c} K(x, n) \frac{[u(x)]^{\left(1-\lambda_{1}\right)(p-1)} v^{\prime}(n) f^{p}(x)}{[v(n)]^{1-\lambda_{2}}\left[u^{\prime}(x)\right]^{p-1}} \mathrm{~d} x\right\}^{\frac{1}{p}} \\
& =\left[k\left(\lambda_{1}\right)\right]^{\frac{1}{q}}\left\{\int_{b}^{c} \sum_{n=n_{0}}^{\infty} K(x, n) \frac{[u(x)]^{\left(1-\lambda_{1}\right)(p-1)} v^{\prime}(n) f^{p}(x)}{[v(n)]^{1-\lambda_{2}}\left[u^{\prime}(x)\right]^{p-1}} \mathrm{~d} x\right\}^{\frac{1}{p}} \\
& =\left[k\left(\lambda_{1}\right)\right]^{\frac{1}{q}}\left\{\int_{b}^{c} \varpi(x) \frac{[u(x)]^{p\left(1-\lambda_{1}\right)-1}}{\left[u^{\prime}(x)\right]^{p-1}} f^{p}(x) \mathrm{d} x\right\}^{\frac{1}{p}},
\end{aligned}
$$

and (11) follows.
Still by Hölder's inequality, we have

$$
\begin{aligned}
{\left[\sum_{n=n_{0}}^{\infty} K(x, n) a_{n}\right]^{q}=} & \left\{\sum_{n=n_{0}}^{\infty} K(x, n)\left[\frac{[u(x)]^{\left(1-\lambda_{1}\right) / q}}{[v(n)]^{\left(1-\lambda_{2}\right) / p}} \frac{\left[v^{\prime}(n)\right]^{1 / p}}{\left[u^{\prime}(x)\right]^{1 / q}}\right]\right. \\
& \left.\times\left[\frac{[v(n)]^{\left(1-\lambda_{2}\right) / p}}{[u(x)]^{\left[1-\lambda_{1}\right) / q}} \frac{\left[u^{\prime}(x)\right]^{1 / q}}{\left.\nu^{\prime}(n)\right]^{1 / p}} a_{n}\right]\right\}^{q} \\
\leq & \left\{\sum_{n=n_{0}}^{\infty} K(x, n) \frac{[u(x)]^{\left(1-\lambda_{1}\right)(p-1)}}{[v(n)]^{1-\lambda_{2}}} \frac{v^{\prime}(n)}{\left[u^{\prime}(x)\right]^{p-1}}\right\}^{q-1} \\
& \times \sum_{n=n_{0}}^{\infty} K(x, n) \frac{[v(n)]^{\left(1-\lambda_{2}\right)(q-1)}}{[u(x)]^{1-\lambda_{1}}} \frac{u^{\prime}(x)}{\left[v^{\prime}(n)\right]^{q-1}} a_{n}^{q} \\
= & \frac{[u(x)]^{1-q \lambda_{1}}}{[ซ(x)]^{1-q} u^{\prime}(x)} \sum_{n=n_{0}}^{\infty} K(x, n) \frac{u^{\prime}(x)}{[u(x)]^{1-\lambda_{1}}} \frac{[v(n)]^{(q-1)\left(1-\lambda_{2}\right)}}{\left[\nu^{\prime}(n)\right]^{q-1}} a_{n}^{q} .
\end{aligned}
$$

Then, by Lebesgue term-by-term integration theorem, we have

$$
\begin{aligned}
L_{1} & \leq\left\{\int_{b}^{c} \sum_{n=n_{0}}^{\infty} K(x, n) \frac{u^{\prime}(x)}{[u(x)]^{1-\lambda_{1}}} \frac{[v(n)]^{(q-1)\left(1-\lambda_{2}\right)}}{\left[v^{\prime}(n)\right]^{q-1}} a_{n}^{q} \mathrm{~d} x\right\}^{\frac{1}{q}} \\
& =\left\{\sum_{n=n_{0}}^{\infty}\left[[v(n)]^{\lambda_{2}} \int_{b}^{c} K(x, n) \frac{u^{\prime}(x) \mathrm{d} x}{[u(x)]^{1-\lambda_{1}}}\right] \frac{[v(n)]^{q\left(1-\lambda_{2}\right)-1}}{\left[v^{\prime}(n)\right]^{q-1}} a_{n}^{q}\right\}^{\frac{1}{q}} \\
& =\left\{\sum_{n=n_{0}}^{\infty} \omega(n) \frac{[v(n)]^{q\left(1-\lambda_{2}\right)-1}}{\left[v^{\prime}(n)\right]^{q-1}} a_{n}^{q}\right\}^{\frac{1}{q}},
\end{aligned}
$$

and then in view of (9), inequality (12) follows.
(ii) By the reverse Hölder's inequality [18] and in the same way, for $q<0$, we have the reverses of (11) and (12).

3 Main results

We set $\Phi(x):=\frac{[u(x)]^{p\left(1-\lambda_{1}\right)-1}}{\left[u^{\prime}(x)\right]^{p-1}}(x \in(b, c)), \quad \Psi(n):=\frac{[v(n)]^{q\left(1-\lambda_{2}\right)-1}}{\left[v^{\prime}(n)\right]^{q-1}}\left(n \geq n_{0}, n \in \mathbf{N}\right)$, wherefrom $[\Phi(x)]^{1-q}=\frac{u^{\prime}(x)}{[u(x)]^{1-q \lambda_{1}}},[\Psi(n)]^{1-p}=\frac{v^{\prime}(n)}{[v(n)]^{1-p \lambda_{2}}}$.
Theorem 1 Suppose that $\lambda_{1}, \lambda_{2} \in \mathbf{R}, \lambda_{1}+\lambda_{2}=\lambda, k_{\lambda}(x, y)$ is a non-negative finite homogeneous function of degree $-\lambda$, in $\mathrm{R}_{+}^{2} u(x)(x \in(b, c),-\infty \leq b<c \leq \infty)$ and $v(y)$ $\left(y \in\left[n_{0}, \infty\right), n_{0} \in \mathbf{N}\right.$ are strictly increasing differential functions with $u\left(b^{+}\right)=0, v\left(n_{0}\right)$ $>0, u\left(c^{-}\right)=v(\infty)=\infty, \varpi(x)<k\left(\lambda_{1}\right) \in R_{+}(x \in(b, c))$. If $p>1, \frac{1}{p}+\frac{1}{q}=1, f(x), a_{n} \geq 0, f$ $L L_{p \Phi}(b, c), a=\left\{a_{n}\right\}_{n=n_{0}}^{\infty} \in l_{q, \Psi},\|f\|_{p, \Phi}>0$ and $\|a\|_{q, \Psi}>0$, then we have the following equivalent inequalities:

$$
\begin{align*}
I: & =\sum_{n=n_{0}}^{\infty} a_{n} \int_{b}^{c} K(x, n) f(x) \mathrm{d} x=\int_{b}^{c} f(x) \sum_{n=n_{0}}^{\infty} K(x, n) a_{n} \mathrm{~d} x \tag{13}\\
& <k\left(\lambda_{1}\right)\|f\|_{p, \Phi}\|a\|_{q, \Psi}, \\
J & :=\left\{\sum_{n=n_{0}}^{\infty}[\Psi(n)]^{1-p}\left[\int_{b}^{c} K(x, n) f(x) \mathrm{d} x\right]^{p}\right\}^{\frac{1}{p}}<k\left(\lambda_{1}\right)\|f\|_{p, \Phi}, \tag{14}\\
L & :=\left\{\int_{b}^{c}[\Phi(x)]^{1-q}\left[\sum_{n=n_{0}}^{\infty} K(x, n) a_{n}\right]^{q} \mathrm{~d} x\right\}^{\frac{1}{q}}<k\left(\lambda_{1}\right)\|a\|_{q, \Psi} . \tag{15}
\end{align*}
$$

Moreover, if $\frac{v^{\prime}(y)}{v(y)}\left(y \geq n_{0}\right)$ is decreasing and there exist constants $\delta<\lambda_{1}$ and $M>0$, such that $k_{\lambda}(t, 1) \leq \frac{M}{t^{\delta}}\left(t \in\left(0, \frac{1}{v\left(n_{0}\right)}\right]\right)$, then the constant factor $k\left(\lambda_{1}\right)$ in the above inequalities is the best possible.

Proof By Lebesgue term-by-term integration theorem, there are two expressions for I in (13). In view of (11), for $\varpi(x)<k\left(\lambda_{1}\right) \in R_{+}$, we have (14). By Hölder's inequality, we have

$$
\begin{equation*}
I=\sum_{n=n_{0}}^{\infty}\left[\Psi^{\frac{-1}{q}}(n) \int_{b}^{c} K(x, n) f(x) \mathrm{d} x\right]\left[\Psi^{\frac{1}{q}}(n) a_{n}\right] \leq J\|a\|_{q, \Psi} . \tag{16}
\end{equation*}
$$

Then, by (14), we have (13). On the other hand, assuming that (13) is valid, setting

$$
a_{n}:=[\Psi(n)]^{1-p}\left[\int_{b}^{c} K(x, n) f(x) \mathrm{d} x\right]^{p-1}, n \geq n_{0}
$$

then $J^{p-1}=\|a\|_{q, \Psi}$. By (11), we find $J<\infty$. If $J=0$, then (14) is naturally valid; if J >0, then by (13), we have

$$
\|a\|_{q, \Psi}^{q}=J^{p}=I<k\left(\lambda_{1}\right)\|f\|_{p, \Phi}\|a\|_{q, \Psi},\|a\|_{q, \Psi}^{q-1}=J<k\left(\lambda_{1}\right)\|f\|_{p, \Phi}
$$

and we have (14), which is equivalent to (13).
In view of (12), for $[\varpi(x)]^{1-q}>\left[k\left(\lambda_{1}\right)\right]^{1-q}$, we have (15). By Hölder's in equality, we find

$$
\begin{equation*}
I=\int_{b}^{c}\left[\Phi^{\frac{1}{p}}(x) f(x)\right]\left[\Phi^{\frac{-1}{p}}(x) \sum_{n=n_{0}}^{\infty} K(x, n) a_{n}\right] \mathrm{d} x \leq\|f\|_{p, \Phi} L . \tag{17}
\end{equation*}
$$

Then, by (15), we have (13). On the other hand, assuming that (13) is valid, setting

$$
f(x):=[\Phi(x)]^{1-q}\left[\sum_{n=n_{0}}^{\infty} K(x, n) a_{n}\right]^{q-1}, x \in(b, c)
$$

then $L^{q}{ }_{-1}=\|f\|_{p \Phi}$. By (12), we find $L<\infty$. If $L=0$, then (15) is naturally valid; if L >0, then by (13), we have

$$
\|f\|_{p, \Phi}^{p}=L^{q}=I<k\left(\lambda_{1}\right)\|f\|_{p, \Phi}\|a\|_{q, \Psi},\|f\|_{p, \Phi}^{p-1}=L<k\left(\lambda_{1}\right)\|a\|_{q, \Psi},
$$

and we have (15) which is equivalent to (13).
Hence, inequalities (13), (14) and (15) are equivalent.
There exists an unified constant $d \in(b, c)$, satisfying $u(d)=1$. For $0<\varepsilon<p\left(\lambda_{1}-\delta\right)$, setting $\tilde{f}(x)=0, x \in(b, d) ; \tilde{f}(x)=[u(x)]^{\lambda_{1}-\frac{\varepsilon}{p}-1} u^{\prime}(x), x \in \quad(d, c)$, and $\tilde{a}_{n}=[v(n)]^{\lambda_{2}-\frac{\varepsilon}{q}-1} v^{\prime}(n), n \geq n_{0}$, if there exists a positive number $k\left(\leq k\left(\lambda_{1}\right)\right)$, such that (13) is valid as we replace $k\left(\lambda_{1}\right)$ by k, then in particular, we find

$$
\begin{align*}
\tilde{I}: & =\sum_{n=n_{0}}^{\infty} \int_{b}^{c} K(x, n) \tilde{a}_{n} \tilde{f}(x) \mathrm{d} x<k| | \tilde{f}\left\|_{p, \phi} \phi \mid \tilde{a}\right\|_{q, \psi} \\
& =k\left\{\int_{d}^{c} \frac{u^{\prime}(x)}{[u(x)]^{\varepsilon+1}} \mathrm{~d} x\right\}^{\frac{1}{p}}\left\{\frac{v^{\prime}\left(n_{0}\right)}{\left[v\left(n_{0}\right)\right]^{\varepsilon+1}}+\sum_{n=n_{0}+1}^{\infty} \frac{v^{\prime}(n)}{v v(n)]^{\varepsilon+1}}\right\}^{\frac{1}{q}} \tag{18}\\
& \left.<k\left(\frac{1}{\varepsilon}\right)^{\frac{1}{p}}\left\{\frac{v^{\prime}\left(n_{0}\right)}{\left[v\left(n_{0}\right)\right]^{\varepsilon+1}}+\int_{n_{0}}^{\infty}[v(y)]^{-\varepsilon-1} v^{\prime}(y) \mathrm{d}\right\rangle\right\}^{\frac{1}{q}} \\
& =\frac{k}{\varepsilon}\left\{\varepsilon \frac{v^{\prime}\left(n_{0}\right)}{\left[v\left(n_{0}\right)\right]^{\varepsilon+1}}+\left[v\left(n_{0}\right)\right]^{-\varepsilon}\right\}^{\frac{1}{q}}
\end{align*}
$$

$$
\begin{align*}
& \tilde{I}=\sum_{n=n_{0}}^{\infty}[v(n)]^{\lambda_{2}-\frac{\varepsilon}{q}-1} v^{\prime}(n) \int_{d}^{c} K(x, n)[u(x)]^{\lambda_{1}-\frac{\varepsilon}{p}-1} u^{\prime}(x) \mathrm{d} x \\
& t=u(x) / v(n) \\
& \sum_{n=n_{0}}^{\infty}[v(n)]^{-\varepsilon-1} v^{\prime}(n) \int_{1 / v(n)}^{\infty} k_{\lambda}(t, 1) t^{\lambda_{1}-\frac{\varepsilon}{p}-1} \mathrm{~d} t \tag{19}\\
&=k\left(\lambda_{1}-\frac{\varepsilon}{p}\right) \sum_{n=n_{0}}^{\infty}[v(n)]^{-\varepsilon-1} v^{\prime}(n)-A(\varepsilon) \\
&>k\left(\lambda_{1}-\frac{\varepsilon}{p}\right) \int_{n_{0}}^{\infty}[v(y)]^{-\varepsilon-1} v^{\prime}(y) \mathrm{d} y-A(\varepsilon) \\
&=\frac{1}{\varepsilon} k\left(\lambda_{1}-\frac{\varepsilon}{p}\right)\left[v\left(n_{0}\right)\right]^{-\varepsilon}-A(\varepsilon), \\
& A(\varepsilon):=\sum_{n=n_{0}}^{\infty}[v(n)]^{-\varepsilon-1} v^{\prime}(n) \int_{0}^{1 / v(n)} k_{\lambda}(t, 1) t^{\lambda_{1}-\frac{\varepsilon}{p}-1} \mathrm{~d} t .
\end{align*}
$$

For $k_{\lambda}(t, 1) \leq M\left(\frac{1}{t^{\delta}}\right)\left(\delta<\lambda_{1} ; t \in\left(0,1 / v\left(n_{0}\right)\right]\right)$, we find

$$
\begin{aligned}
0<A(\varepsilon) & \leq M \sum_{n=n_{0}}^{\infty}[v(n)]^{-\varepsilon-1} v^{\prime}(n) \int_{0}^{1 / v(n)} t^{\lambda_{1}-\delta-\frac{\varepsilon}{p}-1} \mathrm{~d} t \\
& =\frac{M}{\lambda_{1}-\delta-\frac{\varepsilon}{p}} \sum_{n=n_{0}}^{\infty}[v(n)]^{-\lambda_{1}+\delta-\frac{\varepsilon}{q}-1} v^{\prime}(n) \\
& =\frac{M}{\lambda_{1}-\delta-\frac{\varepsilon}{p}}\left[\frac{v^{\prime}\left(n_{0}\right)}{\left[v\left(n_{0}\right)\right]^{\lambda_{1}-\delta+\frac{\varepsilon}{q}+1}}+\sum_{n=n_{0}+1}^{\infty} \frac{v^{\prime}(n)}{[v(n)]^{\lambda_{1}-\delta+\frac{\varepsilon}{q}+1}}\right] \\
& \leq \frac{M}{\lambda_{1}-\delta-\frac{\varepsilon}{p}}\left[\frac{v^{\prime}\left(n_{0}\right)}{\left[v\left(n_{0}\right)\right]^{\lambda_{1}-\delta+\frac{\varepsilon}{q}+1}}+\int_{n_{0}}^{\infty} \frac{v^{\prime}(y)}{[v(y)]^{\lambda_{1}-\delta+\frac{\varepsilon}{q}+1}} \mathrm{~d} v\right] \\
& =\frac{M}{\lambda_{1}-\delta-\frac{\varepsilon}{p}}\left[\frac{v^{\prime}\left(n_{0}\right)}{\left[v\left(n_{0}\right)\right]^{\lambda_{1}-\delta+\frac{\varepsilon}{q}+1}}+\frac{\left[v\left(n_{0}\right)\right]^{-\lambda_{1}+\delta-\frac{\varepsilon}{q}}}{\lambda_{1}-\delta+\frac{\varepsilon}{q}}\right]<\infty,
\end{aligned}
$$

namely $A(\varepsilon)=O(1)\left(\varepsilon \rightarrow 0^{+}\right)$. Hence, by (18) and (19), it follows

$$
\begin{equation*}
k\left(\lambda_{1}-\frac{\varepsilon}{p}\right)\left[v\left(n_{0}\right)\right]^{-\varepsilon}-\varepsilon O(1)<k\left\{\varepsilon \frac{v^{\prime}\left(n_{0}\right)}{\left[v\left(n_{0}\right)\right]^{\varepsilon+1}}+\left[v\left(n_{0}\right)\right]^{-\varepsilon}\right\}^{\frac{1}{q}} \tag{20}
\end{equation*}
$$

By Fatou Lemma [19], we have $k\left(\lambda_{1}\right) \leq \underline{\lim }_{\varepsilon \rightarrow 0^{+}} k\left(\lambda_{1}-\frac{\varepsilon}{p}\right)$, then by (20), it follows $k\left(\lambda_{1}\right) \leq k\left(\varepsilon \rightarrow 0^{+}\right)$. Hence, $k=k\left(\lambda_{1}\right)$ is the best value of (12).
By the equivalence, the constant factor $k\left(\lambda_{1}\right)$ in (14) and (15) is the best possible, otherwise we can imply a contradiction by (16) and (17) that the constant factor in (13) is not the best possible.

Remark 1 (i) Define a half-discrete Hilbert's operator $T: L_{p, \Phi}(b, c) \rightarrow l_{p, \Psi^{1-p}}$ as: for f $\in L_{p \Phi}(b, c)$, we define $T f \in l_{p, \Psi^{1-p}}$, satisfying

$$
T f(n)=\int_{b}^{c} K(x, n) f(x) d x, \quad n \geq n_{0}
$$

Then, by (14), it follows $\|T f\|_{p . \Psi^{1-p}} \leq k\left(\lambda_{1}\right)\|f\|_{p, \Phi}$ and then T is a bounded operator with $\|T\| \leq k\left(\lambda_{1}\right)$. Since, by Theorem 1 , the constant factor in (14) is the best possible, we have \| $T \|=k\left(\lambda_{1}\right)$.
(ii) Define a half-discrete Hilbert's operator $\tilde{T}: l_{q, \Psi} \rightarrow L_{q, \Phi^{1-q}}(b, c)$ as: for $a \in l_{q \Psi}$, we define $\tilde{T} a \in L_{q, \Phi^{1-q}}(b, c)$, satisfying

$$
\tilde{T} a(x)=\sum_{n=n_{0}}^{\infty} K(x, n) a_{n}, x \in(b, c)
$$

Then, by (15), it follows $\|\tilde{T} a\|_{q, \Phi^{1-q}} \leq k\left(\lambda_{1}\right)\|a\|_{q, \Psi}$ and then \tilde{T} is a bounded operator with $\|\tilde{T}\| \leq k\left(\lambda_{1}\right)$. Since, by Theorem 1 , the constant factor in (15) is the best possible, we have $\|\tilde{T}\|=k\left(\lambda_{1}\right)$.

In the following theorem, for $0<p<1$, or $p<0$, we still use the formal symbols of $\|f\|_{p, \tilde{\Phi}}$ and $\|a\|_{q, \Psi}$ and so on.
Theorem 2 Suppose that $\lambda_{1}, \lambda_{2} \in \mathbf{R}, \lambda_{1}+\lambda_{2}=\lambda, k_{\lambda}(x, y)$ is a non-negative finite homogeneous function of degree $-\lambda$ in $\mathbf{R}_{+}^{2}, u(x)(x \in(b, c),-\infty \leq b<c \leq \infty)$ and $v(y)\left(y \in\left[n_{0}, \infty\right)\right.$, $\left.n_{0} \in \mathbf{N}\right)$ are strictly increasing differential functions with $u\left(b^{+}\right)=0, v\left(n_{0}\right)>0, u\left(c^{-}\right)=v(\infty)=$ $\infty, k\left(\lambda_{1}\right) \in R_{+}, \theta_{\lambda}(x) \in(0,1), k\left(\lambda_{1}\right)\left(1-\theta_{\lambda}(x)\right)<\varpi(x)<k\left(\lambda_{1}\right)(x \in(b, c))$. If $0<p<1$, $\frac{1}{p}+\frac{1}{q}=1, f(x), a_{n} \geq 0, \tilde{\Phi}(x):=\left(1-\theta_{\lambda}(x)\right) \Phi(x)(x \in(b, c)), 0<\|f\|_{q, \tilde{\Phi}}<\infty$ and $0<\|$ $a \|_{q, \Psi}<\infty$. Then, we have the following equivalent inequalities:

$$
\begin{align*}
I & :=\sum_{n=n_{0}}^{\infty} \int_{b}^{c} K(x, n) a_{n} f(x) \mathrm{d} x=\int_{b}^{c} \sum_{n=n_{0}}^{\infty} K(x, n) a_{n} f(x) \mathrm{d} x \tag{21}\\
& >k\left(\lambda_{1}\right)\|f\|_{p, \tilde{\Phi}}\|a\|_{q, \Psi} \\
J & :=\left\{\sum_{n=n_{0}}^{\infty}[\Psi(n)]^{1-p}\left[\int_{b}^{c} K(x, n) f(x) \mathrm{d} x\right]^{p}\right\}^{\frac{1}{p}}>k\left(\lambda_{1}\right)\|f\|_{p, \tilde{\Phi},} \tag{22}\\
\tilde{L} & :=\left\{\int_{b}^{c}[\tilde{\Phi}(x)]^{1-q}\left[\sum_{n=n_{0}}^{\infty} K(x, n) a_{n}\right]^{q} \mathrm{~d} x\right\}^{\frac{1}{q}}>k\left(\lambda_{1}\right)\|a\|_{q, \Psi} . \tag{23}
\end{align*}
$$

Moreover, if $\frac{v^{\prime}(y)}{v(y)}\left(y \geq n_{0}\right)$ is decreasing and there exist constants $\delta, \delta_{0}>0$, such that $\theta_{\lambda}(x)=O\left(\frac{1}{[u(x)]^{5}}\right)(x \in(d, c))$ and $k\left(\lambda_{1}-\delta_{0}\right) \in \mathbf{R}_{+}$, then the constant factor $k\left(\lambda_{1}\right)$ in the above inequalities is the best possible.

Proof. In view of (9) and the reverse of (11), for $\Phi(x)>k\left(\lambda_{1}\right)\left(1-\theta_{\lambda}(x)\right)$, we have (22). By the reverse Hölder's inequality, we have

$$
\begin{equation*}
I=\sum_{n=n_{0}}^{\infty}\left[\Psi^{\frac{-1}{q}}(n) \int_{b}^{c} K(x, n) f(x) \mathrm{d} x\right]\left[\Psi^{\frac{1}{q}}(n) a_{n}\right] \geq J\|a\|_{q, \Psi} \tag{24}
\end{equation*}
$$

Then, by (22), we have (21). On the other hand, assuming that (21) is valid, setting a_{n} as Theorem 1, then $J^{p-1}=\|a\|_{q \Psi}$. By the reverse of (11), we find $J>0$. If $J=\infty$, then (24) is naturally valid; if $J<\infty$, then by (21), we have

$$
\|a\|_{q, \Psi}^{q}=J^{p}=I>k\left(\lambda_{1}\right)\|f\|_{p, \tilde{\Phi}}\|a\|_{q, \Psi},\|a\|_{q, \Psi}^{q-1}=J>k\left(\lambda_{1}\right)\|f\|_{p, \tilde{\Phi}^{\prime}}
$$

and we have (22) which is equivalent to (21).
In view of (9) and the reverse of (12), for $[\varpi(x)]^{1-q}>\left[k\left(\lambda_{1}\right)\left(1-\theta_{\lambda}(x)\right)\right]^{1-q}(q<0)$, we have (23). By the reverse Hölder's inequality, we have

$$
\begin{equation*}
I=\int_{b}^{c}\left[\tilde{\Phi}^{\frac{1}{p}}(x) f(x)\right]\left[\tilde{\Phi}^{\frac{-1}{p}}(x) \sum_{n=n_{0}}^{\infty} K(x, n) a_{n}\right] \mathrm{d} x \geq\|f\|_{p, \tilde{\Phi}} \tilde{L} \tag{25}
\end{equation*}
$$

Then, by (23), we have (21). On the other hand, assuming that (21) is valid, setting

$$
f(x):=[\tilde{\Phi}(x)]^{1-q}\left[\sum_{n=n_{0}}^{\infty} K(x, n) a_{n}\right]^{q-1}, \quad x \in(b, c)
$$

then $\tilde{L}^{q-1}=\|f\|_{p, \tilde{\Phi}}$. By the reverse of (12), we find $\tilde{L}>0$. If $\tilde{L}=\infty$, then (23) is naturally valid; if $\tilde{L}<\infty$, then by (21), we have

$$
\|f\|_{p, \tilde{\Phi}}^{p}=\tilde{L}^{q}=I>k\left(\lambda_{1}\right)\|f\|_{p, \tilde{\Phi}}\|a\|_{q, \Psi},\|f\|_{p, \tilde{\Phi}}^{p-1}=\tilde{L}>k\left(\lambda_{1}\right)\|a\|_{q, \Psi},
$$

and we have (23) which is equivalent to (21).
Hence, inequalities (21), (22) and (23) are equivalent.
For $0<\varepsilon<p \delta_{0}$, setting $\tilde{f}(x)$ and \tilde{a}_{n} as Theorem 1, if there exists a positive number $k\left(\geq k\left(\lambda_{1}\right)\right)$, such that (21) is still valid as we replace $k\left(\lambda_{1}\right)$ by k, then in particular, for q <0, in view of (9) and the conditions, we have

$$
\begin{align*}
\tilde{I} & :=\int_{b}^{c} \sum_{n=n_{0}}^{\infty} K(x, n) \tilde{a}_{n} \tilde{f}(x) \mathrm{d} x>k \mid \tilde{f}\left\|_{p, \tilde{\Phi}}\right\| \tilde{a} \|_{q, \Psi} \\
& =k\left\{\int_{d}^{c}\left(1-O\left(\frac{1}{[u(x)]^{\delta}}\right)\right) \frac{u^{\prime}(x) \mathrm{d} x}{[u(x)]^{\varepsilon+1}}\right\}^{\frac{1}{p}}\left\{\sum_{n=n_{0}}^{\infty} \frac{v^{\prime}(n)}{[v(n)]^{\varepsilon+1}}\right\}^{\frac{1}{q}} \\
& =k\left\{\frac{1}{\varepsilon}-O(1)\right\}^{\frac{1}{p}}\left\{\frac{v^{\prime}\left(n_{0}\right)}{\left[v\left(n_{0}\right)\right]^{\varepsilon+1}}+\sum_{n=n_{0}+1}^{\infty} \frac{v^{\prime}(n)}{[v(n)]^{\varepsilon+1}}\right\}^{\frac{1}{q}} \tag{26}\\
& >k\left\{\frac{1}{\varepsilon}-O(1)\right\}^{\frac{1}{p}}\left\{\frac{v^{\prime}\left(n_{0}\right)}{\left[v\left(n_{0}\right)\right]^{\varepsilon+1}}+\int_{n_{0}}^{\infty} \frac{v^{\prime}(y)}{[v(y)]^{+1}} \mathrm{~d} y\right\}^{\frac{1}{q}} \\
& =\frac{k}{\varepsilon}\{1-\varepsilon O(1)\}^{\frac{1}{p}}\left\{\frac{v^{\prime}\left(n_{0}\right)}{\left[v\left(n_{0}\right)\right]^{\varepsilon+1}}+\left[v\left(n_{0}\right)\right]^{-\varepsilon}\right\}^{\frac{1}{q}},
\end{align*}
$$

$$
\begin{align*}
& \tilde{I}= \sum_{n=n_{0}}^{\infty}[v(n)]^{\lambda_{2}-\frac{\varepsilon}{q}-1} v^{\prime}(n) \int_{d}^{c} K(x, n)[u(x)]^{\lambda_{1}-\frac{\varepsilon}{p}-1} u^{\prime}(x) \mathrm{d} x \\
& \leq \sum_{n=n_{0}}^{\infty}[v(n)]^{\lambda_{2}-\frac{\varepsilon}{q}-1} v^{\prime}(n) \int_{b}^{c} K(x, n)[u(x)]^{\lambda_{1}-\frac{\varepsilon}{p}-1} u^{\prime}(x) \mathrm{d} x \\
& t=u(x) / v(n) \tag{27}\\
&=\sum_{n=n_{0}}^{\infty}[v(n)]^{-\varepsilon-1} v^{\prime}(n) \int_{0}^{\infty} k_{\lambda}(t, 1) t^{\left(\lambda_{1}-\frac{\varepsilon}{p}\right)-1} \mathrm{~d} t \\
& \leq k\left(\lambda_{1}-\frac{\varepsilon}{p}\right)\left[\frac{v^{\prime}\left(n_{0}\right)}{\left[v\left(n_{0}\right)\right]^{\varepsilon+1}}+\int_{n_{0}}^{\infty}[v(y)]^{-\varepsilon-1} v^{\prime}(y) \mathrm{d} y\right] \\
&= \frac{1}{\varepsilon} k\left(\lambda_{1}-\frac{\varepsilon}{p}\right)\left[\varepsilon \frac{v^{\prime}\left(n_{0}\right)}{\left[v\left(n_{0}\right)\right]^{\varepsilon+1}}+\left[v\left(n_{0}\right)\right]^{-\varepsilon}\right] .
\end{align*}
$$

Since we have $k_{\lambda}(t, 1) t^{\lambda_{1}-\frac{\varepsilon}{p}-1} \leq k_{\lambda}(t, 1) t^{\lambda_{1}-\delta_{0}-1, t \in(0,1] ~ a n d ~}$

$$
\int_{0}^{1} k_{\lambda}(t, 1) t^{\lambda_{1}-\delta_{0}-1} \mathrm{~d} t \leq k\left(\lambda_{1}-\delta_{0}\right)<\infty
$$

then by Lebesgue control convergence theorem [19], it follows

$$
\begin{aligned}
k\left(\lambda_{1}-\frac{\varepsilon}{p}\right) & \leq \int_{1}^{\infty} k_{\lambda}(t, 1) t^{\lambda_{1}-1} \mathrm{~d} t+\int_{0}^{1} k_{\lambda}(t, 1) t^{\lambda_{1}-\frac{\varepsilon}{p}-1} \mathrm{~d} t \\
& =k\left(\lambda_{1}\right)+o(1)\left(\varepsilon \rightarrow 0^{+}\right) .
\end{aligned}
$$

By (26) and (27), we have

$$
\left(k\left(\lambda_{1}\right)+o(1)\right)\left[\varepsilon \frac{v^{\prime}\left(n_{0}\right)}{\left[v\left(n_{0}\right)\right]^{\varepsilon+1}}+\left[v\left(n_{0}\right)\right]^{-\varepsilon}\right]>k\{1-\varepsilon O(1)\}^{\frac{1}{p}}\left[\varepsilon \frac{v^{\prime}\left(n_{0}\right)}{\left[v\left(n_{0}\right)\right]^{\varepsilon+1}}+\left[v\left(n_{0}\right)\right]^{-\varepsilon}\right]^{\frac{1}{q}},
$$

and then $k\left(\lambda_{1}\right) \geq k\left(\varepsilon \rightarrow 0^{+}\right)$. Hence, $k=k\left(\lambda_{1}\right)$ is the best value of (21).
By the equivalence, the constant factor $k\left(\lambda_{1}\right)$ in (22) and (23) is the best possible, otherwise we can imply a contradiction by (24) and (25) that the constant factor in (21) is not the best possible.

In the same way, for $p<0$, we also have the following theorem.
Theorem 3 Suppose that $\lambda_{1}, \lambda_{2} \in \mathbf{R}, \lambda_{1}+\lambda_{2}=\lambda, k_{\lambda}(x, y)$ is a non-negative finite homogeneous function of degree $-\lambda$, in $\mathbf{R}_{+}^{2}, u(x)(x \in(b, c),-\infty \leq b<c \leq \infty)$ and $v(y)(y$ $\in\left[n_{0}, \infty\right), n_{0} \in \mathbf{N}$) are strictly increasing differential functions with $u\left(b^{+}\right)=0, v\left(n_{0}\right)>0$, $u\left(c^{-}\right)=v(\infty)=\infty, \varpi(x)<k\left(\lambda_{1}\right) \in R_{+}(x \in(b, c))$. If $p<0, \frac{1}{p}+\frac{1}{q}=1, f(x), a_{n} \geq 0,0<\| f$ $\|_{p \Phi}<\infty$ and $0<\|a\|_{q, \Psi}<\infty$. Then, we have the following equivalent inequalities:

$$
\begin{align*}
I & :=\sum_{n=n_{0}}^{\infty} \int_{b}^{c} K(x, n) a_{n} f(x) \mathrm{d} x=\int_{b}^{c} \sum_{n=n_{0}}^{\infty} K(x, n) a_{n} f(x) \mathrm{d} x \tag{28}\\
& >k\left(\lambda_{1}\right)\|f\|_{p, \Phi}\|a\|_{q, \Psi}
\end{align*}
$$

$$
\begin{align*}
& J:=\left\{\sum_{n=n_{0}}^{\infty}[\Psi(n)]^{1-p}\left[\int_{b}^{c} K(x, n) f(x) \mathrm{d} x\right]^{p}\right\}^{\frac{1}{p}}>k\left(\lambda_{1}\right)\|f\|_{p, \Phi}, \tag{29}\\
& \tilde{L}:=\left\{\int_{b}^{c}[\Phi(x)]^{1-q}\left[\sum_{n=n_{0}}^{\infty} K(x, n) a_{n}\right]^{q} \mathrm{~d} x\right\}^{\frac{1}{q}}>k\left(\lambda_{1}\right)\|a\|_{q, \Psi} . \tag{30}
\end{align*}
$$

Moreover, if $\frac{v^{\prime}(y)}{v(y)}\left(y \geq n_{0}\right)$ is decreasing and there exists constant $\delta_{0}>0$, such that $k\left(\lambda_{1}\right.$ $\left.+\delta_{0}\right) \in \mathbf{R}_{+}$, then the constant factor $k\left(\lambda_{1}\right)$ in the above inequalities is the best possible.
Remark 2 (i) For $n_{0}=1, b=0, c=\infty, u(x)=v(x)=x$, if

$$
\varpi(x)=x^{\lambda_{1}} \sum_{n=1}^{\infty} k_{\lambda}(x, n) n^{\lambda_{2}-1}<k\left(\lambda_{1}\right) \in \mathbf{R}_{+}(x \in(0, \infty))
$$

then (13) reduces to (6). In particular, for $k_{\lambda}(x, n)=\frac{1}{(x+n)^{\lambda}}\left(\lambda=\lambda_{1}+\lambda_{2}, \lambda_{1}>0,0<\lambda_{2} \leq 1\right)$,(6) reduces to (5).
(ii) For $n_{0}=1, b=0, c=\infty, u(x)=v(x)=x^{\alpha}(\alpha>0)$, $k_{\lambda}(x, y)=\frac{1}{(\max \{x, y\})^{\lambda}}\left(\lambda, \lambda_{1}>0,0<\alpha \lambda_{2} \leq 1\right)$, since

$$
f(x, y)=\frac{\alpha x^{\alpha \lambda_{1}} \gamma^{\alpha \lambda_{2}-1}}{\left(\max \left\{x^{\alpha}, \gamma^{\alpha}\right\}\right)^{\lambda}}=\left\{\begin{array}{l}
\alpha x^{-\alpha \lambda_{2}} \gamma^{\alpha \lambda_{2}-1}, y \leq x \\
\alpha x^{\alpha \lambda_{1}} \gamma^{-\alpha \lambda_{1}-1}, y>x
\end{array}\right.
$$

is decreasing for $y \in(0, \infty)$ and strictly decreasing in an interval of $(0, \infty)$, then by Condition (i), it follows

$$
\begin{gathered}
\varpi(x)<\alpha x^{\alpha \lambda_{1}} \int_{0}^{\infty} \frac{1}{\left(\max \left\{x^{\alpha}, \gamma^{\alpha}\right\}\right)^{\lambda}} y^{\alpha\left(\lambda_{2}-1\right)} \gamma^{\alpha-1} \mathrm{~d} y \\
t=\left(\underline{\underline{\gamma} / x)^{\alpha}} \int_{0}^{\infty} \frac{t^{\lambda_{2}-1}}{(\max \{1, t\})^{\lambda}} \mathrm{d} t=\frac{\lambda}{\lambda_{1} \lambda_{2}}=k\left(\lambda_{1}\right) .\right.
\end{gathered}
$$

Since for $\delta=\frac{\lambda_{1}}{2}<\lambda_{1}, k_{\lambda}(t, 1)=1 \leq \frac{1}{t^{\delta}}(t \in(0,1])$, then by (13), we have the following inequality with the best constant factor $\frac{\lambda}{\alpha \lambda_{1} \lambda_{2}}$:

$$
\begin{align*}
& \sum_{n=1}^{\infty} a_{n} \int_{0}^{\infty} \frac{1}{\left(\max \left\{x^{\alpha}, n^{\alpha}\right\}\right)^{\lambda}} f(x) \mathrm{d} x \\
< & \frac{\lambda}{\alpha \lambda_{1} \lambda_{2}}\left\{\int_{0}^{\infty} x^{p\left(1-\alpha \lambda_{1}\right)-1} f^{p}(x) \mathrm{d} x\right\}^{\frac{1}{p}}\left\{\sum_{n=1}^{\infty} n^{q\left(1-\alpha \lambda_{2}\right)-1} a_{n}^{q}\right\}^{\frac{1}{q}} . \tag{31}
\end{align*}
$$

(iii) For $n_{0}=1, b=\beta, c=\infty, \quad u(x)=v(x)=x-\beta\left(0 \leq \beta \leq \frac{1}{2}\right)$, $k_{\lambda}(x, y)=\frac{\ln (x / y)}{x^{\lambda}-y^{\lambda}}\left(\lambda, \lambda_{1}>0,0<\lambda_{2} \leq 1\right)$, since for any fixed $x \in(\beta, \infty)$,

$$
f(x, y)=(x-\beta)^{\lambda_{1}} \frac{\ln [(x-\beta) /(y-\beta)]}{(x-\beta)^{\lambda}-(y-\beta)^{\lambda}}(y-\beta)^{\lambda_{2}-1}
$$

is decreasing and strictly convex for $y \in\left(\frac{1}{2}, \infty\right)$, then by Condition (ii), it follows

$$
\begin{gathered}
\varpi(x)<\quad(x-\beta)^{\lambda_{1}} \int_{\frac{1}{2}}^{\infty} \frac{\ln [(x-\beta) /(y-\beta)]}{(x-\beta)^{\lambda}-(y-\beta)^{\lambda}}(\gamma-\beta)^{\lambda_{2}-1} \mathrm{~d} y \\
t=[(y-\beta) /(x-\beta)]^{\lambda} \\
\left.\frac{1}{\lambda^{2}} \int_{\left[\frac{1}{2}-\beta\right.}^{x-\beta}\right]^{\lambda} \\
t-1 \\
\leq \quad \frac{\ln t}{\left.t-\lambda_{2} / \lambda\right)-1} \mathrm{~d} t \\
\leq \int_{0}^{\infty} \frac{\ln t}{t-1} t^{\left(\lambda_{2} / \lambda\right)-1} \mathrm{~d} t=\left[\frac{\pi}{\lambda \sin \left(\frac{\pi \lambda_{1}}{\lambda}\right)}\right]^{2} .
\end{gathered}
$$

Since for $\delta=\frac{\lambda_{1}}{2}<\lambda_{1}, k_{\lambda}(t, 1)=\frac{l n t}{t^{\lambda}-1} \leq \frac{M}{t^{\delta}}(t \in(0,1])$, then by (13), we have the following inequality with the best constant factor $\left[\frac{\pi}{\lambda \sin \left(\frac{\pi \lambda_{1}}{\lambda}\right)}\right]^{2}$:

$$
\begin{align*}
& \sum_{n=1}^{\infty} a_{n} \int_{\beta}^{\infty} \frac{\ln [(x-\beta) /(n-\beta)]}{(x-\beta)^{\lambda}-(n-\beta)^{\lambda}} f(x) \mathrm{d} x<\left[\frac{\pi}{\lambda \sin \left(\frac{\pi \lambda_{1}}{\lambda}\right)}\right]^{2} \\
& \times\left\{\int_{\beta}^{\infty}(x-\beta)^{p\left(1-\lambda_{1}\right)-1} f^{p}(x) \mathrm{d} x\right\}^{\frac{1}{p}}\left\{\sum_{n=1}^{\infty}(n-\beta)^{q\left(1-\lambda_{2}\right)-1} a_{n}^{q}\right\}^{\frac{1}{q}} \tag{32}
\end{align*}
$$

(iv) For $n_{0}=1, b=1-\beta=\gamma, c=\infty, u(x)=\nu(x)=(x-\gamma)$, $k_{\lambda}(x, y)=\frac{1}{x^{\lambda}+y^{\lambda}}(0<\lambda \leq 4), k_{\lambda}(x, y)=\frac{1}{x^{\lambda}+y^{\lambda}}(0<\lambda \leq 4), \lambda_{1}=\lambda_{2}=\frac{\lambda}{2}$, we have

$$
\begin{aligned}
k\left(\frac{\lambda}{2}\right) & =\int_{0}^{\infty} k_{\lambda}(t, 1) t^{\frac{\lambda}{2}-1} \mathrm{~d} t=\frac{2}{\lambda} \int_{0}^{\infty} \frac{1}{t^{\lambda}+1} \mathrm{~d} t^{\frac{\lambda}{2}} \\
& =\left.\frac{2}{\lambda} \arctan t^{\frac{\lambda}{2}}\right|_{0} ^{\infty}=\frac{\pi}{\lambda} \in \mathbf{R}_{+}
\end{aligned}
$$

and

$$
f(x, y)=\frac{(x-\gamma)^{\frac{\lambda}{2}}(y-\gamma)^{\frac{\lambda}{2}-1}}{(x-\gamma)^{\lambda}+(y-\gamma)^{\lambda}}(x, y \in(\gamma, \infty))
$$

Hence, $v(y)(y \in[\gamma, \infty))$ is strictly increasing with $v(1-\beta)=v(\gamma)=0$, and for any fixed $x \in(\gamma, \infty), f(x, y)$ is smooth with

$$
f_{\gamma}^{\prime}(x, y)=-\left(1+\frac{\lambda}{2}\right) \frac{(x-\gamma)^{\frac{\lambda}{2}}(y-\gamma)^{\frac{\lambda}{2}-2}}{(x-\gamma)^{\lambda}+(\gamma-\gamma)^{\lambda}}+\frac{\lambda(x-\gamma)^{\frac{3 \lambda}{2}}(y-\gamma)^{\frac{\lambda}{2}-2}}{\left[(x-\gamma)^{\lambda}+\left(\gamma-\gamma^{\lambda}\right]^{2}\right.}
$$

We set

$$
\begin{equation*}
R(x):=\int_{\gamma}^{1} f(x, y) \mathrm{d} y-\frac{1}{2} f(x, 1)-\int_{1}^{\infty} \rho(y) f_{\gamma}^{\prime}(x, y) \mathrm{d} y \tag{33}
\end{equation*}
$$

For $x \in(\gamma, \infty), 0<\lambda \leq 4$, by (33) and the following improved Euler-Maclaurin summation formula [6]:

$$
\frac{-1}{8} g(1)<\int_{1}^{\infty} \rho(y) g(y) \mathrm{d} y<0\left((-1)^{i} g^{(i)}(y)>0, g^{(i)}(\infty)=0, i=0,1\right)
$$

we have

$$
\begin{aligned}
& R(x)=\int_{\gamma}^{1} \frac{(x-\gamma)^{\frac{\lambda}{2}}(\gamma-\gamma)^{\frac{\lambda}{2}-1}}{(x-\gamma)^{\lambda}+(\gamma-\gamma)^{\lambda}} \mathrm{d} \gamma-\frac{1}{2} \frac{(x-\gamma)^{\frac{\lambda}{2}}(1-\gamma)^{\frac{\lambda}{2}-1}}{(x-\gamma)^{\lambda}+(1-\gamma)^{\lambda}} \\
&+\left(1+\frac{\lambda}{2}\right) \int_{1}^{\infty} \rho(\gamma) \frac{(x-\gamma)^{\frac{\lambda}{2}}(\gamma-\gamma)^{\frac{\lambda}{2}-2}}{(x-\gamma)^{\lambda}+(\gamma-\gamma)^{\lambda}} \mathrm{d} \gamma \\
&-\int_{1}^{\infty} \rho(\gamma) \frac{\lambda(x-\gamma)^{\frac{3 \lambda}{2}}(\gamma-\gamma)^{\frac{\lambda}{2}-2}}{\left[(x-\gamma)^{\lambda}+\left(\gamma-\gamma^{\lambda}\right]^{2}\right.} \mathrm{d} \gamma \\
&> \frac{2}{\lambda} \arctan \left(\frac{1-\gamma}{x-\gamma}\right)^{\frac{\lambda}{2}}-\frac{(1-\gamma)^{\frac{\lambda}{2}-1}(x-\gamma)^{\frac{\lambda}{2}}}{2\left[(1-\gamma)^{\lambda}+\left(x-\gamma^{\lambda}\right]\right.} \\
&-\frac{1}{8}\left(1+\frac{\lambda}{2}\right) \frac{(1-\gamma)^{\frac{\lambda}{2}-2}(x-\gamma)^{\frac{\lambda}{2}}}{(1-\gamma)^{\lambda}+(x-\gamma)^{\lambda}}+0 \\
&= h(x):=\frac{2}{\lambda} \arctan \left(\frac{1-\gamma}{x-\gamma}\right)^{\frac{\lambda}{2}} \\
&-\left[\frac{1-\gamma}{2}+\frac{1}{8}\left(1+\frac{\lambda}{2}\right)\right] \frac{(1-\gamma)^{\frac{\lambda}{2}-2}(x-\gamma)^{\frac{\lambda}{2}}}{(1-\gamma)^{\lambda}+(x-\gamma)^{\lambda}} .
\end{aligned}
$$

Since for $\gamma \leq 1-\frac{1}{8}[\lambda+\sqrt{\lambda(3 \lambda+4)}]$, i.e. $1-\gamma \geq \frac{1}{8}[\lambda+\sqrt{\lambda(3 \lambda+4)}](0<\lambda \leq 4)$,

$$
\begin{aligned}
& h^{\prime}(x)=\frac{(1-\gamma)^{\frac{\lambda}{2}}(x-\gamma)^{-\frac{\lambda}{2}-1}}{(1-\gamma)^{\lambda}+(x-\gamma)^{\lambda}}-\left[\frac{1-\gamma}{2}+\frac{1}{8}\left(1+\frac{\lambda}{2}\right)\right](1-\gamma)^{\frac{\lambda}{2}-2} \\
& \times\left\{\frac{\lambda(x-\gamma)^{\frac{\lambda}{2}-1}}{2\left[(1-\gamma)^{\lambda}+(x-\gamma)^{\lambda}\right]}-\frac{\lambda(x-\gamma)^{\frac{3 \lambda}{2}-1}}{\left[(1-\gamma)^{\lambda}+(x-\gamma)^{\lambda}\right]^{2}}\right\} \\
&=-\left[(1-\gamma)^{2}-\frac{\lambda}{4}(1-\gamma)-\frac{\lambda}{16}\left(1+\frac{\lambda}{2}\right)\right] \frac{(1-\gamma)^{\frac{\lambda}{2}-2}(x-\gamma)^{\frac{\lambda}{2}-1}}{(1-\gamma)^{\lambda}+(x-\gamma)^{\lambda}} \\
&-\left[\frac{1-\gamma}{2}+\frac{1}{8}\left(1+\frac{\lambda}{2}\right)\right] \frac{\lambda(1-\gamma)^{\frac{3 \lambda}{2}-2}(x-\gamma)^{\frac{\lambda}{2}-1}}{\left[(1-\gamma)^{\lambda}+(x-\gamma)^{\lambda}\right]^{2}}<0,
\end{aligned}
$$

then $h(x)$ is strictly decreasing and $R(x)>h(x)>h(\infty)=0$.

Then, by Condition (iii), it follows $\varpi(x)<k\left(\frac{\lambda}{2}\right)=\frac{\pi}{\lambda}(x \in(\gamma, \infty))$. For $\delta=0<\frac{\lambda}{2}$, it follows

$$
k_{\lambda}(t, 1)=\frac{1}{t^{\lambda}+1} \leq 1=\frac{1}{t^{\delta}}, \quad t \in\left(0, \frac{1}{1-\gamma}\right)
$$

and by (13), we have the following inequality with the best constant factor $\frac{\pi}{\lambda}$:

$$
\begin{align*}
& \sum_{n=1}^{\infty} a_{n} \int_{\gamma}^{\infty} \frac{1}{(x-\gamma)^{\lambda}+(n-\gamma)^{\lambda}} f(x) \mathrm{d} x \\
< & \frac{\pi}{\lambda}\left\{\int_{\gamma}^{\infty}(x-\gamma)^{p\left(1-\frac{\lambda}{2}\right)-1} f^{p}(x) \mathrm{d} x\right\}^{\frac{1}{p}}\left\{\sum_{n=1}^{\infty}(n-\gamma)^{q\left(1-\frac{\lambda}{2}\right)-1} a_{n}^{q}\right\}^{\frac{1}{q}}, \tag{34}
\end{align*}
$$

where $\gamma \leq 1-\frac{1}{8}[\lambda+\sqrt{\lambda(3 \lambda+4)}](0<\lambda \leq 4)$.

Acknowledgements

This study was supported by the Guangdong Science and Technology Plan Item (No. 2010B010600018) and Guangdong Modern Information Service Industry Develop Particularly item 2011 (No. 13090).

Author details

${ }^{1}$ Department of Mathematics, Guangdong University of Education Guangzhou, Guangdong 510303, P. R. China
${ }^{2}$ Department of Computer Science, Guangdong University of Education Guangzhou, Guangdong 510303, P. R. China

Authors' contributions

BY wrote and reformed the article. QC conceived of the study, and participated in its design and coordination. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
Received: 28 August 2011 Accepted: 30 November 2011 Published: 30 November 2011

References

1. Hardy, GH, Littlewood, JE, Pólya, G: Inequalities. Cambridge University Press, Cambridge, UK (1934)
2. Mitrinović, DS, Pečarić, JE, Fink, AM: Inequalities Involving Functions and their Integrals and Derivatives. Kluwer Academic Publishers, Boston, MA (1991)
3. Yang, B: Hilbert-Type Integral Inequalities. Bentham Science Publishers Ltd. Arabia Unites a Tribal Chief Country (2009)
4. Yang, B: Discrete Hilbert-Type Inequalities. Bentham Science Publishers Ltd. Arabia Unites a Tribal Chief Country (2011)
5. Yang, B: On Hilbert's integral inequality. J Math Anal Appl. 271, 778-785 (1998)
6. Yang, B: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing, China (2009)
7. Yang, B, Brnetić, I, Krnić, M, Pečarić, J: Generalization of Hilbert and Hardy-Hilbert integral inequalities. Math Inequal Appl. 8(2), 259-272 (2005)
8. Krnić, M, Pečarić, J: Hilbert's inequalities and their reverses. Publ Math Debrecen. 67(3-4), 315-331 (2005)
9. Jin, J, Debnath, L: On a Hilbert-type linear series operator and its applications. J Math Anal Appl. 371, 691-704 (2010). doi:10.1016/j.jmaa.2010.06.002
10. Azar, L: On some extensions of Hardy-Hilbert's inequality and applications. J Inequal Appl. 2009(Article ID 546829), 12 (2006)
11. Yang, B, Rassias, T: On the way of weight coefficient and research for Hilbert-type inequalities. Math Inequal Appl. 6(4), 625-658 (2003)
12. Arpad, B, Choonghong, O: Best constant for certain multilinear integral operator. J Inequal Appl. 2006(Article ID 28582), 12 (2006)
13. Kuang, J, Debnath, L: On Hilbert's type inequalities on the weighted Orlicz spaces. Pacific J Appl Math. 1(1), 95-103 (2007)
14. Zhong, W: The Hilbert-type integral inequality with a homogeneous kernel of Lambda-degree. J Inequal Appl. 2008(Article ID 917392), 13 (2008)
15. Li, Y, He, B: On inequalities of Hilbert's type. Bull Aust Math Soc. 76(1), 1-13 (2007). doi:10.1017/S0004972700039423
16. Yang, B: A mixed Hilbert-type inequality with a best constant factor. Int J Pure Appl Math. 20(3), 319-328 (2005)
17. Yang, B: A half-discrete Hilbert's inequality. J Guangdong Univ Edu. 31(3), 1-7 (2011)
[^0][^1]
Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

[^0]: 18. Kuang, J: Applied Inequalities. Shangdong Science Technic Press, Jinan, China (2004)
 19. Kuang, J: Introduction to Real Analysis. Hunan Education Press, Chan-sha, China (1996)
[^1]: doi:10.1186/1029-242X-2011-124
 Cite this article as: Yang and Chen: A half-discrete Hilbert-type inequality with a homogeneous kernel and an extension. Journal of Inequalities and Applications 2011 2011:124.

