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Abstract
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1 Introduction

Assuming that p > 1,
1
p
+
1
q
= 1, f (≥ 0) Î Lp (R+), g(≥ 0) Î Lq (R+),

∥∥f∥∥p =
{∫ ∞

0
f p(x)dx

} 1
p

> 0 , || g ||q >0, we have the following Hardy-Hilbert’s integral

inequality [1]:

∞∫
0

∞∫
0

f (x)g(y)
x + y

dxdy <
π

sin(π/p)
||f ||p||g||q, (1)

where the constant factor
π

sin(π/p) is the best possible. If am, bn ≥ 0,

b = {bn}∞n=1 ∈ lq , b = {bn}∞n=1 ∈ lq , ||a||p =
{∑∞

m=1
apm

} 1
p

> 0 , || b ||q >0, then we still

have the following discrete Hardy-Hilbert’s inequality with the same best constant fac-

tor
π

sin(π/p) :

∞∑
m=1

∞∑
n=1

ambn
m + n

<
π

sin(π/p)
||a||p||b||q. (2)

For p = q = 2, the above two inequalities reduce to the famous Hilbert’s inequalities.

Inequalities (1) and (2) are important in analysis and its applications [2-4].

In 1998, by introducing an independent parameter l Î (0, 1], Yang [5] gave an

extension of (1) for p = q = 2. Refinement and generalizing the results from [5], Yang

[6] gave some best extensions of (1) and (2) as follows: If l1, l2 Î R, l1 + l2 = l, kl(x,
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y) is a non-negative homogeneous function of degree - l satisfying for any x, y, t >0, kl

(tx, ty) = t-l kl (x, y), k(λ1) =
∫ ∞

0
kλ(t, 1)tλ1−1dt ∈ R+ , φ(x) = xp(1−λ1)−1 ,

f (≥ 0) ∈ Lp,φ(R+) = {f |||f ||p,φ := {
∫ ∞

0
φ(x)|f (x)|pdx}

1
p < ∞} ,

f (≥ 0) ∈ Lp,φ(R+) = {f |||f ||p,φ := {
∫ ∞

0
φ(x)|f (x)|pdx}

1
p < ∞} , g(≥ 0) Î Lq,ψ, || f ||p,j, ||

g ||q,ψ >0, then we have

∞∫
0

∞∫
0

kλ(x, y)f (x)g(y)dxdy < k(λ1)||f ||p,φ ||g||q,ψ , (3)

where the constant factor k(l1) is the best possible. Moreover, if kl(x, y) is finite and

kλ(x, y)xλ1−1(kλ(x, y)yλ2−1) is decreasing with respect to x >0(y >0), then for am,bn ≥

0, a = {am}∞m=1 ∈ lp,φ = {a|||a||p,φ := {
∑∞

n=1
φ(n)|an|p}

1
p < ∞} , b = {bn}∞n=1 ∈ lq,ψ , || a ||

p,j, || b ||q,Ψ >0, we have

∞∑
m=1

∞∑
n=1

kλ(m,n)ambn < k(λ1)||a||p,φ||b||q,ψ , (4)

with the best constant factor k(l1). Clearly, for l = 1, k1(x, y) =
1

x + y
, λ1 =

1
q
,

λ2 =
1
p
(3) reduces to (1), and (4) reduces to (2). Some other results about Hilbert-

type inequalities are provided by [7-15].

On half-discrete Hilbert-type inequalities with the non-homogeneous kernels, Hardy

et al. provided a few results in Theorem 351 of [1]. But they did not prove that the

constant factors are the best possible. And, Yang [16] gave a result by introducing an

interval variable and proved that the constant factor is the best possible. Recently,

Yang [17] gave the following half-discrete Hilbert’s inequality with the best constant

factor B(l1, l2)(l, l1 >0, 0 <l2 ≤ 1, l1 + l2 = l):

∞∫
0

f (x)
∞∑
n=1

an
(x + n)λ

dx < B(λ1,λ2)||f ||p,ϕ||a||q,ψ . (5)

In this article, using the way of weight functions and the technique of real analysis, a

half-discrete Hilbert-type inequality with a general homogeneous kernel and a best

constant factor is given as follows:

∞∫
0

f (x)
∞∑
n=1

kλ(x, n)andx < k(λ1)||f ||p,ϕ ||a||q,ψ , (6)

which is a generalization of (5). A best extension of (6) with two interval variables,

some equivalent forms, the operator expressions, the reverses and some particular

cases are considered.
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2 Some lemmas
We set the following conditions:

Condition (i) v(y)(y Î [n0 - 1, ∞)) is strictly increasing with v(n0 - 1) ≥ 0 and for any

fixed x Î (b, c), f(x, y) is decreasing for y Î (n0 - 1, ∞) and strictly decreasing in an

interval of (n0 - 1, ∞).

Condition (ii) v(y)(y ∈ [n0 − 1
2
,∞)) is strictly increasing with v

(
n0 − 1

2

)
≥ 0 and

for any fixed x Î (b, c), f(x, y) is decreasing and strictly convex for y ∈
(
n0 − 1

2
,∞

)
.

Condition (iii) There exists a constant b ≥ 0, such that v(y)(y Î [n0 - b, ∞)) is

strictly increasing with v(n0 - b) ≥ 0, and for any fixed x Î (b, c), f(x, y) is piecewise

smooth satisfying

R(x) :=

n0∫
n0−β

f (x, y)dy − 1
2
f (x,n0) −

∞∫
n0

ρ(y)f ′
y(x, y)dy > 0,

where ρ(y)(= y − [y] − 1
2
) is Bernoulli function of the first order.

Lemma 1 If l1, l2 Î R, l1 + l2 = l, kl(x, y) is a non-negative finite homogeneous

function of degree - l in R2
+, u(x)(x ∈ (b, c),−∞ ≤ b < c ≤ ∞)and v(y)(y Î [n0, ∞), n0

Î N) are strictly increasing differential functions with u(b+) = 0, v(n0) >0, u(c
-) = v(∞)

= ∞, setting K(x, y) = kl(u(x), v(y)), then we define weight functions ω(n) and ϖ(x) as

follows:

ω(n) : = [v(n)]λ2

c∫
b

K(x,n)[u(x)]λ1−1u′(x)dx,n ≥ n0(n ∈ N), (7)

	 (x) : = [u(x)]λ1

∞∑
n=n0

K(x,n)[v(n)]λ2−1v′(n), x ∈ (b, c). (8)

It follows

ω(n) = k(λ1) : =

∞∫
0

kλ(t, 1)tλ1−1dt. (9)

Moreover, setting f (x, y) : = [u(x)]λ1K(x, y)[v(y)]λ2−1v′(y) , if k(l1) Î R+ and one of the

above three conditions is fulfilled, then we still have

	 (x) < k(λ1)(x ∈ (b, c)). (10)

Proof. Setting t =
u(x)
v(n)

in (7), by calculation, we have (9).
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(i) If Condition (i) is fulfilled, then we have

	 (x) =
∞∑

n=n0

f (x,n) < [u(x)]λ1

∞∫
n0−1

K(x, y)[v(y)]λ2−1v′(y)dy

t=u(x)/v(y)
=

u(x)
v(n0−1)∫
0

kλ(t, 1)tλ1−1dt ≤ k(λ1).

(ii) If Condition (ii) is fulfilled, then by Hadamard’s inequality [18], we have

	 (x) =
∞∑

n=n0

f (x,n) <

∞∫
n0−1

2

f (x, y)dy

t=u(x)/v(y)
=

u(x)

v(n0−1
2 )∫

0

kλ(t, 1)tλ1−1dt ≤ k(λ1).

(iii) If Condition (iii) is fulfilled, then by Euler-Maclaurin summation formula [6], we

have

	 (x) =
∞∑

n=n0

f (x,n)

=

∞∫
n0

f (x, y)dy +
1
2
f (x,n0)+

∞∫
n0

ρ(y)f ′
y(x, y)dy

=

∞∫
n0−β

f (x, y)dy − R(x)

=

u(x)
v(n0 − β)∫

0

kλ(t, 1)tλ1−1dt − R(x)

≤ k(λ1) − R(x) < k(λ1).

The lemma is proved. ■
Lemma 2 Let the assumptions of Lemma 1 be fulfilled and additionally, p >0(p ≠ 1),

1
p
+
1
q
= 1,an ≥ 0, n ≥ n0(n Î N), f (x) is a non-negative measurable function in (b, c).

Then, (i) for p >1, we have the following inequalities:

J1 : =

⎧⎨
⎩

∞∑
n=n0

v′(n)
[v(n)]1−pλ2

⎡
⎣ c∫

d

K(x,n)f (x)dx

⎤
⎦

p⎫⎬
⎭

1
p

≤ [k(λ1)]
1
q

⎧⎨
⎩

c∫
d

	 (x)
[u(x)]p(1−λ1)−1

[u′(x)]p−1 f p(x)dx

⎫⎬
⎭

1
p

,

(11)
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L1 : =

⎧⎨
⎩

c∫
b

[	 (x)]1−qu′(x)
[u(x)]1−qλ1

[ ∞∑
n=n0

K(x,n)an

]q

dx

⎫⎬
⎭

1
q

≤
{
k(λ1)

∞∑
n=n0

[v(n)]q(1−λ2)−1

[v′(n)]q−1 aqn

} 1
q

;

(12)

(ii) for 0 < p <1, we have the reverses of (11) and (12).

Proof (i) By Hölder’s inequality with weight [18] and (9), it follows

⎡
⎣ c∫

b

K(x, n)f (x)dx

⎤
⎦

p

=

⎧⎨
⎩

c∫
b

K(x,n)

[
[u(x)](1−λ1)/q

[v(n)](1−λ2)/p

[v′(n)]1/p

[u′(x)]1/q
f (x)

]

×
[
[v(n)](1−λ2)/p

[u(x)](1−λ1)/q

[u′(x)]1/q

[v′(n)]1/p

]
dx

}p

≤
c∫

b

K(x,n)
[u(x)](1−λ1)(p−1)v′(n)
[v(n)]1−λ2 [u′(x)]p−1 f p(x)dx

×
⎧⎨
⎩

c∫
b

K(x,n)
[v(n)](1−λ2)(q−1)u′(x)
[u(x)]1−λ1 [v′(n)]q−1 dx

⎫⎬
⎭

p−1

=

{
ω(n)[v(n)]q(1−λ2)−1

[v′(n)]q−1

}p−1 c∫
b

K(x,n)
[u(x)](1−λ1)(p−1)v′(n)f p(x)

[v(n)]1−λ2 [u′(x)]p−1 dx

=
[k(λ1)]

p−1

[v(n)]pλ2−1v′(n)

c∫
b

K(x,n)
[u(x)](1−λ1)(p−1)v′(n)
[v(n)]1−λ2 [u′(x)]p−1 f p(x)dx.

Then, by Lebesgue term-by-term integration theorem [19], we have

J1 ≤ [k(λ1)]
1
q

⎧⎨
⎩

∞∑
n=n0

c∫
b

K(x,n)
[u(x)](1−λ1)(p−1)v′(n)f p(x)

[v(n)]1−λ2 [u′(x)]p−1 dx

⎫⎬
⎭

1
p

= [k(λ1)]
1
q

⎧⎨
⎩

c∫
b

∞∑
n=n0

K(x,n)
[u(x)](1−λ1)(p−1)v′(n)f p(x)

[v(n)]1−λ2 [u′(x)]p−1 dx

⎫⎬
⎭

1
p

= [k(λ1)]
1
q

⎧⎨
⎩

c∫
b

	 (x)
[u(x)]p(1−λ1)−1

[u′(x)]p−1 f p(x)dx

⎫⎬
⎭

1
p

,

and (11) follows.

Still by Hölder’s inequality, we have

[ ∞∑
n=n0

K(x,n)an

]q

=

{ ∞∑
n=n0

K(x,n)

[
[u(x)](1−λ1)/q

[v(n)](1−λ2)/p

[v′(n)]1/p

[u′(x)]1/q

]

×
[
[v(n)](1−λ2)/p

[u(x)](1−λ1)/q

[u′(x)]1/q

[v′(n)]1/p
an

]}q

≤
{ ∞∑
n=n0

K(x,n)
[u(x)](1−λ1)(p−1)

[v(n)]1−λ2

v′(n)
[u′(x)]p−1

}q−1

×
∞∑

n=n0

K(x,n)
[v(n)](1−λ2)(q−1)

[u(x)]1−λ1

u′(x)
[v′(n)]q−1 a

q
n

=
[u(x)]1−qλ1

[	 (x)]1−qu′(x)

∞∑
n=n0

K(x,n)
u′(x)

[u(x)]1−λ1

[v(n)](q−1)(1−λ2)

[v′(n)]q−1 aqn.
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Then, by Lebesgue term-by-term integration theorem, we have

L1 ≤
⎧⎨
⎩

c∫
b

∞∑
n=n0

K(x,n)
u′(x)

[u(x)]1−λ1

[v(n)](q−1)(1−λ2)

[v′(n)]q−1 aqndx

⎫⎬
⎭

1
q

=

⎧⎨
⎩

∞∑
n=n0

⎡
⎣[v(n)]λ2

c∫
b

K(x,n)
u′(x)dx

[u(x)]1−λ1

⎤
⎦ [v(n)]q(1−λ2)−1

[v′(n)]q−1 aqn

⎫⎬
⎭

1
q

=

{ ∞∑
n=n0

ω(n)
[v(n)]q(1−λ2)−1

[v′(n)]q−1 aqn

} 1
q

,

and then in view of (9), inequality (12) follows.

(ii) By the reverse Hölder’s inequality [18] and in the same way, for q <0, we have

the reverses of (11) and (12). ■

3 Main results

We set 
(x) :=
[u(x)]p(1−λ1)−1

[u′(x)]p−1 (x ∈ (b, c)) , �(n) :=
[v(n)]q(1−λ2)−1

[v′(n)]q−1 (n ≥ n0,n ∈ N) ,

wherefrom [
(x)]1−q =
u′(x)

[u(x)]1−qλ1
, [�(n)]1−p =

v′(n)
[v(n)]1−pλ2

.

Theorem 1 Suppose that l1, l2 Î R, l1 + l2 = l, kl(x, y) is a non-negative finite

homogeneous function of degree - l¸ in R2
+, u(x)(x ∈ (b, c),−∞ ≤ b < c ≤ ∞) and v(y)

(y Î [n0, ∞), n0 Î N are strictly increasing differential functions with u(b+) = 0, v(n0)

>0, u(c-) = v(∞) = ∞, ϖ(x) < k (l1) Î R+(x Î (b, c)). If p > 1,
1
p
+
1
q
= 1 , f (x), an ≥ 0, f

Î LpF (b, c), a = {an}∞n=n0 ∈ lq,� , || f ||p,F >0 and || a ||q,Ψ > 0, then we have the follow-

ing equivalent inequalities:

I : =
∞∑

n=n0

an

c∫
b

K(x,n)f (x)dx =

c∫
b

f (x)
∞∑

n=n0

K(x,n)andx

< k(λ1)||f ||p,
||a||q,� ,
(13)

J :=

⎧⎨
⎩

∞∑
n=n0

[�(n)]1−p

⎡
⎣ c∫

b

K(x,n)f (x)dx

⎤
⎦

p⎫⎬
⎭

1
p

< k(λ1)||f ||p,
, (14)

L :=

⎧⎨
⎩

c∫
b

[
(x)]1−q

[ ∞∑
n=n0

K(x,n)an

]q

dx

⎫⎬
⎭

1
q

< k(λ1)||a||q,� . (15)

Moreover, if
v′(y)
v(y)

(y ≥ n0) is decreasing and there exist constants δ < l1 and M >0,

such that kλ(t, 1) ≤ M
tδ

(
t ∈

(
0,

1
v(n0)

])
, then the constant factor k(l1) in the above

inequalities is the best possible.

Yang and Chen Journal of Inequalities and Applications 2011, 2011:124
http://www.journalofinequalitiesandapplications.com/content/2011/1/124

Page 6 of 16



Proof By Lebesgue term-by-term integration theorem, there are two expressions for I in

(13). In view of (11), for ϖ(x) < k(l1) Î R+, we have (14). By Hölder’s inequality, we have

I =
∞∑

n=n0

⎡
⎣�

−1
q
(n)

c∫
b

K(x, n)f (x)dx

⎤
⎦ [�

1
q (n)an] ≤ J||a||q,� . (16)

Then, by (14), we have (13). On the other hand, assuming that (13) is valid, setting

an := [�(n)]1−p

⎡
⎣ c∫

b

K(x, n)f (x)dx

⎤
⎦

p−1

,n ≥ n0,

then Jp-1 = || a ||q,Ψ . By (11), we find J <∞. If J = 0, then (14) is naturally valid; if J

>0, then by (13), we have

||a||qq,� = Jp = I < k(λ1)||f ||p,
||a||q,� , ||a||q−1
q,� = J < k(λ1)||f ||p,
,

and we have (14), which is equivalent to (13).

In view of (12), for [ϖ(x) ]1-q >[k(l1)]
1-q, we have (15). By Hölder’s in equality, we find

I =

c∫
b

[

1
p (x)f (x)]

[



−1
p (x)

∞∑
n=n0

K(x,n)an

]
dx ≤ ||f ||p,
L. (17)

Then, by (15), we have (13). On the other hand, assuming that (13) is valid, setting

f (x) := [
(x)]1−q

[ ∞∑
n=n0

K(x,n)an

]q−1

, x ∈ (b, c),

then Lq-1 = || f ||pF . By (12), we find L <∞. If L = 0, then (15) is naturally valid; if L

>0, then by (13), we have

||f ||pp,
 = Lq = I < k(λ1)||f ||p,
||a||q,� , ||f ||p−1
p,
 = L < k(λ1)||a||q,� ,

and we have (15) which is equivalent to (13).

Hence, inequalities (13), (14) and (15) are equivalent.

There exists an unified constant d Î (b, c), satisfying u(d) = 1. For 0 < ε < p(l1 - δ),

setting f̃ (x) = 0 , x Î (b, d); f̃ (x) = [u(x)]
λ1− ε

p−1
u′(x), x Î (d, c), and

ãn = [v(n)]
λ2− ε

q−1
v′(n) , n ≥ n0, if there exists a positive number k(≤ k(l1)), such that

(13) is valid as we replace k(l1) by k, then in particular, we find

Ĩ : =
∞∑

n=n0

c∫
b

K(x,n)ãn f̃ (x)dx < k||f̃ ||p,
||ã||q,�

= k

⎧⎨
⎩

c∫
d

u′(x)
[u(x)]ε+1

dx

⎫⎬
⎭

1
p
⎧⎨
⎩ v′(n0)
[v(n0)]

ε+1 +
∞∑

n=n0+1

v′(n)
[v(n)]ε+1

⎫⎬
⎭

1
q

< k
(
1
ε

)1
p

⎧⎨
⎩ v′(n0)
[v(n0)]

ε+1 +

∞∫
n0

[v(y)]−ε−1v′(y)dy

⎫⎬
⎭

1
q

=
k
ε

{
ε

v′(n0)
[v(n0)]

ε+1 + [v(n0)]
−ε

} 1
q

(18)
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Ĩ =
∞∑

n=n0

[v(n)]
λ2− ε

q−1
v′(n)

c∫
d

K(x,n)[u(x)]
λ1− ε

p−1
u′(x)dx

t=u(x)/v(n)
=

∞∑
n=n0

[v(n)]−ε−1v′(n)

∞∫
1/v(n)

kλ(t, 1)t
λ1− ε

p−1
dt

= k
(

λ1 − ε

p

) ∞∑
n=n0

[v(n)]−ε−1v′(n) − A(ε)

> k
(

λ1 − ε

p

) ∞∫
n0

[v(y)]−ε−1v′(y)dy − A(ε)

=
1
ε
k
(

λ1 − ε

p

)
[v(n0)]−ε − A(ε),

A(ε) : =
∞∑

n=n0

[v(n)]−ε−1v′(n)

1/v(n)∫
0

kλ(t, 1)t
λ1− ε

p−1
dt.

(19)

For kλ(t, 1) ≤ M
(
1
tδ

)
(δ < λ1; t ∈ (0, 1/v(n0)]) , we find

0 < A(ε) ≤ M
∞∑

n=n0

[v(n)]−ε−1v′(n)

1/v(n)∫
0

t
λ1−δ− ε

p−1
dt

=
M

λ1 − δ − ε
p

∞∑
n=n0

[v(n)]
−λ1+δ− ε

q−1
v′(n)

=
M

λ1 − δ − ε

p

⎡
⎣ v′(n0)

[v(n0)]
λ1−δ+ ε

q +1
+

∞∑
n=n0+1

v′(n)

[v(n)]
λ1−δ+ ε

q +1

⎤
⎦

≤ M

λ1 − δ − ε

p

⎡
⎣ v′(n0)

[v(n0)]
λ1−δ+ ε

q +1
+

∞∫
n0

v′(y)

[v(y)]
λ1−δ+ ε

q +1
dy

⎤
⎦

=
M

λ1 − δ − ε

p

⎡
⎣ v′(n0)

[v(n0)]
λ1−δ+ ε

q +1
+
[v(n0)]

−λ1+δ− ε
q

λ1 − δ + ε
q

⎤
⎦ < ∞,

namely A(ε) = O(1)(ε ® 0+). Hence, by (18) and (19), it follows

k
(

λ1 − ε

p

)
[v(n0)]−ε − εO (1) < k

{
ε

v′(n0)
[v(n0)]

ε+1 + [v(n0)]
−ε

} 1
q
. (20)

By Fatou Lemma [19], we have k(λ1) ≤ limε→0+ k
(

λ1 − ε

p

)
, then by (20), it follows

k(l1) ≤ k(ε ® 0+). Hence, k = k(l1) is the best value of (12).

By the equivalence, the constant factor k(l1) in (14) and (15) is the best possible,

otherwise we can imply a contradiction by (16) and (17) that the constant factor in

(13) is not the best possible. ■
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Remark 1 (i) Define a half-discrete Hilbert’s operator T : Lp,
(b, c) → lp,�1−p as: for f

Î LpF (b, c), we define Tf ∈ lp,�1−p , satisfying

Tf (n) =

c∫
b

K(x,n)f (x)dx, n ≥ n0.

Then, by (14), it follows ||Tf ||p.�1−p ≤ k(λ1)||f ||p,
 and then T is a bounded operator

with || T || ≤ k(l1). Since, by Theorem 1, the constant factor in (14) is the best possi-

ble, we have || T || = k(l1).

(ii) Define a half-discrete Hilbert’s operator T̃ : lq,� → Lq,
1−q(b, c) as: for a Î lqΨ ,

we define T̃a ∈ Lq,
1−q(b, c) , satisfying

T̃a(x) =
∞∑

n=n0

K(x,n)an, x ∈ (b, c).

Then, by (15), it follows ||T̃a||q,
1−q ≤ k(λ1)||a||q,� and then T̃ is a bounded opera-

tor with ||T̃|| ≤ k(λ1) . Since, by Theorem 1, the constant factor in (15) is the best pos-

sible, we have ||T̃|| = k(λ1) .

In the following theorem, for 0 < p <1, or p <0, we still use the formal symbols of

||f ||p,
̃ and ||a||q,Ψ and so on. ■
Theorem 2 Suppose that l1, l2 Î R, l1 + l2 = l, kl(x, y) is a non-negative finite homo-

geneous function of degree -l in R2
+ , u(x)(x Î (b, c), -∞ ≤ b < c ≤ ∞) and v(y)(y Î [n0, ∞),

n0 Î N) are strictly increasing differential functions with u(b+) = 0, v(n0) >0, u(c
-) = v(∞) =

∞, k(l1) Î R+, θl(x) Î (0, 1), k(l1)(1 - θl(x)) <ϖ(x) <k(l1)(x Î (b, c)). If 0 < p <1,
1
p +

1
q = 1 , f(x), an ≥ 0, 
̃(x) := (1 − θλ(x))
(x)(x ∈ (b, c)) , 0 < ||f ||q,
̃ < ∞and 0 <||

a||q,Ψ < ∞. Then, we have the following equivalent inequalities:

I : =
∞∑

n=n0

c∫
b

K(x,n)anf (x)dx =

c∫
b

∞∑
n=n0

K(x,n)anf (x)dx

> k(λ1)||f ||p,
̃||a||q,� ,
(21)

J :=

⎧⎨
⎩

∞∑
n=n0

[�(n)]1−p

⎡
⎣ c∫

b

K(x,n)f (x)dx

⎤
⎦

p⎫⎬
⎭

1
p

> k(λ1)||f ||p,
̃, (22)

L̃ :=

⎧⎨
⎩

c∫
b

[
̃(x)]
1−q

[ ∞∑
n=n0

K(x,n)an

]q

dx

⎫⎬
⎭

1
q

> k(λ1)||a||q,� . (23)

Moreover, if v′(y)
v(y) (y ≥ n0) is decreasing and there exist constants δ, δ0 >0, such that

θλ(x) = O( 1
[u(x)]δ

)(x ∈ (d, c))and k(l1 - δ0) Î R+, then the constant factor k(l1) in the

above inequalities is the best possible.
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Proof. In view of (9) and the reverse of (11), for ϖ(x) > k(l1)(1 - θl(x)), we have (22).

By the reverse Hölder’s inequality, we have

I =
∞∑

n=n0

⎡
⎣�

−1
q (n)

c∫
b

K(x,n)f (x)dx

⎤
⎦ [�

1
q (n)an] ≥ J||a||q,� . (24)

Then, by (22), we have (21). On the other hand, assuming that (21) is valid, setting

an as Theorem 1, then Jp-1 = ||a||qΨ. By the reverse of (11), we find J >0. If J = ∞, then

(24) is naturally valid; if J <∞, then by (21), we have

||a||qq,� = Jp = I > k(λ1)||f ||p,
̃||a||q,� , ||a||q−1
q,� = J > k(λ1)||f ||p,
̃,

and we have (22) which is equivalent to (21).

In view of (9) and the reverse of (12), for [ϖ(x)]1-q >[k(l1)(1 - θl(x))]
1-q (q <0), we

have (23). By the reverse Hölder’s inequality, we have

I =

c∫
b

[
̃
1
p (x)f (x)]

[

̃

−1
p (x)

∞∑
n=n0

K(x,n)an

]
dx ≥ ||f ||p,
̃L̃. (25)

Then, by (23), we have (21). On the other hand, assuming that (21) is valid, setting

f (x) := [
̃(x)]1−q

[ ∞∑
n=n0

K(x,n)an

]q−1

, x ∈ (b, c),

then L̃q−1 = ||f ||p,
̃ . By the reverse of (12), we find L̃ > 0 . If L̃ = ∞ , then (23) is

naturally valid; if L̃ < ∞ , then by (21), we have

||f ||p
p,
̃

= L̃q = I > k(λ1)||f ||p,
̃||a||q,� , ||f ||p−1
p,
̃

= L̃ > k(λ1)||a||q,� ,

and we have (23) which is equivalent to (21). ■
Hence, inequalities (21), (22) and (23) are equivalent.

For 0 < ε < pδ0, setting f̃ (x) and ãn as Theorem 1, if there exists a positive number

k(≥ k(l1)), such that (21) is still valid as we replace k(l1) by k, then in particular, for q

<0, in view of (9) and the conditions, we have

Ĩ : =

c∫
b

∞∑
n=n0

K(x,n)ãnf̃ (x)dx > k||f̃ ||p,
̃||ã||q,�

= k

⎧⎨
⎩

c∫
d

(
1 − O

(
1

[u(x)]δ

))
u′(x)dx
[u(x)]ε+1

⎫⎬
⎭

1
p { ∞∑

n=n0

v′(n)
[v(n)]ε+1

} 1
q

= k
{
1
ε

− O(1)
} 1

p

⎧⎨
⎩ v′(n0)
[v(n0)]

ε+1 +
∞∑

n=n0+1

v′(n)
[v(n)]ε+1

⎫⎬
⎭

1
q

> k
{
1
ε

− O(1)
} 1

p

⎧⎨
⎩ v′(n0)
[v(n0)]

ε+1 +

∞∫
n0

v′(y)
[v(y)]+1

dy

⎫⎬
⎭

1
q

=
k
ε

{
1 − εO(1)

} 1
p

{
ε

v′(n0)
[v(n0)]

ε+1 + [v(n0)]
−ε

} 1
q
,

(26)
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Ĩ =
∞∑

n=n0

[v(n)]
λ2− ε

q−1
v′(n)

c∫
d

K(x, n)[u(x)]
λ1− ε

p−1
u′(x)dx

≤
∞∑

n=n0

[v(n)]
λ2− ε

q−1
v′(n)

c∫
b

K(x, n) [u(x)]
λ1− ε

p−1
u′(x)dx

t=u(x)/v(n)=
∞∑

n=n0

[v(n)]−ε−1v′(n)
∞∫
0

kλ(t, 1)t
(λ1− ε

p )−1
dt

≤ k
(

λ1 − ε

p

)⎡
⎣ v′(n0)
[v(n0)]

ε+1 +

∞∫
n0

[v(y)]−ε−1v′(y)dy

⎤
⎦

=
1
ε
k
(

λ1 − ε

p

)[
ε

v′(n0)
[v(n0)]

ε+1 + [v(n0)]
−ε

]
.

(27)

Since we have kλ(t, 1)t
λ1− ε

p−1 ≤ kλ(t, 1)tλ1−δ0−1 , t Î (0, 1] and

1∫
0

kλ(t, 1)tλ1−δ0−1dt ≤ k(λ1 − δ0) < ∞,

then by Lebesgue control convergence theorem [19], it follows

k
(

λ1 − ε

p

)
≤

∞∫
1

kλ(t, 1)tλ1−1dt +

1∫
0

kλ(t, 1)t
λ1− ε

p−1
dt

= k(λ1) + o(1)(ε → 0+).

By (26) and (27), we have

(k(λ1)+o(1))
[
ε

v′(n0)
[v(n0)]

ε+1 + [v(n0)]
−ε

]
> k{1 − εO(1)}

1
p

[
ε

v′(n0)
[v(n0)]

ε+1 + [v(n0)]
−ε

] 1
q
,

and then k(l1) ≥ k(ε ® 0+). Hence, k = k(l1) is the best value of (21).

By the equivalence, the constant factor k(l1) in (22) and (23) is the best possible,

otherwise we can imply a contradiction by (24) and (25) that the constant factor in

(21) is not the best possible. ■
In the same way, for p <0, we also have the following theorem.

Theorem 3 Suppose that l1, l2 Î R, l1 + l2 = l, kl(x, y) is a non-negative finite

homogeneous function of degree -l¸ in R2
+ , u(x)(x Î (b, c), -∞ ≤ b < c ≤ ∞) and v(y)(y

Î [n0, ∞), n0 Î N) are strictly increasing differential functions with u(b+) = 0, v(n0) >0,

u(c-) = v(∞) = ∞, ϖ(x) < k(l1) Î R+ (x Î (b, c)). If p <0, 1
p +

1
q = 1, f(x), an ≥ 0, 0 < || f

||pF < ∞ and 0 < ||a||q,Ψ < ∞. Then, we have the following equivalent inequalities:

I :=
∞∑

n=n0

c∫
b

K(x,n)anf (x)dx =

c∫
b

∞∑
n=n0

K(x,n)anf (x)dx

> k(λ1)||f ||p,
||a||q,� ,
(28)
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J :=

⎧⎨
⎩

∞∑
n=n0

[�(n)]1−p

⎡
⎣ c∫

b

K(x,n)f (x)dx

⎤
⎦

p⎫⎬
⎭

1
p

> k(λ1)||f ||p,
, (29)

L̃ :=

⎧⎨
⎩

c∫
b

[
(x)]1−q

[ ∞∑
n=n0

K(x,n)an

]q

dx

⎫⎬
⎭

1
q

> k(λ1)||a||q,� . (30)

Moreover, if v′(y)
v(y) (y ≥ n0) is decreasing and there exists constant δ0 >0, such that k(l1

+ δ0) Î R+, then the constant factor k(l1) in the above inequalities is the best possible.

Remark 2 (i) For n0 = 1, b = 0, c = ∞, u(x) = v(x) = x, if

	 (x) = xλ1

∞∑
n=1

kλ(x,n)nλ2−1 < k(λ1) ∈ R+(x ∈ (0,∞)),

then (13) reduces to (6). In particular, for

kλ(x,n) = 1
(x+n)λ

(λ = λ1 + λ2,λ1 > 0, 0 < λ2 ≤ 1) ,(6) reduces to (5).

(ii) For n0 = 1, b = 0, c = ∞, u(x) = v(x) = xa(a >0),

kλ(x, y) = 1
(max{x,y})λ (λ,λ1 > 0, 0 < αλ2 ≤ 1) , since

f (x, y) =
αxαλ1yαλ2−1

(max{xα, yα})λ =
{

αx−αλ2 yαλ2−1, y ≤ x
αxαλ1 y−αλ1−1, y > x

is decreasing for y Î (0, ∞) and strictly decreasing in an interval of (0, ∞), then by

Condition (i), it follows

	 (x) < αxαλ1

∞∫
0

1

(max{xα , yα})λ y
α(λ2−1)yα−1dy

t=(y/x)α
=

∞∫
0

tλ2−1

(max{1, t})λ dt =
λ

λ1λ2
= k(λ1).

Since for δ = λ1
2 < λ1 , kλ(t, 1) = 1 ≤ 1

tδ (t ∈ (0, 1]) , then by (13), we have the follow-

ing inequality with the best constant factor λ
αλ1λ2

:

∞∑
n=1

an

∞∫
0

1

(max{xα ,nα})λ f (x)dx

<
λ

αλ1λ2

⎧⎨
⎩

∞∫
0

xp(1−αλ1)−1f p(x)dx

⎫⎬
⎭

1
p { ∞∑

n=1

nq(1−αλ2)−1aqn

} 1
q

.

(31)

(iii) For n0 = 1, b = b, c = ∞, u(x) = v(x) = x − β(0 ≤ β ≤ 1
2) ,

kλ(x, y) =
ln(x/y)
xλ−yλ (λ,λ1 > 0, 0 < λ2 ≤ 1) , since for any fixed x Î (b, ∞),
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f (x, y) = (x − β)λ1
ln[(x − β)/(y − β)]

(x − β)λ − (y − β)λ
(y − β)λ2−1

is decreasing and strictly convex for y ∈ ( 12 ,∞) , then by Condition (ii), it follows

	 (x) < (x − β)λ1

∞∫
1
2

ln[(x − β)/(y − β)]

(x − β)λ − (y − β)λ
(y − β)λ2−1dy

t=[(y−β)/(x−β)]λ
=

1
λ2

∞∫

[

1
2−β

x−β
]

λ

lnt
t − 1

t(λ2/λ)−1dt

≤ 1
λ2

∞∫
0

lnt

t − 1
t(λ2/λ)−1dt =

[
π

λsin(πλ1
λ
)

]2

.

Since for δ = λ1
2 < λ1 , kλ(t, 1) = lnt

tλ−1 ≤ M
tδ (t ∈ (0, 1]) , then by (13), we have the fol-

lowing inequality with the best constant factor [ π

λsin(
πλ1
λ

)
]2 :

∞∑
n=1

an

∞∫
β

ln[(x − β)/(n− β)]

(x − β)λ − (n − β)λ
f (x)dx <

[
π

λsin(πλ1
λ
)

]2

×

⎧⎪⎨
⎪⎩

∞∫
β

(x − β)p(1−λ1)−1f p(x)dx

⎫⎪⎬
⎪⎭

1
p { ∞∑

n=1

(n − β)q(1−λ2)−1aqn

} 1
q

.

(32)

(iv) For n0 = 1, b = 1 - b = g, c = ∞, u(x) = v(x) = (x - g),

kλ(x, y) = 1
xλ+yλ (0 < λ ≤ 4) , kλ(x, y) = 1

xλ+yλ (0 < λ ≤ 4) , λ1 = λ2 = λ
2 , we have

k
(

λ

2

)
=

∞∫
0

kλ(t, 1)t
λ
2−1dt =

2
λ

∞∫
0

1
tλ + 1

dt
λ
2

=
2
λ
arctan t

λ
2 |∞0 =

π

λ
∈ R+

and

f (x, y) =
(x − γ )

λ
2 (y − γ )

λ
2−1

(x − γ )λ + (y − γ )λ
(x, y ∈ (γ ,∞)).

Hence, v(y)(y Î [g, ∞)) is strictly increasing with v(1 - b) = v(g) = 0, and for any fixed

x Î (g, ∞), f(x, y) is smooth with

f ′
y(x, y) = −

(
1 +

λ

2

)
(x − γ )

λ
2 (y − γ )

λ
2−2

(x − γ )λ + (y − γ )λ
+

λ(x − γ )
3λ
2 (y − γ )

λ
2−2

[(x − γ )λ + (y − γ λ]2
.
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We set

R(x) :=

1∫
γ

f (x, y)dy − 1
2
f (x, 1) −

∞∫
1

ρ(y)f ′
y(x, y)dy. (33)

For x Î (g, ∞), 0 < l ≤ 4, by (33) and the following improved Euler-Maclaurin sum-

mation formula [6]:

−1
8

g(1) <

∞∫
1

ρ(y)g(y)dy < 0((−1)ig(i)(y) > 0, g(i)(∞) = 0, i = 0, 1),

we have

R(x) =

1∫
γ

(x − γ )
λ
2 (y − γ )

λ
2−1

(x − γ )λ + (y − γ )λ
dy − 1

2
(x − γ )

λ
2 (1 − γ )

λ
2−1

(x − γ )λ + (1 − γ )λ

+
(
1 +

λ

2

) ∞∫
1

ρ(y)
(x − γ )

λ
2 (y − γ )

λ
2−2

(x − γ )λ + (y − γ )λ
dy

−
∞∫
1

ρ(y)
λ(x − γ )

3λ
2 (y − γ )

λ
2−2

[(x − γ )λ + (y − γ λ]2
dy

>
2
λ
arctan

(
1 − γ

x − γ

)λ
2 − (1 − γ )

λ
2−1(x − γ )

λ
2

2[(1 − γ )λ + (x − γ λ]

− 1
8

(
1 +

λ

2

)
(1 − γ )

λ
2−2(x − γ )

λ
2

(1 − γ )λ + (x − γ )λ
+ 0

= h(x) :=
2
λ
arctan

(
1 − γ

x − γ

)λ
2

−
[
1 − γ

2
+
1
8
(1 +

λ

2
)
]
(1 − γ )

λ
2−2(x − γ )

λ
2

(1 − γ )λ + (x − γ )λ
.

Since for γ ≤ 1 − 1
8 [λ +

√
λ(3λ + 4)] , i.e. 1 − γ ≥ 1

8 [λ +
√

λ(3λ + 4)](0 < λ ≤ 4),

h′(x) =
(1 − γ )

λ
2 (x − γ )−

λ
2−1

(1 − γ )λ + (x − γ )λ
−

[
1 − γ

2
+
1
8
(1 +

λ

2
)
]
(1 − γ )

λ
2−2

×
⎧⎨
⎩ λ(x − γ )

λ
2−1

2[(1 − γ )λ + (x − γ )λ]
− λ(x − γ )

3λ
2 −1

[(1 − γ )λ + (x − γ )λ]
2

⎫⎬
⎭

= −
[
(1 − γ )2 − λ

4
(1 − γ ) − λ

16
(1 +

λ

2
)
]
(1 − γ )

λ
2−2(x − γ )

λ
2−1

(1 − γ )λ + (x − γ )λ

−
[
1 − γ

2
+
1
8
(1 +

λ

2
)
]

λ(1 − γ )
3λ
2 −2(x − γ )

λ
2−1

[(1 − γ )λ + (x − γ )λ]
2 < 0,

then h(x) is strictly decreasing and R(x) > h(x) > h(∞) = 0.
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Then, by Condition (iii), it follows 	 (x) < k(λ
2 ) =

π
λ
(x ∈ (γ ,∞)) . For δ = 0 < λ

2 , it

follows

kλ(t, 1) =
1

tλ + 1
≤ 1 =

1
tδ
, t ∈

(
0,

1
1 − γ

)
,

and by (13), we have the following inequality with the best constant factor π
λ :

∞∑
n=1

an

∞∫
γ

1

(x − γ )λ + (n − γ )λ
f (x)dx

<
π

λ

⎧⎨
⎩

∞∫
γ

(x − γ )p(1−λ
2 )−1f p(x)dx

⎫⎬
⎭

1
p { ∞∑

n=1

(n − γ )q(1−λ
2 )−1aqn

} 1
q

,

(34)

where γ ≤ 1 − 1
8 [λ +

√
λ(3λ + 4)](0 < λ ≤ 4) .
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