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Abstract

Let ℝ+ = [0, ∞) and R : ℝ+ ® ℝ+ be a continuous function which is the Laguerre-

type exponent, and pn, r(x), ρ > − 1
2 be the orthonormal polynomials with the

weight wr(x) = xr e-R(x). For the zeros {xk,n,ρ}nk=1 of pn,ρ(x) = pn(w2
ρ ; x) , we consider

the higher order Hermite-Fejér interpolation polynomial Ln(l, m, f; x) based at the
zeros {xk,n,ρ}nk=1 , where 0 ≤ l ≤ m - 1 are positive integers.
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1. Introduction and main results
Let ℝ = [-∞, ∞) and ℝ+ = [0, ∞). Let R : ℝ+ ® ℝ+ be a continuous, non-negative, and

increasing function. Consider the exponential weights wr(x) = xr exp(-R(x)), r > -1/2,

and then we construct the orthonormal polynomials {pn,ρ(x)}∞n=0 with the weight wr

(x). Then, for the zeros {xk,n,ρ}nk=1 of pn,ρ(x) = pn(w2
ρ ; x) , we obtained various estima-

tions with respect to p(j)n,ρ(xk,n,ρ) , k = 1, 2, ..., n, j = 1, 2, ..., ν, in [1]. Hence, in this arti-

cle, we will investigate the higher order Hermite-Fejér interpolation polynomial Ln (l,

m, f; x) based at the zeros {xk,n,ρ}nk=1 , using the results from [1], and we will give a

divergent theorem. This article is organized as follows. In Section 1, we introduce

some notations, the weight classes L2 , L̃ν
with L(C2), L(C2+) , and main results. In

Section 2, we will introduce the classes F(C2) and F(C2+) , and then, we will obtain

some relations of the factors derived from the classes F(C2) , F(C2+) and the classes

L(C2+) , L(C2+) . Finally, we will prove the main theorems using known results in

[1-5], in Section 3.

We say that f : ℝ ® ℝ+ is quasi-increasing if there exists C > 0 such that f(x) ≤ Cf(y)

for 0 <x <y. The notation f(x) ~ g(x) means that there are positive constants C1, C2

such that for the relevant range of x, C1 ≤ f(x)/g(x) ≤ C2. The similar notation is used

for sequences, and sequences of functions. Throughout this article, C, C1, C2, ... denote

positive constants independent of n, x, t or polynomials Pn(x). The same symbol does

not necessarily denote the same constant in different occurrences. We denote the class

of polynomials with degree n by Pn .
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First, we introduce classes of weights. Levin and Lubinsky [5,6] introduced the class

of weights on ℝ+ as follows. Let I = [0, d), where 0 <d ≤ ∞.

Definition 1.1. [5,6] We assume that R : I ® [0, ∞) has the following properties: Let

Q(t) = R(x) and x = t2.

(a)
√
xR(x) is continuous in I, with limit 0 at 0 and R(0) = 0;

(b) R″(x) exists in (0, d), while Q″ is positive in (0,
√
d) ;

(c)

lim
x→d−

R(x) = ∞;

(d) The function

T(x) :=
xR′(x)
R(x)

is quasi-increasing in (0, d), with

T(x) ≥ � >
1
2
, x ∈ (0, d);

(e) There exists C1 > 0 such that

| R′′(x) |
R′(x) ≤ C1

R′(x)
R(x)

, a.e. x ∈ (0, d).

Then, we write w ∈ L(C2) . If there also exist a compact subinterval J* ∋ 0 of

I∗ = (−√
d,

√
d) and C2 > 0 such that

Q′′(t)
| Q′(t) | ≥ C2

| Q′(t) |
Q(t)

, a.e. t ∈ I∗\J∗,

then we write w ∈ L(C2+) .

We consider the case d = ∞, that is, the space ℝ+ = [0, ∞), and we strengthen Defini-

tion 1.1 slightly.

Definition 1.2. We assume that R : ℝ+ ® ℝ+ has the following properties:

(a) R(x), R’(x) are continuous, positive in ℝ+, with R(0) = 0, R’(0) = 0;

(b) R″(x) > 0 exists in ℝ+\{0};

(c)

lim
x→∞ R(x) = ∞;

(d) The function

T(x) :=
xR′(x)
R(x)
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is quasi-increasing in ℝ+\{0}, with

T(x) ≥ � >
1
2
, x ∈ �

+\{0};

(e) There exists C1 > 0 such that

R′′(x)
R′(x)

≤ C1
R′(x)
R(x)

, a.e. x ∈ �+\{0}.

There exist a compact subinterval J ∋ 0 of ℝ+ and C2 > 0 such that

R′′(x)
R′(x)

≥ C2
R′(x)
R(x)

, a.e. t ∈ �+\J,

then we write w ∈ L2 .

To obtain estimations of the coefficients of higher order Hermite-Fejér interpolation

polynomial based at the zeros {xk,n,ρ}nk=1 , we need to focus on a smaller class of

weights.

Definition 1.3. Let w = exp(−R) ∈ L2 and let ν ≥ 2 be an integer. For the exponent

R, we assume the following:

(a) R(j) (x) > 0, for 0 ≤ j ≤ ν and x > 0, and R(j) (0) = 0, 0 ≤ j ≤ ν - 1.

(b) There exist positive constants Ci > 0, i = 1, 2, ..., ν - 1 such that for i = 1, 2, ...,

ν - 1

R(i+1)(x) ≤ CiR
(i)(x)

R′(x)
R(x)

, a.e. x ∈ �+\{0}.

(c) There exist positive constants C, c1 > 0 and 0 ≤ δ < 1 such that on x Î (0, c1)

R(ν)(x) ≤ C
(
1
x

)δ

. (1:1)

(d) There exists c2 > 0 such that we have one among the following

(d1) T(x)/
√
x is quasi-increasing on (c2, ∞),

(d2) R(ν)(x) is nondecreasing on (c2, ∞).

Then we write w(x) = e−R(x) ∈ L̃ν .

Example 1.4. [6,7] Let ν ≥ 2 be a fixed integer. There are some typical examples

satisfying all conditions of Definition 1.3 as follows: Let a > 1, l ≥ 1, where l is an inte-

ger. Then we define

Rl,α(x) = expl(x
α) − expl(0),

where expl (x) = exp(exp(exp ... exp(x)) ...) is the l-th iterated exponential.
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(1) If a >ν, w(x) = e−Rl,α(x) ∈ L̃ν .

(2) If a ≤ ν and a is an integer, we define

R∗
l,α(x) = expl(x

α) − expl(0) −
r∑
j=1

R(j)
l,α(0)

j!
xj.

Then w(x) = e−R∗
l,α(x) ∈ L̃ν .

In the remainder of this article, we consider the classes L2 and L̃ν
; Let w ∈ L2 or

w ∈ L̃ν ν ≥ 2 . For ρ > −1
2
, we set wr(x): = xrw(x). Then we can construct the ortho-

normal polynomials pn,ρ(x) = pn(w2
ρ ; x) of degree n with respect to w2

ρ(x) . That is,

∫ ∞

0
pn,ρ(u)pm,ρ(u)w2

ρ(u)du = δnm(Kronecker’s delta) n,m = 0, 1, 2, . . . .

Let us denote the zeros of pn,r(x) by

0 < xn,n,ρ < · · · < x2,n,ρ < x1,n,ρ < ∞.

The Mhaskar-Rahmanov-Saff numbers av is defined as follows:

v =
1
π

∫ 1

0

avtR′(avt)√
t(1 − t)

dt, v > 0.

Let l, m be non-negative integers with 0 ≤ l <m ≤ ν. For f Î C(l) (ℝ), we define the (l,

m)-order Hermite-Fejér interpolation polynomials Ln(l,m, f ; x) ∈ Pmn−1 as follows: For

each k = 1, 2, ..., n,

L(j)n (l,m, f ; xk,n,ρ) = f (j)(xk,n,ρ), j = 0, 1, 2, . . . , l,

L(j)n (l,m, f ; xk,n,ρ) = 0, j = l + 1, l + 2, . . . ,m − 1.

For each P ∈ Pmn−1 , we see Ln(m - 1, m, P; x) = P(x). The fundamental polynomials

hs,k,n,ρ(m; x) ∈ Pmn−1 , k = 1, 2, ..., n, of Ln(l, m, f; x) are defined by

hs,k,n,ρ(l,m; x) = lmk,n,ρ(x)
m−1∑
i=s

es,i(l,m, k,n)(x − xk,n,ρ)i. (1:2)

Here, lk, n, r(x) is a fundamental Lagrange interpolation polynomial of degree n - 1

[[8], p. 23] given by

lk,n,ρ(x) =
pn(w2

ρ ; x)

(x − xk,n,ρ)p′
n(w2

ρ ; xk,n,ρ)

and hs,k, n, r(l, m; x) satisfies

h(j)s,k,n,ρ(l,m; xp,n,ρ) = δs,jδk,p j, s = 0, 1, . . . ,m − 1, p = 1, 2, . . . ,n. (1:3)
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Then

Ln(l,m, f ; x) =
n∑

k=1

l∑
s=0

f (s)(xk,n,ρ)hs,k,n,ρ(l,m; x).

In particular, for f Î C(ℝ), we define the m-order Hermite-Fejér interpolation poly-

nomials Ln(m, f ; x) ∈ Pmn−1 as the (0, m)-order Hermite-Fejér interpolation polyno-

mials Ln(0, m, f; x). Then we know that

Ln(m, f ; x) =
n∑

k=1

f (xk,n,ρ)hk,n,ρ(m; x),

where ei(m, k, n): = e0,i(0, m, k, n) and

hk,n,ρ(m; x) = lmk,n,ρ(x)
m−1∑
i=0

ei(m, k,n)(x − xk,n,ρ)i. (1:4)

We often denote lk, n(x): = lk, n, r(x), hs, k, n(x): = hs, k, n, r(x), and xk, n : = xk, n, r if

they do not confuse us.

Theorem 1.5. Let w(x) = exp(−R(x)) ∈ L(C2+)and r > -1/2.

(a) For each m ≥ 1 and j = 0, 1, ..., we have

| (lmk,n)(j)(xk,n) | ≤ C
(

n√
a2n − xk,n

)j

x
−
j
2

k,n . (1:5)

(b) For each m ≥ 1 and j = s, ..., m - 1, we have es, s(l, m, k, n) = 1/s! and

| es,j(l,m, k,n) | ≤ C
(

n√
a2n − xk,n

)j−s

x
−
j − s
2

k,n . (1:6)

We remark L2 ⊂ L(C2+).

Theorem 1.6. Let w(x) = exp(−R(x)) ∈ L̃ν , ν ≥ 2and r > -1/2. Assume that 1 + 2r
-δ/2 ≥ 0 for r < -1/4 and if T(x) is bounded, then assume that

an ≤ Cn2/(1+ν−δ), (1:7)

where 0 ≤ δ < 1 is defined in (1.1). Then we have the following:

(a) If j is odd, then we have for m ≥ 1 and j = 0, 1, ..., ν - 1,

| (lmk,n)(j)(xk,n) | ≤C
(

T(an)√
anxk,n

+ R′(xk,n) +
1
xk,n

)

×
(

n√
a2n − √

xk,n
+
T(an)√

an

)j−1

x
−
j − 1
2

k,n .

(1:8)
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(b) If j - s is odd, then we have for m ≥ 1 and 0 ≤ s ≤ j ≤ m - 1,

| es,j(l,m, k,n) | ≤C
(

T(an)√
anxk,n

+ R′(xk,n) +
1
xk,n

)

×
(

n√
a2n − √

xk,n
+
T(an)√

an

)j−s−1

x
−
j − s − 1

2
k,n .

(1:9)

Theorem 1.7. Let 0 <ε < 1/4. Let 1
ε
an
n2 ≤ xk,n ≤ εan . Let s be a positive integer with 2

≤ 2s ≤ ν. Then under the same conditions as the assumptions of Theorem 1.6, there

exists μ1(ε, n) > 0 such that

∣∣∣p(2s)n,ρ (xk,n)
∣∣∣ ≤ Cδ(ε,n)

(
n√
an

)2s−1 ∣∣p′
n(xk,n)

∣∣ x−
(2s − 1)

2
k,n

and δ (ε, n) ® 0 as n ® ∞ and ε ® 0.

Theorem 1.8. [4, Lemma 10] Let 0 <ε < 1/4. Let 1
ε
an
n2 ≤ xk,n ≤ εan . Let s be a positive

integer with 2 ≤ 2s ≤ ν - 1. Suppose the same conditions as the assumptions of Theorem

1.6. Then

(a) for 1 ≤ 2s - 1 ≤ ν - 1,

∣∣∣(lmk,n)(2s−1)(xk,n)
∣∣∣ ≤ Cδ(ε,n)

(
n√
an

)2s−1

x
−
2s − 1

2
k,n , (1:10)

where δ(ε, n) is defined in Theorem 1.7.

(b) there exists b(n, k) with 0 <D1 ≤ b(n, k) ≤ D2 for absolute constants D1, D2 such

that the following holds:

(lmk,n)
(2s)(xk,n) = (−1)sφs(m)β s(2n, k)

(
n√
an

)2s

x−s
k,n(1 + ξs(m, ε, xk,n,n)) (1:11)

and |ξs (m, ε, xk, n, n)| ® 0 as n ® ∞ and ε ® 0.

Theorem 1.9. [4, (4.16)], [9]Let 0 <ε < 1/4. Let 1
ε
an
n2 ≤ xk,n ≤ εan . Let s be a positive

integer with 2 ≤ 2s ≤ m - 1. Suppose the same conditions as the assumptions of Theo-

rem 1.6. Then for j = 0, 1, 2, ..., there is a polynomial Ψj(x) of degree j such that (-1)jψj

(-m) > 0 for m = 1, 3, 5, ... and the following relation holds:

e2s(m, k,n) =
(−1)s

(2s)!
�s(−m)β s(2n, k)

(
n√
an

)2s

x−s
k,n

(
1 + ηs(m, ε, xk,n,n)

)
(1:12)

and |hs (m, ε, xk, n, n)| ® 0 as n ® ∞ and ε ® 0.

Theorem 1.10. Let m be an odd positive integer. Suppose the same conditions as the

assumptions of Theorem 1.6. Then there is a function f in C(ℝ+) such that for any fixed
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interval [a, b], a >0,

lim sup
n→∞

max
a≤x≤b

|Ln(m, f ; x)| = ∞.

2. Preliminaries

Levin and Lubinsky introduced the classes L(C2) and L(C2+) as analogies of the

classes F(C2) and F(C2+) defined on I∗ = (−√
d,

√
d) . They defined the following:

Definition 2.1. [10] We assume that Q : I* ® [0, ∞) has the following properties:

(a) Q(t) is continuous in I*, with Q(0) = 0;

(b) Q″(t) exists and is positive in I*\{0};

(c)

lim
t→√

d−
Q(t) = ∞;

(d) The function

T∗(t) :=
tQ′(t)
Q(t)

is quasi-increasing in (0,
√
d) , with

T∗(t) ≥ �∗ > 1, t ∈ I∗\{0};

(e) There exists C1 > 0 such that

Q′′(t)
| Q′(t) | ≤ C1

| Q′(t) |
Q(t)

, a.e. t ∈ I∗\{0}.

Then we write W ∈ F(C2) . If there also exist a compact subinterval J* ∋ 0 of I* and

C2 > 0 such that

Q′′(t)
| Q′(t) | ≥ C2

Q′(t)
| Q(t) | , a.e. t ∈ I∗\J∗,

then we write W ∈ F(C2+) .

Then we see that w ∈ L(C2) ⇔ W ∈ F(C2) and w ∈ L(C2+) ⇔ W ∈ F(C2+) where

W(t) = w(x), x = t2, from [6, Lemma 2.2]. In addition, we easily have the following:

Lemma 2.2. [1]Let Q(t) = R(x), x = t2. Then we have

w ∈ L2 ⇒ W ∈ F(C2+),

where W(t) = w(x); x = t2.

On ℝ, we can consider the corresponding class to L̃ν
as follows:

Definition 2.3. [11] Let W = exp(−Q) ∈ F(C2+) and ν ≥ 2 be an integer. Let Q be a

continuous and even function on ℝ. For the exponent Q, we assume the following:

(a) Q(j) (x) > 0, for 0 ≤ j ≤ ν and t Î ℝ+/{0}.
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(b) There exist positive constants Ci > 0 such that for i = 1, 2, ..., ν - 1,

Q(i+1)(t) ≤ CiQ
(i)(t)

Q′(t)
Q(t)

, a.e. x ∈ �
+\{0}.

(c) There exist positive constants C, c1 > 0, and 0 ≤ δ* < 1 such that on t Î (0, c1),

Q(ν)(t) ≤ C
(
1
t

)δ∗

. (2:1)

(d) There exists c2 > 0 such that we have one among the following:

(d1) T* (t)/t is quasi-increasing on (c2, ∞),

(d2) Q(ν)(t) is nondecreasing on (c2, ∞).

Then we write W(t) = e−Q(t) ∈ F̃ν .

Let W ∈ F̃ν
, and ν ≥ 2. For ρ∗ > − 1

2, we set

Wρ∗(t) := | t|ρ∗W(t).

Then we can construct the orthonormal polynomials Pn,ρ∗(t) = Pn(W2
ρ∗ ; t) of degree n

with respect to Wr*(t). That is,∫ ∞

−∞
Pn,ρ∗(v)Pm,ρ∗(v)W2

ρ∗(v)dt = δnm, n,m = 0, 1, 2, . . . .

Let us denote the zeros of Pn, r*(t) by

−∞ < tnn < · · · < t2n < t1n < ∞.

There are many properties of Pn, r*(t) = Pn(Wr* ; t) with respect to Wr*(t),

W ∈ F̃ν , ν = 2, 3, . . . of Definition 2.3 in [2,3,7,11-13]. They were obtained by transfor-

mations from the results in [5,6]. Jung and Sakai [2, Theorem 3.3 and 3.6] estimate

P(j)
n,ρ∗(tk,n) , k = 1, 2, ..., n, j = 1, 2, ..., ν and Jung and Sakai [1, Theorem 3.2 and 3.3]

obtained analogous estimations with respect to p(j)n,ρ(xk,n) , k = 1, 2, ..., n, j = 1, 2, ..., ν.

In this article, we consider w = exp(−R) ∈ L̃ν and pn, r(x) = pn(wr ; x). In the follow-

ing, we give the transformation theorems.

Theorem 2.4. [13, Theorem 2.1] Let W(t) = W(x) with x = t2. Then the orthonormal

polynomials Pn, r*(t) on ℝ can be entirely reduced to the orthonormal polynomials pn, r
(x) in ℝ+ as follows: For n = 0, 1, 2, ...,

P
2n,2ρ+ 12

(t) = pn,ρ(x) and P
2n+1,2ρ− 1

2
(t) = tpn,ρ(x).

In this article, we will use the fact that wr(x) = xr exp(-R(x)) is transformed into W2r

+1/2(t) = |t|2r+1/2 exp (-Q(t)) as meaning that∫ ∞

0
pn,ρ(x)pm,ρ(x)w2

ρ(x)dx = 2
∫ ∞

0
pn,ρ(t2)pm,ρ(t2)t4ρ+1W2(t)dt

=
∫ ∞

−∞
P2n,2ρ+1/2(t)P2m,2ρ+1/2(t)W2

2ρ+1/2(t)dt.
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Theorem 2.5. [1, Theorem 2.5] Let Q(t) = R(x), x = t2. Then we have

w(x) = exp(−R(x)) ∈ L̃ν ⇒ W(t) = exp(−Q(t)) ∈ F̃ν . (2:2)

In particular, we have

Q(ν)(t) ≤ C
(
1
t

)δ

,

where 0 ≤ δ < 1 is defined in (1.1).

For convenience, in the remainder of this article, we set as follows:

ρ∗ := 2ρ +
1
2
for ρ > −1

2
, pn(x) := pn,ρ(x), Pn(t) := Pn,ρ∗(t), (2:3)

and xk,n = xk,n,ρ , tkn = tk,n,ρ∗ . Then we know that ρ∗ > − 1
2 and

pn(x) = P2n,ρ∗(t), x = t2, xk,n = t2k,2n, tk,2n > 0, k = 1, 2, . . . ,n. (2:4)

In the following, we introduce useful notations:

(a) The Mhaskar-Rahmanov-Saff numbers av and a∗
u are defined as the positive

roots of the following equations, that is,

v =
1
π

∫ 1

0
avtR′(avt){t(1 − t)}− 1

2 dt, v > 0

and

u =
2
π

∫ 1

0
a∗
utQ

′(a∗
ut)(1 − t2)−

1
2 dt, u > 0.

(b) Let

ηn = {nT(an)}−
2
3 and η∗

n = {nT∗(a∗
n)}−

2
3 .

Then we have the following:

Lemma 2.6. [6, (2.5),(2.7),(2.9)]

an = a∗
2n

2, ηn = 42/3η∗
2n, T(an) =

1
2
T∗(a∗

2n).

To prove main results, we need some lemmas as follows:

Lemma 2.7. [13, Theorem 2.2, Lemma 3.7] For the minimum positive zero, t[n/2],n ([n/2]

is the largest integer ≤ n/2), we have

t[n/2],n∼a∗
nn

−1,

and for the maximum zero t1n we have for large enough n,

1 − t1n
a∗
n
∼η∗

n, η∗
n = (nT∗(a∗

n))
− 2
3 .
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Moreover, for some constant 0 <ε ≤ 2 we have

T∗(a∗
n) ≤ Cn2−ε .

Remark 2.8. (a) Let W(t) ∈ F(C2+) . Then

(a-1) T(x) is bounded ⇔ T*(t) is bounded.

(a-2) T(x) is unbounded ⇒ an ≤ C(h)nh for any h > 0.

(a-3) T(an) ≤ Cn2-ε for some constant 0 <ε ≤ 2.

(b) Let w(x) ∈ L̃ν . Then

(b-1) r > -1/2 ⇒ r* > -1/2.

(b-2) 1 + 2r - δ/2 ≥ 0 for r < -1/4 ⇒ 1 + 2r* - δ* ≥ 0 for r* < 0.

(b-3) an ≤ Cn2/(1+ν−δ) ⇒ a∗
n ≤ Cn1/(1+ν−δ∗) .

Proof of Remark 2.8. (a) (a-1) and (a-3) are easily proved from Lemma 2.6. From [11,

Theorem 1.6], we know the following: When T*(t) is unbounded, for any h > 0 there

exists C(h) > 0 such that

a∗
t ≤ C(η)tη, t ≥ 1.

In addition, since T(x) = T*(t)/2 and an = a∗
2n

2 , we know that (a-2).

(b) Since w(x) ∈ L̃ν , we know that W(t) ∈ F̃ν and δ* = δ by Theorem 2.5. Then

from (2.3) and Lemma 2.6, we have (b-1), (b-2), and (b-3). □

Lemma 2.9. [1, Lemma 3.6] For j = 1, 2, 3, ..., we have

p(j)n (x) =
j∑

i=1

(−1)j−icj,iP
(i)
2n(t)t

−2j+i,

where cj, i > 0(1 ≤ i ≤ j, j = 1, 2, ...) satisfy the following relations: for k = 1, 2, ...,

ck+1,1 =
2k − 1

2
ck,1, ck+1,k+1 =

1
2k+1

, c1,1 =
1
2
,

and for 2 ≤ i ≤ k,

ck+1,i =
ck,i−1 + (2k − i)ck,i

2
.

3. Proofs of main results
Our main purpose is to obtain estimations of the coefficients es, i(l, m, k, n), k = 1, 2, ..., 0

≤ s ≤ l, s ≤ i ≤ m - 1.

Theorem 3.1. [1, Theorem 1.5] Let w(x) = exp(−R(x)) ∈ L(C2+)and let r > -1/2. For

each k = 1, 2, ..., n and j = 0, 1, ..., we have

| p(j)n,ρ(xk,n) |≤ C
(

n√
a2n − xk,n

)j−1

x
− j−1

2
k,n | p′

n,ρ(xk,n) | .
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Proof of Theorem 1.5. (a) From Theorem 3.1 we know that

|l(j)k,n(xk,n)| =
∣∣∣∣∣ p(j+1)n (xk,n)
(j + 1)p′

n(xk,n)

∣∣∣∣∣ ≤ C
(

n√
a2n − xk,n

)j

x
− j
2

k,n .

Then, assuming that (a) is true for 1 ≤ m’ <m, we have

|(lmk,n)(j)(xk,n)| =

∣∣∣∣∣∣
j∑

s=0

(
j
s

)
(lm−1
k,n )

(s)
(xk,n)lk,n

(j−s)(xk,n)

∣∣∣∣∣∣
≤ C

j∑
s=0

(
n√

a2n − xk,n

)s

x
− s
2

k,n

(
n√

a2n − xk,n

)j−s

x
− j−s

2
k,n

≤
(

n√
a2n − xk,n

)j

x
− j
2

k,n .

Therefore, the result is proved by induction with respect to m.

(b) From (2) and (3), we know es, s(l, m, k, n) = 1/s! and the following recurrence

relation: for s + 1 ≤ i ≤ m - 1,

es,i(l,m, k,n) = −
i−1∑
p−s

1
(i − p)!

es,p(l,m, k,n)(lk,n)
(i−p)(xk,n). (3:5)

Therefore, we have the result by induction on i and (3.5).

Theorem 3.2. [1, Theorem 1.6] Let w(x) = exp(−R(x)) ∈ L̃νand let r > -1/2. Suppose

the same conditions as the assumptions of Theorem 1.6. For each k = 1, 2, ..., n and j =

1, ..., ν, we have

| p(j)n,ρ(xk,n) | ≤ C
(

n√
an − √

xk,n
+
T(an)√

an

)j−1

x
− j−1

2
k,n | p′

n,ρ(xk,n)|

and in particular, if j is even, then we have

| p(j)n,ρ(xk,n) | ≤C
(

T(an)√
anxk,n

+ R′(xk,n) +
1
xk,n

)

×
(

n√
an − √

xk,n
+
T(an)√

an

)j−2

x
− j−2

2
k,n | p′

n,ρ(xk,n)|.

Proof of Theorem 1.6. We use the induction method on m.

(a) For m = 1, we have the result because of

l(j)k,n(xk,n) =
p(j+1)n (xk,n)

(j + 1)p′
n(xk,n)

, j = 1, 2, 3, . . . ,

and Theorem 3.2. Now we assume the theorem for 1 ≤ m’ <m. Then, we have the

following: For 1 ≤ 2s - 1 ≤ ν - 1,
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(lmk,n)
(2s−1)(xk,n) =

s∑
r=0

(
2s − 1
2r

)
(lm−1
k,n )(2r)(xk,n)l

(2s−2r−1)
k,n (xk,n)

+
s∑

r=0

(
2s − 1
2r + 1

)
(lm−1
k,n )(2r+1)(xk,n)l

(2s−2r−2)
k,n (xk,n).

Since

n√
a2n − xk,n

≤ n√
a2n − √

xk,n
,

we have∣∣∣(lm−1
k,n )

(2r)
(xk,n)l

(2s−2r−1)
k,n (xk,n)

∣∣∣
≤ C

(
T(an)√
anxk,n

+ R′(xk,n) +
1
xk,n

)

×
(

n√
a2n − xk,n

)2r( n√
a2n − √

xk,n
+
T(an)√

an

)2s−2r−2

x−s+1
k,n

≤ C
(

T(an)√
anxk,n

+ R′(xk,n) +
1
xk,n

)

×
(

n√
a2n − √

xk,n
+
T(an)√

an

)2s−2

x−s+1
k,n ,

and similarly

∣∣∣(lm−1
k,n )

(2r+1)
(xk,n)l

(2s−2r−2)
k,n (xk,n)

∣∣∣ ≤C
(

T(an)√
anxk,n

+ R′(xk,n) +
1
xk,n

)

×
(

n√
a2n − √

xk,n
+
T(an)√

an

)2s−2

x−s+1
k,n .

Therefore, we have

∣∣∣(lmk,n)(2s−1)(xk,n)
∣∣∣ ≤C

(
T(an)√
anxk,n

+ R′(xk,n) +
1
xk,n

)

×
(

n√
a2n − √

xk,n
+
T(an)√

an

)2s−2

x−s+1
k,n .

(b) To prove the result, we proceed by induction on i. From (1.2) and (1.3) we know

es, s(l, m, k, n) = 1/s! and the following recurrence relation: for s + 1 ≤ i ≤ m - 1,

es,i(l,m, k,n) = −
i−1∑
p=s

1
(i − p)!

es,p(l,m, k,n)(lmk,n)
(i−p)(xk,n). (3:6)

When i - s is odd, we know that{
i − p : odd, if p − s : even
i − p : even, if p − s : odd.
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Then, we have (1.9) from (1.5), (1.8), (3.6), and the assumption of induction on i. □

Theorem 3.3. [1, Theorem 1.7] Let 0 <ε < 1/4. Let 1
ε
an
n2 ≤ xk,n ≤ εanand let s be a

positive integer with 2 ≤ 2s ≤ ν - 1. Suppose the same conditions as the assumptions of

Theorem 1.6. Then there exists b(n, k), 0 <D1 ≤ b(n, k) ≤ D2 for absolute constants D1,

D2 such that the following equality holds:

p(2s+1)n,ρ (xk,n) = (−1)sβ s(2n, k)
(

n√
an

)2s

(1 + ρs(ε, xk,n,n))p′
n(xk,n)x

−s
k,n

and |rs(ε, xk, n, n)| ® 0 as n ® ∞ and ε ® 0.

Lemma 3.4. [3, Theorem 2.5] Let W ∈ F(C2+)and r = 1, 2, .... Then, uniformly for 1 ≤ k

≤ n,

∣∣∣∣∣P
(r)
n (tk,n)
P′

n(tk,n)

∣∣∣∣∣ ≤ C

⎛
⎜⎝ n√

a∗
2n

2 − t2k,n

⎞
⎟⎠

r−1

.

Lemma 3.5. [2, Theorem 3.3] Let r* > -1/2 and W(x) = exp(−Q(x)) ∈ F̃ν, ν ≥ 2.

Assume that 1 + 2r* - δ* ≥ 0 for r* < 0 and if T*(t) is bounded, then assume

a∗
n ≤ Cn1/(1+ν−δ∗),

where 0 ≤ δ* < 1 is defined in (2.1). Let 0 <a < 1/2. Let 1
ε

a∗
n
n ≤ |tkn| ≤ εa∗

n and let s be

a positive integer with 2 ≤ 2s ≤ ν. Then there exists μ(ε, n) > 0 such that

∣∣∣P(2s)
n (tk,n)

∣∣∣ ≤ Cμ(ε,n)
(

n
an

)2s−1 ∣∣P′
n(tk,n)

∣∣
and μ(ε, n) ® 0 as n ® ∞ and ε ® 0.

Proof of Theorem 1.7. By Lemma 2.9, we have

∣∣∣p(2s)n (xk,n)
∣∣∣ =

∣∣∣∣∣
2s∑
i=1

(−1)2s−ic2s,iP
(i)
2n(tk,n)t

−4s+i
k,n

∣∣∣∣∣
≤ C

∣∣∣c2s,2sP(2s)
2n (tk,n)t−2s

k,n

∣∣∣ +
∣∣∣∣∣
2s−1∑
i=1

(−1)2s−ic2s,iP
(i)
2n(tk,n)t

−4s+i
k,n

∣∣∣∣∣ .
Since, we have by Lemma 3.5,

∣∣∣c2s,2sP(2s)
2n (tk,n)t−2s

k,n

∣∣∣ ≤ Cμ(ε, 2n)
(

n
a∗
2n

)2s−1 ∣∣P′
2n(tk,n)

∣∣ ∣∣tk,n∣∣−2s

and by Lemma 3.4,∣∣∣∣∣
2s−1∑
i=1

(−1)2s−ic2s,iP
(i)
2n(tk,n)t

−4s+i
k,n

∣∣∣∣∣
≤ C

(
n

a∗
2n

)2s−1 ∣∣P′
2n(tk,n)

∣∣ ∣∣tk,n∣∣−2s
2s−1∑
i=1

(
n

a∗
2n

| tk,n |
)−2s+i

≤ Cε

(
n
a∗
2n

)2s−1 ∣∣P′
2n(tk,n)

∣∣ ∣∣tk,n∣∣−2s
,
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we have

∣∣∣p(2s)n (xk,n)
∣∣∣ ≤ Cδ(ε,n)

(
n
a∗
2n

)2s−1 ∣∣P′
2n(tk,n)

∣∣ ∣∣tk,n∣∣−2s

≤ Cδ(ε,n)
(

n√
an

)2s−1 ∣∣p′
n(xk,n)

∣∣ x− (2s−1)
2

k,n ,

where δ(ε, n) = μ(ε, 2n) + ε. □
Here we can estimate the coefficients ei(ν, k, n) of the fundamental polynomials hkn(ν; x).

For j = 0, 1, ..., define jj(1): = (2j + 1)-1 and for k ≥ 2,

ϕj(k) :=
j∑

r=0

1
2j − 2r + 1

(
2j
2r

)
ϕr(k − 1). (3:7)

Proof of Theorem 1.8. In a manner analogous to the proof of Theorem 1.6 (a), we use

mathematical induction with respect to m.

(a) From Theorem 1.7, we know that for 1 ≤ 2s -1 ≤ ν - 1,

∣∣∣l(2s−1)
k,n (xk,n)

∣∣∣ =
∣∣∣∣∣ p

(2s)
n (xk,n)
2sp′

n(xk,n)

∣∣∣∣∣ ≤ Cδ(ε,n)
(

n√
an

)2s−1

x
−2s−1

2
k,n .

From Theorem 1.5, we know that for xk, n ≤ an/4,

∣∣∣(lmk,n)(j)(xk,n)∣∣∣ ≤ C
(

n√
an

)j

x
− j
2

k,n . (3:8)

Then, we have by mathematical induction on m,

∣∣∣(lmk,n)(2s−1)(xk,n)
∣∣∣ ≤C

s∑
r=0

(
2s − 1
2r

) ∣∣∣(lm−1
k,n )

(2r)
(xk,n)l

(2s−2r−1)
k,n (xk,n)

∣∣∣
+

s∑
r=0

(
2s − 1
2r + 1

) ∣∣∣(lm−1
k,n )

(2r+1)
(xk,n)l

(2s−2r−2)
k,n (xk,n)

∣∣∣
≤Cδ(ε,n)

(
n√
an

)2s−1

x
− 2s−1

2
k,n .

(b) From Theorem 3.3, we know that for 0 ≤ 2s ≤ ν - 1,

l(2s)k,n (xk,n) =
p(2s+1)n (xk,n)

(2s + 1)p′
n(xk,n)

= (−1)sφs(1)β s(2n, k)
(

n√
an

)2s

x−s
k,n(1 + ρs(ε, xk,n,n)).

(3:9)

If we let ξs(1, ε, xk, n, n) = rs (ε, xk, n, n), then (1.11) holds for m = 1 because |ξs(1, ε, xk, n,

n)| ® 0 as n ® ∞ and ε ® 0. Now, we split (lmk,n)
(2s)(xk,n) into two terms as follows:

(lmk,n)
(2s)(xk,n) =

∑
0≤2r≤2s

(
2s
2r

)
(lm−1
k,n )

(2r)
(xk,n)l

(2s−2r)
k,n (xk,n)

+
∑

1≤2r−1≤2s

(
2s

2r − 1

)
(lm−1
k,n )

(2r−1)
(xk,n)l

(2s−2r+1)
k,n (xk,n).

(3:10)

Jung and Sakai Journal of Inequalities and Applications 2011, 2011:122
http://www.journalofinequalitiesandapplications.com/content/2011/1/122

Page 14 of 24



For the second term, we have from (1.10),

∣∣∣∣∣
∑

1≤2r−1≤2s

(
2s

2r − 1

)
(lm−1
k,n )

(2r−1)
(xk,n)l

(2s−2r+1)
k,n (xk,n)

∣∣∣∣∣ ≤ Cδ2(ε,n)
(

n√
an

)2s

x−s
k,n.(3:11)

For the first term, we let ξs (m) = ξs(m, ε, xk, n, n) for convenience. Then we know

that

l(2s−2r)
k,n (xk,n) = (−1)s−rφs−r(1)β s−r(2n, k)

(
n√
an

)2s−r

x−(s−r)
k,n (1 + ξs−r(1))

and |ξs-r(1)| ® 0 as n ® ∞ and ε ® 0. By mathematical induction, we assume for 0

≤ 2r ≤ 2s;

(lm−1
k,n )(2r)(xk,n) = (−1)rφr(m − 1)β r(2n, k)

(
n√
an

)2r

x−r
k,n(1 + ξr(m − 1))

and |ξr(m - 1)| ® 0 as n ® ∞ and ε ® 0. Then, since

(lm−1
k,n )(2r)(xk,n)l

(2s−2r)
k,n (xk,n) = (−1)sβ s(2n, k)

(
n√
an

)2s

x−s
k,n

×φr(m − 1)φs−r(1)(1 + ξr(m − 1))
(
1 + ξs−r(1)

)
,

we have for 0 ≤ 2r ≤ 2s, using the definition of (3.7),

∑
0≤2r≤2s

(
2s
2r

)
(lm−1
k,n )

(2r)
(xk,n)l

(2s−2r)
k,n (xk,n)

=(−1)sβ s(2n, k)
(

n√
an

)2s

x−s
k,n

×
∑

0≤2r≤2s

(
2s
2r

)
φr(m − 1)φs−r(1)(1 + ξr(m − 1))(1 + ξs−r(1))

=(−1)sφs(m)β s(2n, k)
(

n√
an

)2s

x−s
k,n + (−1)sβ s(2n, k)

(
n√
an

)2s

x−s
k,n

×
∑

0≤2r≤2s

(
2s
2r

)
φr(m − 1)φs−r(1)(ξr(m − 1) + ξs−r(1) + ξr(m − 1)ξs−r(1)).

Here, we consider (3.10). If we let

ξs(m, ε, xk,n,n) = ξs(m) =∑
0≤2r≤2s

(
2s
2r

)
φr(m − 1)φs−r(1)

φs(m)
(ξr(m − 1) + ξs−r(1) + ξr(m − 1)ξs−r(1))

+
∑

1≤2r−1≤2s

(
2s

2r − 1

) (lm−1
k,n )

(2r−1)
(xk,n)l

(2s−2r+1)
k,n (xk,n)

(−1)sφs(m)β s(2n, k)
(

n√
an

)2s
x−s
k,n

,
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then we have

ξs(m) ≤
∑

0≤2r≤2s

(
2s
2r

)
φr(m − 1)φs−r(1)

φs(m)
(ξr(m − 1) + ξs−r(1) + ξr(m − 1)ξs−r(1))

+ C
δ2(ε,n)( n√

an
)2sx−s

k,n

(−1)sφs(m)β s(2n, k)
(

n√
an

)2s
x−s
k,n

by the definition of (3.11)

≤
∑

0≤2r≤2s

(
2s
2r

)
φr(m − 1)φs−r(1)

φs(m)
(ξr(m − 1) + ξs−r(1) + ξr(m − 1)ξs−r(1))

+ C′δ2(ε,n).

Then, we know that (1.11) holds and |ξi(j)| ® 0 as n ® ∞ and ε ® 0, using mathe-

matical induction on m. Therefore, we have the result.

We rewrite the relation (3.7) in the form for ν = 1, 2, 3 ...,

φ0(ν) := 1

and for j = 1, 2, 3 ..., ν = 2, 3, 4, ...,

φj(ν) − φj(ν − 1) =
1

2j + 1

j−1∑
r=0

(
2j + 1
2r

)
φr(ν − 1).

Now, for every j we will introduce an auxiliary polynomial determined by {�j(y)}∞j=1
as the following lemma:

Lemma 3.6. [4, Lemma 11] (i) For j = 0, 1, 2 ..., there exists a unique polynomial Ψj

(y) of degree j such that

�j(ν) = φj(ν), ν = 1, 2, 3, . . . .

(ii) Ψ0(y) = 1 and Ψj (0) = 0, j = 1, 2, ....

Since Ψj (y) is a polynomial of degree j, we can replace jj(ν) in (3.7) with Ψj(y), that

is,

�j(y) =
j∑

r=0

1
2j − 2r + 1

(
2j
2r

)
�r(y − 1), j = 0, 1, 2, ...,

for an arbitrary y and j = 0, 1, 2, .... We use the notation Fkn(x, y) = (lk, n(x))
y which

coincides with lyk,n(x) if y is an integer. Since lk, n(xk, n) = 1, we have Fkn (x, t) > 0 for x

in a neighborhood of xk, n and an arbitrary real number t.

We can show that (∂/∂x)j Fkn (xk, n, y) is a polynomial of degree at most j with

respect to y for j = 0, 1, 2, ..., where (∂/∂x)j Fkn (xk, n, y) is the jth partial derivative of

Fkn (x, y) with respect to x at (xk, n, y) [14, p. 199]. We prove these facts by induction

on j. For j = 0 it is trivial. Suppose that it holds for j ≥ 0. To simplify the notation, let

F(x) = Fkn(x, y) and l(x) = lk, n(x) for a fixed y. Then F’(x)l(x) = yl’(x)F(x). By Leibniz’s

rule, we easily see that
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F(j+1)(xk,n) = −
j−1∑
s=0

(
j
s

)
F(s+1)(xk,n)l(j−s)(xk,n) + y

j∑
s=0

(
j
s

)
l(s+1)(xk,n)F(j−s)(xk,n),

which shows that F(j+1)(xk, n) is a polynomial of degree at most j + 1 with respect to y.

Let P[j]
kn(y) , j = 0, 1, 2, ... be defined by

(∂/∂x)2jFkn(xk,n, y) = (−1)jβ j(2n, k)
(

n√
an

)2j

x−j
k,n�j(y) + P[j]

kn(y). (3:12)

Then P[j]
kn(y) is a polynomial of degree at most 2j.

By Theorem 1.8 (1.11), we have the following:

Lemma 3.7. [4, Lemma 12] Let j = 0, 1, 2, ..., and M be a positive constant. Let 0 <ε <

1/4, 1
ε
an
n2 ≤ xk,n ≤ εan , and |y| ≤ M. Then

(a) there exists �j (ε, xk, n, n) > 0 such that

∣∣∣(∂/∂y)sP[j]
kn(y)

∣∣∣ ≤ Cκj(ε, xk,n,n)
(

n√
an

)2j

x−j
k,n, s = 0, 1 (3:13)

and �j (ε, xk, n, n) ® 0 as n ® ∞ and ε ® 0.

(b) there exists gj (ε, n) > 0 such that

∣∣∣(∂/∂x)2j+1Fkn(xk,n, y)∣∣∣ ≤ Cγj(ε,n)
(

n√
an

)2j+1

x
− 2j+1

2
k,n

(3:14)

and gj (ε, n) ® 0 as n ® ∞ and ε ® 0.

Lemma 3.8. [4, Lemma 13] If y < 0, then for j = 0, 1, 2 ...,

(−1)j�j(y) > 0.

Lemma 3.9. For positive integers s and m with 1 ≤ m ≤ ν,

s∑
r=0

(
2s
2r

)
�r(−m)ϕs−r(m) = 0.

Proof. If we let Cs(y) =
∑s

r=0

(
2s
2r

)
�r(−y)�s−r(y) , then it suffices to show that Cs

(m) = 0. For every s,

0 = (l−m+m
k,n )2s(xk,n) =

2s∑
i=0

(
2s
i

)
(l−m
k,n )

(i)(xk,n)(lmk,n)
(2s−i)(xk,n)

=
s∑

r=0

(
2s
2r

)
(∂/∂x)2rFkn(xk,n,−m)(lmk,n)

(2s−2r)(xk,n)

+
s−1∑
r=0

(
2s

2r + 1

)
(∂/∂x)2r+1Fkn(xk,n,−m)(lmk,n)

(2s−2r−1)(xk,n).
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By (1.11), (3.12) and (3.13), we see that the first sum
∑s

r=0 has the form of

s∑
r=0

= (−1)sβ s(2n, k)
(

n√
an

)2s

x−s
k,n

(
s∑

r=0

(
2s
2r

)
�r(−m)φs−r(m) + η̃s(−m, ε, xk,n,n)

)
.

Then, since

η̃s(−m, ε, xk,n,n) =
s∑

r=0

(
2s
2r

)
�r(−m)φs−r(m)ξs−r(m, ε, xk,n,n)

+
s∑

r=0

(
2s
2r

)
(−1)−rβ−r(2n, k)

(
n√
an

)−2r

xrk,n

× φs−r(m)P[r]
kn (−m)(1 + ξs−r(m, ε, xk,n,n)),

we know that | η̃s(−m, ε, xk,n,n) | → 0 as n ® ∞ and ε ® 0 (see (3.12)). By (3.14)

and (3.8), the second sum
∑s−1

r=0 is bounded by C
(

n√
an

)2s+1
x
− 2s+1

2
k,n

∑2s−1
r=0 γr(ε,n) , and

we know that
∑2s−1

r=0 γr(ε,n) → 0 as n ® ∞ and ε ® 0. Therefore, we obtain the fol-

lowing result: for every s,

0 =
s∑

r=0

(
2s
2r

)
�r(−m)�s−r(m).

Theorem 1.9 is important to show a divergence theorem with respect to Ln (m, f; x),

where m is an odd integer.

Proof of Theorem 1.9. We prove (1.12) by induction on s. Since e0(m, k, n) = 1 and

Ψ0(y) = 1, (1.12) holds for s = 0. From (3.6) we write e2s (m, k, n) in the form of

e2s(m, k,n) = −
s−1∑
r=0

1
(2s − 2r)!

e2r(m, k,n)(lmk,n)
(2s−2r)(xk,n)

−
s∑

r=1

1
(2s − 2r + 1)!

e2r−1(m, k,n)(lmk,n)
(2s−2r+1)(xk,n)

=: I + II.

From (1.6), we know that for xk, n ≤ an/4,

| ej(l,m, k,n) | ≤ C
(

n√
an

)j

x
− j
2

k,n . (3:15)

Then, by (1.10) and (3.15), |II| is bounded by C
∑s

r=1 δ(ε,n)
(

n√
an

)2s
x−s
k,n

. For 0 ≤ i <s,

we suppose (1.12). Then, we have for I,

−
s−1∑
r=0

=
(−1)s+1

(2s)!
β s(2n, k)

(
n√
an

)2s

x−s
k,n

×
s−1∑
r=0

(
2s
2r

)
�r(−m)φs−r(m)(1 + ηr)(1 + ξs−r),
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where ξs-r : = ξs-r(m, ε, xk, n, n) and h r : = h r(m, ε, xk, n, n) which are defined in

(1.11) and (1.12). Then, using Lemma 3.9 and j0 (m) = 1, we have the following form:

e2s(m, k,n) =
(−1)s

(2s)!
�s(−m)β s(2n, k)

(
n√
an

)2s

x−s
k,n(1 + ηs(m, ε, xk,n,n)).

Here, since

ηs(m, ε, xk,n,n) =
s−1∑
r=0

(
2s
2r

)
�r(−m)φs−r(m)(ηr + ξs−r + ηrξs−r)

+ (−1)sβ−s(2n, k)
(

n√
an

)−2s

xsk,n
(2s)!

�s(−m)
II,

we see that |h s (m, ε, xk, n, n)| ® 0 as n ® ∞ and ε ® 0 (recall above estimation of

|II|). Therefore, we proved the result.

Lemma 3.10. [5, Theorem 1.3] Let ρ > − 1
2and w(x) (C2+). There exists n0 such that

uniformly for n ≥ n0, we have the following:

(a) For 1 ≤ j ≤ n,

| p′
n,ρ(xj,n) | wρ(xj,n)ϕ̃n(xj,n)−1[xj,n(an − xj,n)]−1/4. (3:16)

(b) For j ≤ n - 1 and x Î [xj+1,n, xj,n],

| pn,ρ(x) | w(x)
(
x +

an
n2

)ρ

∼ min{| x − xj,n |, | x − xj+1,n |}ϕn(xj,n)−1[xj,n(an − xj,n)]−1/4.
(3:17)

(c) For 0 <a ≤ xk, n ≤ b < ∞,

| p′
n,ρ(xk,n) | wρ(xk,n) ∼ n

a3/4n

. (3:18)

(d) For 0 <a ≤ xk+1,n, xk, n ≤ b < ∞ and x Î [(xk+1,n + xk, n)/2 xk, n + xk-1,n)/2],

| pn,ρ(x) | w(x)
(
x +

an
n2

)ρ

∼ 1

a1/4n

. (3:19)

Moreover, for 0 <a ≤ x ≤ b < ∞, there exists a constant C > 0 such that

| pn,ρ(x) | w(x)
(
x +

an
n2

)ρ

≤ C
1

a1/4n

. (3:20)

(e) Uniformly for n ≥ 1 and 1 ≤ j <n,

xj,n − xj+1,n ∼ ϕn(xj,n). (3:21)

Jung and Sakai Journal of Inequalities and Applications 2011, 2011:122
http://www.journalofinequalitiesandapplications.com/content/2011/1/122

Page 19 of 24



(f) Let Λ be defined in Definition 1.2 (d). There exists C > 0 such that for n ≥ 1,

an ≤ Cn1/�.

Proof. (a) and (b) follow from [5, Theorem 1.3]. (e) follows from [5, Theorem 1.4].

We need to prove (c), (d), and (f).

(c) For 0 <a ≤ xk, n ≤ b < ∞, we have (2.11);

ϕn(xk,n) ∼
√
an
n

,

so applying (a), we have the result.

(d) Let 0 <a ≤ xk+1, n <xk, n ≤ b < ∞. We take a constant δ > 0 as

min{| x − xk,n |, | x − xk+1,n |} = δ

√
an
n

.

Then, by (b) we have

| pn,ρ(x) | w(x)
(
x +

an
n2

)ρ

∼ δ

√
an
n

n

a3/4n

= δ
1

a1/4n

.

Moreover, by [6, Theorem 1.2] the second inequality holds.

(f) We see

R′(x)
R(x)

=
T(x)
x

≥ �

x
,

so that by an integration, R(x) ≥ R(1) xΛ for x ≥ 1, and hence we have

R′(x) ≥ �R(1)x�−1 (x ≥ 1).

Since limn®∞ an = ∞, we can choose n0 such that an ≥ 2 for all n ≥ n0. Then for

some C1 > 0,

n =
2
π

∫ 1

0

antR′(ant)√
t(1 − t)

dt ≥ 2
π

∫ 1

0

ant�R(1)(ant)�−1√
t(1 − t)

dt

≥a�
n
2�R(1)

π

∫ 1

1/2

t�√
t(1 − t)

dt =: C�
1 a

�
n .

Hence, we have the result.

Lemma 3.11. Let the function hkn (m; x) be defined by (1.4) and let 0 <c <a <b <d <

∞. Then we have

max
a≤x≤b

∑
c≤xk,n≤d

∣∣∣∣∣lmk,n(x)
m−2∑
i=0

ei(m, k,n)(x − xk,n)i
∣∣∣∣∣ ≤ C.

Proof. Let c ≤ xk+1,n <xk, n ≤ d. Then by (3.21), we see
∣∣xk,n − xk+1,n

∣∣ ∼ √
an/n .
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Now, choose a, b > 0 satisfying for all xk+1,n, xk, n Î [c, d],

α

√
an
n

≤ ∣∣xk,n − xk+1,n
∣∣ ≤ β

√
an
n

. (3:22)

Let x Î [a, b] and |x - xj(x),n| = min {|x - xk, n}|; xk, n Î [a, b]}, xj(c)+1,n <c ≤ xj(c),n, and

xj(d),n ≤ d <xj(d)-1,n. Moreover, we take a non-negative integer jk satisfying for each xk, n
Î [a, b] and k ≠ j(x),

(
jk +

1
2

)
α

√
an
n

≤ ∣∣x − xk,n
∣∣ ≤ (jk + 1)β

√
an
n

. (3:23)

Then we have

max
a≤x≤b

∑
c≤xk,n≤d

∣∣∣∣∣lmk,n(x)
m−2∑
i=0

ei(m, k,n)(x − xk,n)
i

∣∣∣∣∣
≤ max

a≤x≤b

m−2∑
i=0

∑
c≤xk,n≤d

∣∣∣∣∣
(

pn(w2
ρ ; x)

(x − xk,n)p′
n(w2

ρ ; xk,n)

)m

ei(m, k,n)(x − xk,n)i
∣∣∣∣∣

≤ max
a≤x≤b

m−2∑
i=0

[∣∣∣∣∣ pn(w2
ρ ; x)

(x − xj(x),n)p′
n(w2

ρ ; xj(x),n)

∣∣∣∣∣
m

| ei(m, k,n)(x − xj(x),n)i |

+
∑

c≤xk,n≤d
xk,n �=xj(x),n

∣∣∣∣∣
(

pn(w2
ρ ; x)

(x − xk,n)p′
n(w2

ρ ; xk,n)

)m

ei(m, k,n)(x − xk,n)i
∣∣∣∣∣
]
.

Here, by (3.16) and (3.17) we see∣∣∣∣∣ pn(w2
ρ ; x)

(x − xj(x),n)p′
n(w2

ρ ; xj(x),n)

∣∣∣∣∣
m

≤ C

and from (3.20), we have |xj(x),n| ≤ b + 1, and so by (1.6) we have

| ei(m, j(x), n)(x − xj(x),n)i | ≤ C

(
n√

a2n − xj(x),n

)i

x
− i
2

j(x),n

(√
an
n

)i

≤ C.

Consequently, we have∣∣∣∣∣ pn(w2
ρ ; x)

(x − xj(x),n)p′
n(w2

ρ ; xj(x),n)

∣∣∣∣∣
m

| ei(m, j(x), n)(x − xj(x)n)i | ≤ C.

Similarly, for c ≤ xk, n ≤ d with xk, n ≠ xj(x),n, we have by (3.18) and (3.20),∣∣∣∣∣ pn(w2
ρ ; x)

p′
n(w2

ρ ; xk,n)

∣∣∣∣∣
m

≤
(√

an
n

)m

and by (1.6) and (3.23),

| ei(m, k,n)(x − xk,n)i−m | ≤ C
(

n√
an

)i( n√
an

1
(jk + 1/2)α

)m−i

.
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Therefore, we have for 0 ≤ i ≤ m - 2,

∑
c≤xk,n≤d
xk,n �=xj(x),n

∣∣∣∣∣
(

pn(w2
ρ ; x)

(x − xk,n)p′
n(w2

ρ ; xk,n)

)m

ei(m, k,n)(x − xk,n)i
∣∣∣∣∣

≤ C
∑

c≤xk,n≤d
xk,n �=xj(x),n

(
1

(jk + 1/2)α

)2

≤ C.

Therefore,

max
a≤x≤b

∑
c≤xk,n≤d

∣∣∣∣∣lmk,n(x)
m−2∑
i=0

ei(m, k,n)(x − xk,n)i
∣∣∣∣∣ ≤ C.

Proof of Theorem 1.10. We use Theorem 1.9 and Lemma 3.11. We find a lower

bound for the Lebesgue constants λn(m, [a, b]) = maxa≤x≤b
∑n

k=1

∣∣hkn(m; x)
∣∣with a posi-

tive odd order m and a given interval [a, b], 0 <a <b < ∞. By the expression (1.4) we

have ∣∣hkn(m; x)
∣∣ ≥ | lmk,n(x)em−1(m, k,n)(x − xk,n)m−1 |

−
∣∣∣∣∣lmk,n(x)

m−2∑
i=0

ei(m, k,n)(x − xk,n)i
∣∣∣∣∣ .

Let c = a/2, d = b + (b - a) and

λn(m, [a, b]) ≥ max
a≤x≤b

∑
c≤xk,n≤d

∣∣lmk,n(x)em−1(m, k,n)(x − xk,n)m−1
∣∣

− max
a≤x≤b

∑
c≤xk,n≤d

∣∣∣∣∣lmk,n(x)
m−2∑
i=0

ei(m, k,n)(x − xk,n)i
∣∣∣∣∣

= max
a≤x≤b

Fn(x) − max
a≤x≤b

Gn(x).

It follows from Lemma 3.11 that maxa ≤ x ≤ b Gn(x) ≤ C with C independent of n.

Therefore, it is enough to show that maxa ≤ x ≤ b Fn(x) ≥ C log (1 + n). We consider a,
b and jk defined in (3.22) and (3.23). Let K (x; [c, d]) be the set of numbers defined as

K(x; [c, d]) =
{
jk; (jk + 1/2)α

√
an
n

≤ ∣∣x − xk,n
∣∣ ≤ (jk + 1)β

√
an
n

, xk,n ∈ [c, d], k �= j(x)
}
,

where jk is a non-negative integer. Then, there exist g > 0 and C > 0 such that

Cnγ ≤ max{jk ∈ K(x; [c, d])},

that is, we see

{0, 1, 2, . . . , [Cnγ ]} ⊂ K(x; [c, d]). (3:24)

In fact, from Lemma 3.10 (f), we see an ≤ c1n
1/Λ, Λ > 1/2. By (3.22) and (3.23), we

see 0 Î K(x; [c, d]) and

(max{jk ∈ K(x; [c, d])} + 1)β
√
an
n

≥ b − a.
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Hence, we have

max{jk ∈ K(x; [c, d])} + 1 ≥ b − a
β

n√
an

≥ b − a
β

n√
an

1√
c1
n1−1/(2�) =: Cnγ .

So, we have (3.24). Now, we take an interval [xl+1,n, xl, n] ⊂ [a, b], and we put

x∗ := (x�+1,n + x�,n)/2.

By Lemma 3.10 (d), we have

∣∣(pnwρ)(x∗)
∣∣ ∼ 1

a1/4n

.

From Lemma 3.10 (e), we know for c ≤ xk, n ≤ d

∣∣x∗ − xk,n
∣∣ ≥ α

2

√
an
n

. (3:25)

By Lemma 3.10 (c), we have for c ≤ xk, n ≤ d∣∣p′
n(xk,n)

∣∣wρ(xk,n) ∼ n

a3/4n

.

Then, we have

| lk,n(x∗) | = | pn(x∗) | w(x∗)
(
x∗ + an

n2
)ρ

| (x∗ − xk,n)p′
n(xk,n) | wρ(xk,n)

wρ(xk,n)
w(x∗)(x∗ + an

n2 )
ρ

≥ C
√
an
n

1∣∣x∗ − xk,n
∣∣ .

Here, we used the following facts:(
x∗ +

an
n

)ρ

∼ x∗ρ

and

wρ(xk,n)
wρ(x∗)

∼ 1, x∗, xk,n ∈ [a, b].

Now we use Theorem 1.9, that is, for c ≤ xk, n ≤ d we have

em−1(m, k,n) ∼
(

n√
an

)m−1

.

Therefore, with (3.25) and (3.26), we have

Fn
(
x∗) ≥

∑
jk∈K(x∗;[c,d])

∣∣∣lmk,n (
x∗) em−1 (m, k,n)

(
x∗ − xk,n

)m−1
∣∣∣

≥ C
∑

jk∈K(x∗;[c,d])

(√
an
n

1∣∣x∗ − xk,n
∣∣
)m(

n√
an

)m−1∣∣x∗ − xk,n
∣∣m−1

= C
∑

jk∈K(x∗;[c,d])

(√
an
n

)m 1∣∣x∗ − xk,n
∣∣
(

n√
an

)m−1

≥ C
∑

jk∈K(x∗;[c,d])

(√
an
n

)m 1

(jk + 1)β
(√

an/n
)(

n√
an

)m−1

≥ C (β)
∑

jk∈K(x∗;[c,d])

1
jk + 1

≥ C
∑

0≤j≤nγ

1
j + 1

≥ C log n.
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Consequently, the theorem is complete. □

Acknowledgements
The authors thank the referees for many valuable suggestions and comments. Hee Sun Jung was supported by SEOK
CHUN Research Fund, Sungkyunkwan University, 2010.

Author details
1Department of Mathematics Education, Sungkyunkwan University Seoul 110-745, Republic of Korea 2Department of
Mathematics, Meijo University Nagoya 468-8502, Japan

Authors’ contributions
All authors conceived of the study, participated in its design and coordination, drafted the manuscript, participated in
the sequence alignment. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 28 July 2011 Accepted: 25 November 2011 Published: 25 November 2011

References
1. Jung, HS, Sakai, R: Some properties of orthonormal polynomials for Laguerre-type weights. J Inequal Appl 2011, 25

(2011). (Article ID 372874). doi:10.1186/1029-242X-2011-25
2. Jung, HS, Sakai, R: Derivatives of orthonormal polynomials and coefficients of Hermite-Fejér interpolation polynomial

with exponential-type weights. J Inequal Appl 2010, 29 (2010). (Article ID 816363)
3. Jung, HS, Sakai, R: Markov-Bernstein inequality and Hermite-Fejér interpolation for exponential-type weights. J Approx

Theory. 162, 1381–1397 (2010). doi:10.1016/j.jat.2010.02.006
4. Kanjin, Y, Sakai, R: Pointwise convergence of Hermite-Fejér interpolation of higher order for Freud weights. Tohoku

Math J. 46, 181–206 (1994). doi:10.2748/tmj/1178225757
5. Levin, AL, Lubinsky, DS: Orthogonal polynomials for exponential weights x2ρe−2Q(x) on [0, d), II. J Approx Theory.

139, 107–143 (2006). doi:10.1016/j.jat.2005.05.010
6. Levin, AL, Lubinsky, DS: Orthogonal polynomials for exponential weights x2ρe−2Q(x) on [0, d). J Approx Theory. 134,

199–256 (2005). doi:10.1016/j.jat.2005.02.006
7. Jung, HS, Sakai, R: Specific examples of exponential weights. Commun Korean Math Soc. 24(2), 303–319 (2009).

doi:10.4134/CKMS.2009.24.2.303
8. Freud, G: Orthogonal Polynomials. Pergamon Press, Oxford (1971)
9. Sakai, R, Vértesi, P: Hermite-Fejér interpolations of higher order III. Studia Sci Math Hungarica. 28, 87–97 (1993)
10. Levin, AL, Lubinsky, DS: Orthogonal Polynomials for Exponential Weights. Springer, New York (2001)
11. Jung, HS, Sakai, R: Derivatives of integrating functions for orthonormal polynomials with exponential-type weights. J

Inequal Appl 2009, 22 (2009). (Article ID 528454)
12. Jung, HS, Sakai, R: Inequalities with exponential weights. J Comput Appl Math. 212, 359–373 (2008). doi:10.1016/j.

cam.2006.12.011
13. Jung, HS, Sakai, R: Orthonormal polynomials with exponential-type weights. J Approx Theory. 152, 215–238 (2008).

doi:10.1016/j.jat.2007.12.004
14. Kasuga, T, Sakai, R: Orthonormal polynomials for generalized Freud-type weights. J Approx Theory. 121, 13–53 (2003).

doi:10.1016/S0021-9045(02)00041-2

doi:10.1186/1029-242X-2011-122
Cite this article as: Jung and Sakai: Higher order Hermite-Fejér interpolation polynomials with Laguerre-type
weights. Journal of Inequalities and Applications 2011 2011:122.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Jung and Sakai Journal of Inequalities and Applications 2011, 2011:122
http://www.journalofinequalitiesandapplications.com/content/2011/1/122

Page 24 of 24

http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1. Introduction and main results
	2. Preliminaries
	3. Proofs of main results
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

