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Abstract

In this article, we focus on the lower bounds of the Frobenius condition number.
Using the generalized Schwarz inequality, we present some lower bounds for the
Frobenius condition number of a positive definite matrix depending on its trace,
determinant, and Frobenius norm. Also, we give some results on a kind of matrices
with special structure, the positive definite matrices with centrosymmetric structure.

1 Introduction and preliminaries

In this article, we use the following notations. Let C"*" and R"*” be the space of nxn
complex and real matrices, respectively. The identity matrix in C"*” is denoted by I =
I,. Let A", A, A", and tr(A) denote the transpose, the conjugate, the conjugate trans-
pose, and the trace of a matrix A, respectively. Re(a) stands for the real part of a num-
ber a. The Frobenius inner product < -, - > in C"*" is defined as <A,B >y = Re(tr
(BMA)), for A,B e C"™", ie., <A,B > is the real part of the trace of BA. The induced

matrix norm is [|A||p = /< A, A>f = \/Re (tr(AHA)) = /tr(AHA), which is called the
Frobenius (Euclidean) norm. The Frobenius inner product allows us to define the con-
sine of the angle between two given real n x n matrices as

< A,B>F

cos(A,B) = .
(A.B) [IAll|IBl|k

(1.1)

The cosine of the angle between two real n x n depends on the Frobenius inner pro-
duct and the Frobenius norms of given matrices. A matrix A € C”" is Hermitian if
A" = A. An Hermitian matrix A is said to be positive semidefinite or nonnegative defi-

nite, written as A > 0, if (see, e.g., [[1], p. 159])
HAx>0, vrxecC" (1.2)

A is further called positive definite, symbolized A > 0, if the strict inequality in (1.2)

al

holds for all nonzero x € C”. An equivalent condition for A € C" to be positive defi-
nite is that A is Hermitian and all eigenvalues of A are positive real numbers.
The quanity

[JA[] - [|JA7Y]|, if A is nonsingular;

00 if Ais singular. (1.3)

n(A) = {
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is called the condition number of matrix y(A) with respect to the matrix norm || - ||.
Notice that u(A) = ||[A']] - ||A]] = ||AA|| = ||1]] = 1 for any matrix norm (see, e.g.,
[[2], p. 336]). The condition number y(A) of a nonsingular matrix A plays an impor-
tant role in the numerical solution of linear systems since it measures the sensitivity of
the solution of linear system Ax = b to the perturbations on A and b. There are several
methods that allow to find good approximations of the condition number of a general
square matrix.

We first introduce some inequalities. Buzano [3] obtained the following extension of
the celebrated Schwarz inequality in a real or complex inner product space (H, < -, ->).

Lemma 1.1 ([3]). For any a, b, x € H, there is

1
|<ax><xb>]|< 2(IIaII Il + 1 < ab > [l (1.4)

It is clear that for a = b, (1.4) becomes the standard Schwarz inequality
| <a,x>? < llall’lxll>, axeH (1.5)

with equality if and only if there exists a scalar A such that x = Aa.
Also Dragomir [4] has stated the following inequality.
Lemma 1.2 [4]. For any a,b,x € H, and x = 0, there is the following

<ax><xb> <ab> - [lall - 11bl]

— 1.6
1[I 2 -2 (16

Dannan [5] showed the following inequality by using arithmetic-geometric inequality.
Lemma 1.3 [5]. For n-square positive definite matrices A and B,
n(detA - det B)™" < tr(A™B™), (1.7)

where m is a positive integer.
By taking A =, B= A", and m = 1 in (1.7), we obtain

n(detl - detA™")V/" < tr(1-A71), (1.8)

1 1/n »
n(detA) <tu(A ™) (1.9)

In [6], Tirkmen and Ulukok proposed the following,
Lemma 1.4 [6]. Let both A and B be n-square positive definite matrices, then

1
cos(A, I) cos(B,I) < ’ cos(A, B) + 1], (1.10)
1
cos(A, A7) < cos(A, ) cos(A™1, 1) < 2[cos(A,A_l) +1] <1, (1.11)
cos(A, 1) < 1,cos(A"}, 1) <1, (1.12)

As a consequence, in the following section, we give some bounds for the Frobenius
condition numbers by considering inequalities given in this section.
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2 Main results
Theorem 2.1. Let A be a positive definite real matrix, o be any real number. Then,

o AT < ur(A) (2.1)
n —Nn = ur(Aa); .
trA2 (detA)(1—)/n
trAl* ¢ trA® !
—n < up(A). (2.2)

trA%®

where up(A) is the Frobenius conditional number of A.
Proof. Let X, A, B be positive definite real matrices. From Lemma 1.2, we have the

following
<A, X>p <X,B>fp <A, B> Al|r||B
‘ F ) F Pl < Al ||F, (2.3)
X115 2 2
ie.,
tr(ATX)tr(X'B)  tr(ATB Allr||B
TR _ (475 _ 1AL Bl ou
X115 2 2
Let B = A7, then (2.4) turns into
tr(ATX)tr(XTA™!)  tr(ATAT! Allp||A™T
HADOUOCAT) (A A e 05
X1z 2 2
Since both X and A are positive definite, we have
tr(AX)tr(XA ™! Allp||A™! A
HAX)a(XA™) n| _IAURIAT I ur(A) 00
|IX1 2 2 2
where yr(A) is the Frobenius condition number of A.
By taking X = A% (& is an arbitrary real number) into (2.6), there exists
tAlH)tt A,(I,a) A
e < A 2.7)
trA~® 2 2
Thus, it follows that
1+ —(1-a)
trA " trA _n_ ,up(A)l 2.8)
trA%% 2°- 2
ie.,
A1+oz Aotfl
oAt 29)
trA™ < ur(A)
From (1.9), by replacing A with A, we get
<n- ! < tr(A~(179), (2.10)
(detA)I =)/ — '
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Taking (2.10) into (2.8), we can write

trAl+® 1 A
n. e wr( )’ (2.11)
trA2* (detA)(l—a)/n 2 2

ie.,

trA1+a

n- rA (deta) - —n < pp(A). (2.12)

In particular, let & = 1, and by taking it into (2.7), we have the following

2
trA*ul  n < ;LF(A), (2.13)
trA? 2 2
ie,
n < up(A). (2.14)
1
Note, when o = > (2.12) becomes
trA®?
n- —n < up(A), (2.15)
trA - (det A) V2"
Taking o = 1 into (2.12), we obtain that
, < 1ue(A) (2.16)
—n<u . .
(detA)V/n g
(2.15), (2.16) can be found in [6].
Example 2.2.
20
-20]

Here trA = 2.5, detA = 1 and n = 2. Then, from (2.15) and (2.16), we obtain two
lower bounds of yur(A):

trA3/? trA
Loy = 3:091168, and up(A) > 2 - e =3
trA - (detA) /" (detA)'/"

ur(A) = 2n -
Taking o = 1/4 into (2.1) and (2.2) from Theorem 2.1, another two lower bounds are
obtained as follows:

trAl* trAl+trA !

wr(A) > 2n —n =3.277585, and ug(A) > 2 —n = 4.006938.
trA2«(det A)1 ="

trA%®

In fact, up(A) = 4.25. Thus, Theorem 2.1 is indeed a generalization of (2.15) and
(2.16) given in [6].

Lemma 2.3. Let ay, a,,..., a,, be positive numbers, and

—X

f(x)=aj+ay+---+a,+a;" +---+a,”.

Then, fix) is monotonously increasing for x € [0,+ o).
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Proof. It is obvious that
f'(x) =ajlna; +a5lna; +--- +aylna, —a;*lna; —--- — g Inay,
=Ina(a] —a7”) +1Inay (a5 — a7™) + lnax(a; — a,”).
When a; > 1, and x € [0, + o), Ina;>0,a7>1, and 4;* <1. Thus,
Inai(al —a;™) = 0.
When 0 <a; < 1, and x € [0, + <), we have Ina; < 0,0 <aj <1, and a;* > 1. Thus,
Ina;(al —a;™) = 0. Therefore, f(x) > 0, and flx) is increasing for x € [0, e).

Theorem 2.4. Let A be a positive definite real matrix. Then

1/2
W"U'ijz/ e ), (2.17)
Proof. Since A is positive definite, from Lemma 1.4, we have

cos(AY?,A712 < cos(AY2, D). (2.18)
That is

n w(AV2A112) Al

- < ) (2.19)
MF(AI/Z) ||A1/2||F,||(A1/2)—1||F Jn.||A1/2||F

Let all the positive real eigenvalues of A be Ay, A,..., A,, > 0. Then, the eigenvalues of
A" are 1/A4, 1/Ay,..., 1/1, > 0, the eigenvalues of A* are A%,13,...,A2 > 0, and the

eigenvalue of A2 are 172, Ay 2. A;2 > 0. Next, we will prove the following by induc-

(21: Aiz) (Z; 1/A$) - (Zl A1’) (Zl Y A”)' (2.20)

In case n = 1, it is obvious that (2.20) holds.

In case n=2, (Y1, A7) (X0 1/A%) = 2+ (A1/A2)? + (A2/A1)?. From Lemma 2.3, 2 +
M1/A2)® + a/A1)? 2 2 + Ay/hy + Aofhy = (Ap + Ao)(1/A; + 1/X5). Thus, (2.20) holds.
Suppose that (2.20) holds, when #n = £, i.e.,

(550) (So) = (520 () -

In case n = k + 1,

() () = (X0, o) (X0, 1 11k )
_ (Z; 1,2) (Z; 1/A,2> S ilara )+ Y (/2 1.

tion.

(2.22)
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By Lemma 2.3, we get

k+1 k+1 k k k k
(Z Af) (Z 1/A$) > (Z A,-) (Z l/ki) 3 ifrr) + Y OQaer[A) + 1

i=1 i=1 i=1 i=1 i=1

k+1 k+1 (223)
i=1 i=1
Thus, when w = k + 1, (2.20) holds. On the other hand,
IAIIE = /tr(A%) = /S0, A2 1A I = VA~ = S A7, AV g = VA = "
\/Z?:l Ai
[A=Y2||p = VirA™! = \/Zl'.‘zl ,\i—l. Therefore,
IAIFIATM IR = 1AY211R1A 211, (35)
ie.,
ur(A) = up(A'?). (2.25)
Taking (2.25) into (2.19), we obtain
1/2
n < n < trA , (2.26)
we(A) T up(AY2) T /nl|AV2||g
ie.,
ny/n||AY2 ||
a2 =), @27)
Remark 2.5. (2.17) can be extended to any 0 <& < 1, i.e,, an|1LA e < up(A)-
trA% -

3 The Frobenius condition number of a centrosymmetric positive definite
matrix

Definition 3.1 (see [7]). Let A = (a;)pxq € R A is a centrosymmetric matrix, if
aij = dp_iv1,qg-+1, 1 S1<p, 1 <j=<q, or]yAl;= A,

where ], = (€, €,.1,--» €1), €; denotes the unit vector with the i-th entry 1.

Using the partition of matrix, the central symmetric character of a square centrosym-
metric matrix can be described as follows (see [7]):

Lemma 3.2. Let A = (a;j)xn (n = 2m) be centrosymmetric. Then, A has the form,

[ BInCIn] prap_ [B—JuCO
A—[ClmB]m],PAP—[O B+]mc]’ (3.1)

1
Where B,C e C"™ P = L I .
2 | —JmJm

Lemma 3.3. Let Abeann x n(n = 2m) centrosymmetric positive definite matrix with
the following form
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[ B JuClu
A= [CJmBIm]’

where B,C € R ™. Then there exists an orthogonal matrix P such that

M
TAp =
PAP—|: N]'

where M = B - ],,C, N = B + ],,C and M, N are positive definite matrices.
Proof. From Lemma 3.2, there exists an orthogonal matrix P such that

_plap_ | M
H_PAP_[ e

Since A is positive definite, then any eigenvalue of A is positive real number. Thus,
the eigenvalues of H are all positive real numbers. That is to say, all eigenvalues of M
and N are positive real numbers. Thus, M and N are both positive definite. It is
obvious that M' and N'! are positive definite matrices.

Lemma 3.4. Let A, B are positive definite real matrices. Then,

trA

< [|A[lFIIB~M|F- 3.2
(detB) V" e (62

Proof. Let X be positive definite. By Lemma 1.2, we have

<A X>p < X,B>p < A,B>p - [|A|EB||E

- < (3.3)
|IX117 2 2
Thus,
tr(ATX)tr(X™B)  tr(A'B Al|rB
W) _ D) _ 1Al o
[1X115 2 2
By replacing X, B with I, and B, respectively, in inequality (3.4), we can obtain
-1 TR-1 -1
w(A(B)  (A"B) | _ Al 55
n 2 2
That is,
-1 Tp-1 -1
n 2 - 2
From Schwarz inequality (1.5),
tr(ATB™1) =< A, B> < [Al[p|IB~"[|F. (37)
By taking (3.7) into (3.6), we have
tr(A)tr(B~! Allp||B~! tr(ATB~!
r(A)u(B™) < JAIIIB Y1 < Il IIFII2 e . r( , ). (3.8)
n

From (1.9),

n(1/detB)/" < uB~1, (3.9)
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Therefore,

S IAIB (3.10)
= F F- .
(det B)Y/"
Theorem 3.5. Let A be a centrosymmetric positive definite matrix with the form

_ B]mC]m mxm
A—[C]mB]m],B,Ce[R .

Let M =B -],C N =B+ ],C. Then,

trM 2 trN 2 trM ? trN ?
> - + — + + . 3.11
ur(4) = J (2 (det M)/ m) (2 (det N)Y/™ m) ((det[\])l/"‘) ((detM)l/'") ( )

Proof. By Lemma 3.2, there exists an orthogonal matrix P such that

 Tan_ [B=InC M
H-PAP-[ B+MC]_[ N}

Thus,
we(A) = AINFIA™ Ip = we(H) = |HIIFIH|F = \/IIMH;Q: + IINIIf:\/HM’lHﬁ +IN“12. (3.12)

Therefore,

pE(A) = (IMIE + INIE)Y (MR + INTHIE)
= [IMIIEIM I+ 1INTEINTHIE + IMIEINTYE + [INTE M
= (M) + A(N) + (IIMILEINTE)? + (INTEIM T E)?.

From Lemma 3.4,

M -1
< [IMI[FIIN"IF,

1
< |INIIEIIM™H]p. 3.14
(det N)U™ (det M)Y/m : ’ (3.14)

From (2.18),

trM trN

2(detM)1/m —m < up(M), and 2(detN)1/m —m =< up(N). (3.15)

Thus,

2 2 2 2
Jr(A) = 2 trM R 2 ter . trM 1 . uN 1 '
(det M)/ (det Ny (det N/ (det M)/

Example 3.6.

5003 [20]
0530 T M 02
A= 0350 ,andPAP—[ N]_

80
3005 038

Here 11 = 4, m = 2, det (A) = 256, tr A = 20, tr M = 4, tr N = 16, det(M) = 4, det(N)
= 64. From Theorem 3.5, a lower bound of x(A) is as follows:
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2 2 2 2
)= (2 ™ ) s N ) o ™ o W - 85.
(detm)Y/™ (detN)Y/™ (detN)Y/m (detm) /™

In fact

1r(A) = B2(M) + 2(N) + (IMIELIN116) + (INTEIM1 ) = 8.5.

On the other hand, the lower bounds of y(A) in (2.15) and (2.16) provided by [6]
are

wA3? trA

wr(A) = 2n- —n=06.1823376, and up(A) >2 -
r(4) trA - (detA) !/ FAYZ2 ey

It can easily be seen that, in this example, the best lower bound is the first one given
by Theorem 3.5.
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