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Abstract

Introduction: In this paper, a new class of functions called semilocal E-preinvex
functions is introduced, which is generalization of semi-E-preinvex functions and
semilocal E-convex functions. Some of its basic properties are obtained.

Methods and Materials: Using E-h-semidifferentiability, some optimality conditions
and duality results are established for a nonlinear multiobjective fractional
programming with semilocal E-preinvex and related functions.

Conclusion: The results presented in this paper extend and generalize previously
known results in this area.
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1. Introduction
Convexity and generalized convexity play a vital role in the study of optimality and

duality aspects of mathematical programming. Attempts have been made to generalize

convexity to study their role in solving such types of problems. Generalizations of con-

vexity related to optimality and duality for nonlinear singleobjective or multiobjective

optimization problems have been of much interest in the recent past, and many contri-

butions have been made to this development. See, e.g., [1-6] and the references therein.

After Ewing [7] presented the definition of semilocal convexity, by using more general

semilocal preinvexity and h-semidifferentiability, Preda and Stancu-Minasian [8] gave

optimality conditions for weak vector minima and extended the Wolfe and Mond-Weir

duals, generalizing results of Preda and Stancu-Minasian [9]. Based on the results of [8,9],

Preda further established optimality conditions and duality results for a nonlinear frac-

tional multiple objective programming problem with semilocal preinvex functions invol-

ving h-semidifferentiability in [10].

On the other hand, Youness [11] proposed the concepts of E-convex sets, E-convex

functions, and E-convex programming, discussed some of their basic properties, and

obtained some optimality results on E-convex programming. Subsequently, Chen [12]

brought forward a class of semi-E-convex functions and also discussed its basic proper-

ties. Moreover, by combining the concepts of semi-E-convexity and semilocal
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convexity, Hu et al. [13] put forward the concept of semilocal E-convexity, studied its

some characterizations, and established some optimality conditions and duality results

for semilocal E-convex programming. In [14], optimality and duality were further stu-

died for a fractional multiple objective programming involving semilocal E-convexity.

Recently, Fulga and Preda [15] extended the E-convexity to E-preinvexity and local

E-preinvexity and studied some of their properties and an application. More recently,

Luo and Jian [16] presented semi-E-preinvex maps in Banach spaces and discussed

their properties.

Motivated by research works of [13-16] and references therein, in this paper, we

introduce the concept of semilocal E-preinvexity and study some of its important

properties. Then, we establish optimality conditions for a nonlinear fractional multiple

objective programming problem (VFP) involving weaker E-h-semidifferentiable func-

tions. Finally, a general Bector type dual for (VFP) is formulated, and duality results

are obtained using semilocal E-preinvex and related functions. The concept of semilo-

cal E-preinvexity unifies the concepts of semilocal E-convexity and semi-E-preinvexity.

Thus, we extend the work of [10,13,14] and generalize results obtained in the litera-

tures on this topic.

2. Notations and definitions
Throughout the paper, the convention below will be followed.

Let Rn denote the n-dimensional Euclidean space, E: Rn ® Rn and h: Rn × Rn ® Rn

be two fixed mappings.

For any x, y Î Rn, by x ≦ y, we mean xi ≦ yi for all i, by x ≤ y, we mean xi ≦ yi for all i

and xj <yj for at least one j Î {1, 2,..., n}, by x <y, we mean xi <yi for all i, and by x ≰ y,

we mean the negation of x ≤ y.

In this section, we review some related definitions that will be used in the sequel.

Definition 2.1. [15]A set K ⊂ Rn is said to be E-invex with respect to h if

E(y) + λη(E(x), E(y)) ∈ K, ∀x, y ∈ K,λ ∈ [0, 1].

Definition 2.2. [16]Let K ⊂ Rn be an E-invex set with respect to h. A function f: Rn ® R

is said to be semi-E-preinvex on K with respect to h if

f (E(y) + λη(E(x), E(y))) � λf (x) + (1 − λ)f (y), ∀x, y ∈ K,λ ∈ [0, 1].

Definition 2.3. [13]A set K ⊂ Rn is said to be local starshaped E-convex, if there is a

map E such that corresponding to each pair of points x, y Î K, there is a maximal posi-

tive number a(x, y) ≦ 1 satisfying

λE(x) + (1 − λ)E(y) ∈ K, ∀λ ∈ [0, a(x, y)]. (2:1)

Definition 2.4. [13]A function f: Rn ® R is said to be semilocal E-convex on a local

starshaped E-convex set K ⊂ Rn if for each pair of x, y Î K(with a maximal positive

number a(x, y) ≦ 1 satisfying (2.1)), there exists a positive number b(x, y) ≦ a(x, y) satis-

fying

f (λ(E(x)) + (1 − λ)E(y)) � λf (x) + (1 − λ)f (y), ∀λ ∈ [0, b(x, y)].

Definition 2.5. [15]A set k ⊂ Rn is said to be local E-invex with respect to h, if ∀x,
y Î K, there exists a(x, y) Î (0, 1] such that, ∀l Î [0, a(x, y)],
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E(y) + λη(E(x), E(y)) ∈ K. (2:2)

Remark 2.1. Every local starshaped E-convex set is a local E-invex set with respect

to h, where h(x, y) = x - y, ∀x, y Î Rn. Every E-invex set with respect to h is a local E-

invex set with respect to h, where a(x, y) = 1, ∀x, y Î Rn. But their converses are not

necessarily true.

Example 2.1. Let K = [−4,−1) ∪ [1, 4],

E(x) =
{
x2, if|x| � 2,
−1, if|x| > 2.

(2:3)

η(x, y) =

⎧⎨
⎩
x − y, if x � 0, y � 0, or x � 0, y � 0,
−1 − y, if x > 0, y � 0, or x � 0, y < 0,
1 − y, if x < 0, y � 0, or x � 0, y > 0.

(2:4)

We can testify that K is a local E-invex set with respect to h. However, when x0 = 1,

y0 = 3, there is a l1 Î [0, 1] such that E(y0) + l1h(E(x0), E(y0)) = -1 ∉ K, i.e., K is not

an E-invex set with respect to h.
Similarly, for any positive number a ≦ 1, there exists a sufficiently small positive

number l2 ≦ a satisfying l2E(x0) + (1 - l2)E(y0) = -1 + 2l2 ∉ K, that is, K is not a

local starshaped E-convex set.

Definition 2.6. [15]A function f: Rn ® R is said to be local E-preinvex on k ⊂ Rn with

respect to h if for any x, y Î K (with a maximal positive number a(x, y) ≦ 1 satisfying

(2.2)), there exists 0 <b(x, y) ≦ a(x, y) such that K is a local E-invex set and

f (E(y) + λη(E(x), E(y))) � λf (E(x)) + 1(1 − λ)f (E(y)), ∀λ ∈ [0, b(x, y)].

Definition 2.7. [17]A point x̄ ∈ Xis said to be an efficient solution for programming

problem (MP): min F(x) = (F1(x),..., Fp(x)), x Î X, if there exists no x Î X such that

Fi(x) < Fi(x̄)and Fi(x) < Fi(x̄)for some i Î {1, 2,...,p}. A point x̄ ∈ Xis said to be a weak

efficient solution for (MP), if there exists no x Î X such that F(x) < F(x̄).

3. Semilocal E-preinvexity
In the section, we introduce the concepts of semilocal E-preinvex and related functions

and study some of their properties.

Definition 3.1. A function f: Rn ® R is said to be semilocal E-preinvex on k ⊂ Rn

with respect to h if for any x, y Î K (with a maximal positive number a(x, y) ≦ 1 satis-

fying (2.2)), there exists 0 <b(x, y) ≦ a(x, y) such that K is a local E-invex set and

f (E(y) + λη(E(x),E(y))) � λf (x) + (1 − λ)f (y), ∀λ ∈ [0, b(x, y)].

If

f (E(y) + λη(E(x),E(y))) � λf (x) + (1 − λ)f (y), ∀λ ∈ [0, b(x, y)],

then f is called as a semilocal E-preincave function on k.

If the inequality signs above are strict for any x, y Î K and x ≠ y, then f is called as a

strict semilocal E-preinvex (E-preincave) function.

Remark 3.1. Every semilocal E-convex function is a semilocal E-preinvex function,

where h(x, y) = x - y, ∀x, y Î Rn. Every semi-E-preinvex function with respect to h is a
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semilocal E-preinvex function, where a(x, y) = b(x, y) = 1, ∀x, y Î Rn. But their

converses are not necessarily true.

We give below an example of semilocal E-preinvex function, which is neither a semi-

local E-convex function nor a semi-E-preinvex function.

Example 3.1. Let the map E: R ® R be defined as

E(x) =

⎧⎨
⎩
0, if x < 0,
1, if 1 < x � 2,
x, if 0 � x � 1 or x > 2,

(3:1)

and the map h: R × R ® R be defined as

η(x, y) =
{
0, if x = y,
1 − x, if x �= y.

(3:2)

Obviously, R is a local starshaped E-convex set and a local E-invex set with respect to

h. Let f: R ® R be defined as

f (x) =

⎧⎪⎪⎨
⎪⎪⎩
0, if 1 < x � 2,
1, if x > 2,
−x + 1, if 0 � x � 1,
−x + 2, if x < 0.

(3:3)

We can prove that f is semilocal E-preinvex on R with respect to h. However, when x0
= 2, y0 = 3, and for any b Î (0, 1], there exists a sufficiently small l0 Î (0, b] satisfying

f (λ0E(x0) + (1 − λ0)E(y0)) = f (3 − 2λ0) = 1 > 1 − λ0 = λ0f (x0) + (1 − λ0)f (y0).

That is, f(x) is not a semilocal E-convex function on R.

Similarly, taking x1 = 1, y1 = 4, we have

f (E(y1) + λ1η(E(x1),E(y1))) = f (4) = 1 > 1 − λ1 = λ1f (x1) + (1 − λ1)f (y1),

for some l1 Î [0, 1].

Thus, f(x) is not a semi-E-preinvex function on R with respect to h.
Definition 3.2. A real-valued function f defined on a local E-invex set k ⊂ Rn is said

to be quasi-semilocal E-preinvex (with respect to h) if for all x, y Î K (with a maximal

positive number a(x, y) ≦ 1 satisfying (2.2))satisfying f(x) ≦ f(y), there is a positive num-

ber b(x, y) ≦ a(x, y) such that

f (E(y) + λη(E(x),E(y))) � f (y), ∀λ ∈ [0, b(x, y)].

Definition 3.3. A real-valued function f defined on a local E-invex set K ⊂ Rn is said

to be pseudo-semilocal E-preinvex (with respect to h) if for all x, y Î K(with a maximal

positive number a(x, y) ≦ 1 satisfying (2.2)) satisfying f(x) <f(y), there are a positive

number b(x, y) ≦ a(x, y) and a positive number c(x, y) such that

f (E(y) + λη(E(x),E(y))) � f (y) − λc(x, y), ∀λ ∈ [0, b(x, y)].

Remark 3.2. Every semilocal E-preinvex function on a local E-invex set K with

respect to h is both a quasi-semilocal E-preinvex function and a pseudo-semilocal

E-preinvex function.

Definition 3.4. Let f: K ® R be a function, where K ⊂ Rn is a local E-invex set with

respect to h. We say that f is E-h-semidifferentiable at x̄ ∈ Kif E(x̄) = x̄and
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f +(x̄; η(E(x), x̄)) = lim
λ→0+

1
λ
[f (x̄ + λη(E(x), x̄)) − f (x̄)],exists for each x Î K, where

f +(x̄; η(E(x), x̄)) = lim
λ→0+

1
λ
[f (x̄ + λη(E(x), x̄)) − f (x̄)],

(the right derivative at x̄along the direction η(E(x), x̄)).

Remark 3.3. If E is an identity map, the E-h-semidifferentiability is the h-semidiffer-

entiability notion [18]. If E is an identity map and η(x, x̄) = x − x̄, the E-h-semidifferentia-

bility is the semidifferentiability notion. If a function is directionally differentiable, then it

is semidifferentiable, but the converse is not true.

Using Definition 3.1-3.4, the following lemma is immediate.

Lemma 3.1. (i). Let f be semilocal E-preinvex (E-preincave) and E-h-semidifferenti-

able at x̄ ∈ K ⊂ Rn, where K is a local E-invex set with respect to h. Then,

f (x) − f (x̄) � (�)f +(x̄; η(E(x), x̄)), ∀x ∈ K.

(ii). Let f be quasi(pseudo)-semilocal E-preinvex and E-h-semidifferentiable at

x̄ ∈ K ⊂ Rn, where K is a local E-invex set with respect to h. Then,

f (x) � (<)f (x̄) ⇒ f +(x̄; η(E(x), x̄)) � (<)0, ∀x ∈ K.

Theorem 3.1. Let f: K ⊂ Rn ® R be a local E-preinvex function on a local E-invex set

K with respect to h, then f is a semilocal E-preinvex function if and only if f(E(x)) ≦ f(x),

∀x Î K.

Proof. Suppose that f is a semilocal E-preinvex function on set K with respect to h,
then for each pair of points x, y Î K (with a maximal positive number a(x, y) ≦ 1 satis-

fying (2.2)), there exists a positive number b(x, y) ≦ a(x, y) satisfying

f (E(x) + λη(E(y),E(x))) � λf (y) + (1 − λ)f (x), λ ∈ [0, b(x, y)].

By letting l = 0, we have f(E(x)) ≦ f(x), ∀x Î K.

Conversely, assume that f is a local E-preinvex function on a local E-invex set K, then for

any x, y Î K, there exist a(x, y) Î (0, 1] satisfying (2.2) and b(x, y) Î (0, a(x, y)] such that

f (E(y) + λη(E(x),E(y))) � λf (E(x)) + (1 − λ)f (E(y)), ∀λ ∈ [0, b(x, y)].

Since f(E(x)) ≦ f(x), ∀x ≦ K, then

f (E(y) + λη(E(x),E(y))) � λf (x) + (1 − λ)f (y), ∀λ ∈ [0, b(x, y)].

The proof is completed.

Remark 3.4. A local E-preinvex function on a local E-invex set with respect to h is

not necessarily a semilocal E-preinvex function.

Example 3.2. Let K = [−4,−1) ∪ [1, 4],

E(x) =
{
x2, if|x| � 2,
−1, if|x| > 2,

(3:4)

η(x, y) =

⎧⎨
⎩
x − y, if x � 0, y � 0, or x � 0, y � 0,
−1 − y, if x > 0, y � 0, or x � 0, y < 0,
1 − y, if x < 0, y � 0, or x � 0, y > 0,

(3:5)

and f: R ® R be defined by f(x) = x2, then f is local E-preinvex on K with respect to h.
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Since f(E(2)) = 16 >f(2) = 4, from Theorem 3.1, it follows that f is not a semilocal

E-preinvex function.

Definition 3.5. The set G = {(x, a): x Î K ⊂ Rn, a Î R} is said to be a local E-invex

set with respect to h corresponding to Rn if there are two maps h, E and a maximal

positive number a((x, a1), (y, a2)) ≦ 1, for each (x, a1), (y,a2) Î G such that

(E(y) + λη(E(x),E(y)),λα1 + (1 − λ)α2) ∈ G, ∀λ ∈ [0, a((x,α1), (y,α2))].

Theorem 3.2. Let K ⊂ Rn be a local E-invex set with respect to h. Then f is a semilo-

cal E-preinvex function on K with respect to h if and only if its epigraph Gf = {(x, a): x
Î K, f(x) ≦ a, a Î R} is a local E-invex set with respect to h corresponding to Rn.

Proof. Assume that f is semilocal E-preinvex on K with respect to h and (x, a1),

(y, a2) Î Gf, then x, y Î K, f(x) ≦ a1, f(y) ≦ a2. Since K is a local E-invex set, there is a

maximal positive number a(x, y) ≦ 1 such that

E(y) + λη(E(x),E(y)) ∈ K, ∀λ ∈ [0, a(x, y)].

In addition, in view of f being a semilocal E-preinvex function on K with respect to

h, there is a positive number b(x, y) ≦ a(x, y) such that

f (E(y) + λη(E(x),E(y))) � λf (x) + (1− λ)f (y) � λα1 + (1− λ)α2, ∀λ ∈ [0, b(x, y)].

That is, (E(y) + lh(E(x), E(y)), la1 + (1 - l)a2) Î Gf, ∀l Î [0, b(x, y)].

Therefore, Gf = {(x, a): x Î K, f(x) ≦ a, a Î R} is a local E-invex set with respect to

h corresponding to Rn.

Conversely, if Gf is a local E-invex set with respect to h corresponding to Rn, then

for any points (x, f(x)), (y, f(y)) Î Gf, there is a maximal positive number a((x, f(x)),

(y, f(y))) ≦ 1 such that

(E(y) + λη(E(x),E(y)),λf (x) + (1 − λ)f (y)) ∈ Gf , ∀λ ∈ [0, a((x, f (x)), (y, f (y)))].

That is, E(y) + lh(E(x), E(y)) Î K,

f (E(y) + λη(E(x),E(y))) � λf (x) + (1 − λ)f (y), ∀λ ∈ [0, a((x, f (x)), (y, f (y)))].

Thus, K is a local E-invex set and f is a semilocal E-preinvex function on K.

Theorem 3.3. If f is a semilocal E-preinvex function on a local E-invex set K ⊂ Rn

with respect to h, then the level set Sa = {x Î K: f(x) ≦ a} is a local E-invex set for any

a Î R.

Proof. For any a Î R and x, y Î Sa, then x, y Î K and f(x) ≦ a, f(y) ≦ a. Since K is a

local E-invex set, there is a maximal positive number a(x, y) ≦ 1 such that

E(y) + λη(E(x),E(y)) ∈ K,∀λ ∈ [0, a(x, y)].

In addition, due to the semilocal E-preinvexity of f, there is a positive number b(x, y)

≦ a(x, y) such that

f (E(y) + λη(E(x),E(y))) � λf (x) + (1 − λ)f (y) � λα + (1 − λ)α = α, ∀λ ∈
[0, b(x, y)].

That is, E(y) + lh(E(x), E(y)) Î Sa, ∀l Î [0, b(x, y)].

Therefore, Sa is a local E-invex set with respect to h for any a Î R.
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Theorem 3.4. Let f be a real-valued function defined on a local E-invex set K ⊂ Rn.

Then f is a semilocal E-preinvex function with respect to h if and only if for each pair

of points x, y Î K (with a maximal positive number a(x, y) ≦ 1 satisfying (2.2)), there

exists a positive number b(x, y) ≦ a(x, y) such that

f (E(y) + λη(E(x),E(y))) < λα + (1 − λ)β , ∀λ ∈ [0, b(x, y)],

whenever f(x) <a, f(y) <b.
Proof. Let x, y Î K and a, b Î R such that f(x) <a, f(y) <b. Due to the local E-invex-

ity of K, there is a maximal positive number a(x, y) ≦ 1 such that

E(y) + λη(E(x),E(y)) ∈ K, ∀λ ∈ [0, a(x, y)].

In addition, owing to the semilocal E-preinvexity of f, there is a positive number b(x,

y) ≦ a(x, y) such that

f (E(y) + λη(E(x),E(y))) � λf (x) + (1 − λ)f (y) < λα + (1 − λ)β , ∀λ ∈ [0, b(x, y)].

Conversely, let (x, a) Î Gf, (y, b) Î Gf(see epigraph Gf in Theorem 3.2), then x, y Î
K, f(x) ≦ a, f(y) ≦ b. Hence, f(x) <a + � and f(y) <b + � hold for any � > 0. According

to the hypothesis, for x, y Î K (with a positive number a(x, y) ≦ 1satisfying (2.2)),

there exists a positive number b(x, y) ≦ a(x, y) such that

f (E(y) + λη(E(x),E(y))) < λα + (1 − λ)β + ε, ∀λ ∈ [0, b(x, y)].

Let � ® 0+, then

f (E(y) + λη(E(x),E(y))) � λα + (1 − λ)β , ∀λ ∈ [0, b(x, y)].

That is, (E(y) + lh(E(x), E(y)), la + (1 - l)b) Î Gf, ∀l Î [0, b(x, y)]. Therefore, Gf is

a local E-invex set corresponding to Rn.

From Theorem 3.2, it follows that f is semilocal E-preinvex on K with respect to h.

4. Optimality criteria
In this section, we establish sufficient optimality conditions for fractional multiobjec-

tive programming with semilocal E-preinvex and related functions under E-h-semidif-

ferentiability assumptions.

We consider the following nonlinear fractional multiobjective programming problem:

(VFP)

⎧⎪⎪⎨
⎪⎪⎩
minimize

f (x)
g(x)

=
(
f1(x)
g1(x)

, . . . ,
fp(x)

gp(x)

)
subject to hi(x) � 0, j ∈ M = {1, 2, . . . ,m},
x ∈ X0,

(4:1)

where X0 ⊆ Rn is a local E-invex set and gi(x) > 0 for all x Î X0 and each i Î P =

{1,2,..., p}. Let f = (f1, f2,..., fp), g = (g1, g2,..., gp) and h = (h1, h2, ..., hm), and denote X =

{x: hj(x) ≦ 0, j Î M, x Î X0}, the feasible set of problem (VFP). For x* Î X, we put M

(x*) = {j: hj(x*) = 0, j Î M}, N(x*) = M\M(x*).

Utilizing the parametric approach of Jagannathan [19], we also formulate the non-

linear multi-objective programming problem as follows:

(VFPu)

⎧⎨
⎩
minimize (f1(x) − u1g1(x), . . . , fp(x) − upgp(x))
subject to hj(x) � 0, j ∈ M,
x ∈ X0,

(4:2)
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where u = (u1, u2, ..., up) Î Rp.

The following lemma connects the weak efficient solutions for (VFP) and (VFPu).

Lemma 4.1. A point x* is a weak efficient solution for (VFP) if and only if x* is a

weak efficient solution for (VFPu*), where u
∗ = (u∗

1, . . . , u
∗
p) =

(
f1(x∗)
g1(x∗)

, . . . ,
fp(x∗)
gp(x∗)

)
.

Proof. Suppose that there exists a feasible point x Î X, such that for each i Î P,

fi(x) − u∗
i gi(x) < fi(x∗) − u∗

i gi(x
∗)

⇒ fi(x) − u∗
i gi(x) < fi(x∗) − fi(x∗)

gi(x∗)
gi(x∗) = 0

⇒ fi(x) <
fi(x∗)
gi(x∗)

gi(x) ⇒ fi(x)
gi(x)

<
fi(x∗)
gi(x∗)

,

which contradicts the weak efficiency of x* for (VFP).

On the other hand, if there exists a feasible point x Î X such that

fi(x)
gi(x)

<
fi(x∗)
gi(x∗)

= u∗
i ,

then

fi(x) − u∗
i gi(x) < 0 = fi(x∗) − u∗

i gi(x
∗), ∀i ∈ P,

and this is a contradiction to the weak efficiency of x* for (VFPu*).

Thus, the proof is completed.

Now, we establish some sufficient optimality conditions for the problem (VFP).

Theorem 4.1. Let x̄ ∈ X,E(x̄) = x̄, and f, h be semilocal E-preinvex and g be semilocal

E-preincave, and they are all E-h-semidifferentiable at x̄. Further, suppose that there

are λ0 = (λ0
1,λ

0
2, . . . ,λ

0
p ) ∈ Rp, and v0 = (v01, v

0
2, . . . , v

0
m) ∈ Rmsuch that

λ0T f +(x̄; η(E(x), x̄)) + v0Th+(x̄; η(E(x), x̄)) � 0, ∀x ∈ X, (4:3)

g+i (x̄; η(E(x), x̄)) � 0, ∀x ∈ X, i ∈ P, (4:4)

v0Th(x̄) = 0, (4:5)

λ0 ≥ 0, v0 � 0. (4:6)

Then x̄is a weak efficient solution for (VFP).

Proof. By contradiction, suppose that x̄ is not a weak efficient solution for (VFP),

then there exists a point x̄ ∈ X such that

fi(x̂)
gi(x̂)

<
fi(x̄)
gi(x̄)

, i ∈ P. (4:7)

By the above hypotheses and Lemma 3.1, we have

fi(x̂) − fi(x̄) � f +i (x̄; η(E(x̂), x̄), i ∈ P, (4:8)

gi(x̂) − gi(x̄) � g+i (x̄; η(E(x̂), x̄), i ∈ P, (4:9)

hj(x̂) − hj(x̄) � h+j (x̄; η(E(x̂), x̄), j ∈ M. (4:10)
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Multiplying (4.8) by λ0
i , (4.10) by v0j , and summing the obtained relations, we get

p∑
i=1

λ0
i (fi(x̂) − fi(x̄))+

m∑
j=1

v0j (hj(x̂) − hj(x̄)) � λ0T f +(x̄; η(E(x̂), x̄)) + v0Th+(x̄; η(E(x̂), x̄)) � 0. (4:11)

Since x̂ ∈ X, v0 � 0, by (4.5) and (4.11), we further have

p∑
i=1

λ0
i (fi(x̂) − fi(x̄)) � 0. (4:12)

Utilizing (4.6) and (4.12), we know that there exists at least an i0 (1 ≦ i0 ≦ p) such

that

fi0(x̂) � fi0 (x̄). (4:13)

On the other hand, (4.4) and (4.9) imply

gi(x̂) � gi(x̄), i ∈ P. (4:14)

Now, using (4.13), (4.14), and g > 0, we obtain

fi0(x̂)
gi0(x̂)

� fi0 (x̄)
gi0 (x̄)

, (4:15)

which is in contradiction with (4.7).

Hence, the theorem is proved.

Similar to the proof of Theorem 4.1, we have the following theorem.

Theorem 4.2. Let x̄ ∈ X,E(x̄) = x̄, and f, g, h be E-h-semidifferentiable at x̄. If there

exist l0 Î Rp and v0 Î Rm such that the conditions (4.3)-(4.6) hold and l0T f(x) + v0Th

(x) is a semilocal E-preinvex function, then x̄is a weak efficient solution for (VFP).

Theorem 4.3. Suppose that x̄ ∈ X,E(x̄) = x̄, and u0i =
fi(x̄)
gi(x̂)

(i ∈ P). Further suppose

that (fi(x) − u0i gi(x)) (i ∈ P)are all pseudo-semilocal E-preinvex functions and

hj(x) (j ∈ M(x̄))are all quasi-semilocal E-preinvex functions and f, g, h are all E-h-semi-

differentiable at x̄. If there exist l0 Î Rp and v0 Î Rm such that

p∑
i=1

λ0
i (f

+
i (x̄; η(E(x), x̄)) − u0i g

+
i (x̄; η(E(x), x̄))) + v0Th+(x̄; η(E(x), x̄)) � 0, ∀x ∈ X, (4:16)

v0Th(x̄) = 0, (4:17)

λ0 ≥ 0, v0 � 0, (4:18)

then x̄is a weak efficient solution for (VFP).

Proof. We assume, by contradiction, that x̄ is not a weak efficient solution for (VFP).

Then, there exists �

x ∈ X such that

fi(
�

x)

gi(
�

x)
<

fi(x̄)
gi(x̄)

, i.e., fi(
�

x) − u0i gi(
�

x) < 0, i ∈ P,

which means

fi(
�

x) − u0i gi(
�

x) < fi(x̄) − u0i gi(
�

x) < 0, i ∈ P.
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By the pseudo-semilocal E-preinvexity of (fi(x) − u0i gi(x))(i ∈ P) and Lemma 3.1, we

have

f +i (x̄; η(E(
�

x), x̄)) − u0i g
+
i (x̄; η(E(

�

x), x̄) < 0, i ∈ P.

Utilizing l0 ≥ 0, we get

p∑
i=1

λ0
i (f

+
i (x̄; η(E(

�

x), x̄)) − u0i g
+
i (x̄; η(E(

�

x), x̄))) < 0. (4:19)

From h(
�

x) � 0 and hj(x̄) = 0, j ∈ M(x̄), we have hj(
�

x) � hj(x̄), ∀j ∈ M(x̄). By the

quasi-semilocal E-preinvexity of hj and Lemma 3.1, we obtain

h+j (x̄; η(E(
�

x), x̄)) � 0, ∀j ∈ M(x̄).

Considering v0 ≧ 0 and v0j = 0 for j ∈ N(x̄), one has

m∑
j=1

v0j h
+
j (x̄; η(E(

�

x), x̄)) � 0. (4:20)

Hence, by (4.19) and (4.20), we have

p∑
i=1

λ0
i (f

+
i (x̄; η(E(

�

x), x̄)) − u0i g
+
i (x̄; η(E(

�

x), x̄))) +
m∑
j=1

v0j h
+
j (x̄; η(E(

�

x), x̄)) < 0,

which is in contradiction with relation (4.16) at point �

x ∈ X.

Therefore, x̄ is a weak efficient solution for (VFP).

Analogously, we have the theorem below.

Theorem 4.4. Let x̄ ∈ X,E(x̄) = x̄, u0i =
fi(x̄)
gi(x̄)

(i ∈ P), and f, g, h be E-h-semidifferenti-

able at x̄. If there exist l0 Î Rp and v0 Î Rm such that the conditions (4.16)-(4.18) hold

and
∑p

i=1 λ0
i (fi(x) − u0i gi(x)) + v0TM(x̄)hM(x̄)(x)is a pseudo-semilocal E-preinvex function,

then x̄is a weak efficient solution for (VFP).

The following corollary is followed directly by Theorem 4.3 or Theorem 4.4.

Corollary 4.1. Let x̄ ∈ X,E(x̄) = x̄, and u0i =
fi(x̄)
gi(x̄)

(i ∈ P). Further suppose that f,

f , hM(x̄)are all semilocal E-preinvex functions, g is a semilocal E-preincave function, and

f, g, h are all E-h-semidifferentiable at x̄. If there exist l0 Î Rp and v0 Î Rm such that

the conditions (4.16)-(4.18) hold, then x̄is a weak efficient solution for (VFP).

5. Duality
Utilizing the approaches of Bector et al. [20], we formulate the dual problem for (VFP)

as follows:

(VFD)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

maximize (λ1,λ2, . . . ,λp)
subject to

∑p
i=1 αi(f +i (u; η(E(x), u)) − λig+i (u; η(E(x), u)))

+
∑m

j=1 βjh+j (u; η(E(x), u)) � 0, ∀x ∈ X0,
fi(u) − λigi(u) � 0, i ∈ P,
βjhj(u) � 0, j ∈ M,
λ = (λ1, . . . ,λp) � 0, α = (α1, . . . ,αp) > 0,
β = (β1, . . . ,βm) � 0, u ∈ X0.

(5:1)
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Denote the feasible set of problem (VFD) by X’.

Theorem 5.1. (Weak duality) Let x Î X, (u, a, b, l) Î X’, and E(u) = u. If∑p
i=1 αi(fi − λigi)is a pseudo-semilocal E-preinvex function, and

∑m
j=1 βjhjis a quasi-

semilocal E-preinvex function, and they are all E-h-semidierentiable at u, then

f (x)
g(x)

� λ.

Proof. We proceed by contradicting. Then, if the conclusion is not true, we have

f (x)
g(x)

≤ λ, i.e., fi(x) − λigi(x) � 0, ∀i ∈ P,

fk(x) − λkgk(x) < 0, for some k ∈ P.

From a > 0 and (u, a, b, l) Î X’, we get

p∑
i=1

αi(fi(x) − λigi(x)) < 0 �
p∑
i=1

αi(fi(u) − λigi(u)).

By the pseudo-semilocal E-preinvexity of
∑p

i=1 αi(fi − λigi) and Lemma 3.1, we obtain( p∑
i=1

αi(fi − λigi)

)+

(u; η(E(x), u)) < 0,

that is,
∑p

i=1 αi(f +i (u; η(E(x), u)) − λig+i (u; η(E(x), u))) < 0.

On the other hand, from b ≧ 0 and x Î X, it follows that

m∑
j=1

βjhj(x) � 0 �
m∑
j=1

βjhj(u).

Using the quasi-semilocal E-preinvexity of
∑m

j=1 βjhj and Lemma 3.1, one has⎛
⎝ m∑

j=1

βjhj

⎞
⎠

+

(u; η(E(x), u)) � 0,
m∑
j=1

βjh+j (u; η(E(x), u)) � 0.

Therefore,

p∑
i=1

αi(f +i (u; η(E(x), u)) − λig+i (u; η(E(x), u))) +
m∑
j=1

βjh+j (u; η(E(x), u)) < 0,

which is in contradiction with (u, a, b, l) Î X’.

Similarly, we have the following weak duality.

Theorem 5.2. (Weak duality) Let x Î X, (u, a, b, l) Î X’, and E(u) = u. If∑p
i=1 αi(fi − λigi) +

∑m
j=1 βjhjis pseudo-semilocal E-preinvex and E-h-semidifferentiable

at u, then
f (x)
g(x)

� λ.

Theorem 5.3. (Converse duality) Let x̄ ∈ Xand (x*, a*, b*, l*) Î X’, E(x*) = x*, where

λ∗ =
f (x∗)
g(x∗)

=
f (x̄)
g(x̄)

= (λ∗
1, . . . ,λ

∗
p). If fi − λ∗

i gi(i ∈ P), hj (j Î M) are all semilocal E-

preinvex functions and all E-h-semidifferentiable at x*, then x̄is a weak efficient solution

for (VFP).
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Proof. By the given hypotheses and Lemma 3.1, for any x Î X, we get

(fi(x) − λ∗
i gi(x)) − (fi(x∗) − λ∗

i gi(x
∗)) � f +i (x

∗; η(E(x), x∗)) − λ∗
i g

+
i (x

∗; η(E(x), x∗)), i ∈ P;

hj(x) − hj(x∗) � h+j (x
∗; η(E(x), x∗)), j ∈ M.

Utilizing the first constraint condition for (VFD), a* > 0, b* ≧ 0, l* ≧ 0 and the two

inequalities above, we have

p∑
i=1

α∗
i ((fi(x) − λ∗

i gi(x)) − (fi(x∗) − λ∗
i gi(x

∗))) +
m∑
j=1

β∗
j (hj(x) − hj(x∗)) �

p∑
i=1

α∗
i (f

+
i (x

∗; η(E(x), x∗)) − λ∗
i g

+
i (x

∗; η(E(x), x∗))) +
m∑
j=1

β∗
j h

+
j (x

∗; η(E(x), x∗)) � 0.

In view of hj(x) ≦ 0, β∗
j � 0,β∗

j hj(x
∗) � 0(j ∈ M) and λ∗

i =
fi(x∗)
gi(x∗)

(i ∈ P), one has

p∑
i=1

α∗
i (fi(x) − λ∗

i gi(x)) � 0, ∀x ∈ X. (5:2)

Now, we assume that x̄ is not a weak efficient solution for (VFP). From

λ∗
i =

fi(x̄)
gi(x̄)

(i ∈ P) and Lemma 4.1, it follows that x̄ is not a weak efficient solution for

(VFPl*). Hence, there exists an x̃ ∈ X such that fi(x̃) − λ∗
i gi(x̃) < fi(x̄) − λ∗

i gi(x̄) = 0,

i Î P, which implies that

p∑
i=1

α∗
i (fi(x̃) − λ∗

i gi(x̃)) < 0.

This is a contradiction to the inequality (5.2).

So the theorem is proved.
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