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Abstract

This paper is devoted to the study on the [” estimates for the multiple singular
integrals with rough kernels on product spaces R” x R (n, m > 2). By means of
extrapolation method and Fourier transform estimate, we prove that the multiple
singular integral operators are bounded on (P(R" x R™) for the kernel functions: Q) e
Llog L’(S™" x S™), h e Ky(R* x R*) (« € (1,2]). Furthermore, we prove that
when Q e Llog L)*(S™" x ™) and h satisfying a ‘log’ type condition defined on R*
x R*, the multiple singular integral operators are bounded on L*(R" x R™), which
improves the well-known result.
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1 Introduction
Let R"(n > 2) be n-dimensional Euclidian space and S”' be the unit sphere in R”. Sup-
pose that the function Q € L*(S"?) satisfies the following cancelation condition

/summﬂm=o, (1.1)

Sn—1

where do denotes the usual Lebesgue surface measure on the unit sphere S .
Let L(log L)* (") denotes the functions Q defined on $"* satisfying the Zygmund
condition: for o > 0,

[ 12010082 + 120)))"do 0) < .
Sn—1
It is noted that for any ¢ > 1, we have the proper inclusion relations hold:
LY(S" 1) c L(logL)*(S™!) c LY(s" Y,
L(logL)? (8" 1) c L(logL)*(S" 1) if 0 < & < B.

For s > 1, let A((R") denote the collection of measurable functions 7 on R™ = {t ¢ R :
¢t > 0} satisfying
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i+ 1/s

1Al a,(r+) = sup / |h(t)[*dt/t < 00,
jez 5

where 7 denotes the set of integers. Also by usual modification, A., (R*) = L™(R").
We note that A; € A, if s >t. We can always assume that 1 € A;.
A singular integral operator is defined in the following form:

S()() = [ 1= KOIy = lim [ = KO, o
Rﬂ

[yI>e

for an appropriate function f on R”, where K (y) = |y|”a(|y)Q®), ¥’ = |y|'y.

It is well known that if Q € L log L(S™ "), & = 1, by the method of rotations, Cal-
derén and Zygmund [1] proved that S extends to a bounded operator on L? for all p €
(1, o). In [2], R. Fefferman first introduced the case of rough radial and proved that if
he A. (R") and Q satisfy a Lipschitz condition of positive order on §”, then § is
bounded on L? for 1 <p < «. Namazi [3] improved this result by replacing the
Lipschitz condition by the condition that Q) L1(S™") for some ¢ > 1. In [4], Duoandi-
koetxea and Rubio de Francia developed some methods that can be used to study
mapping properties of several kinds of operators in harmonic analysis, where they
proved that S is bounded on L” for 1 <p < o when & € Ay(R*) and Q € LY(S""). In
[5], Al-Salman and Pan proved that S is bounded on L for 1 <p < oo when i e A {(R")
(s >1)and Q € L log L(S""). Recently, using a method called Yano’s extrapolation
method [6,7], Sato [8] proved that S extends to be an operator bounded on L? for 1 <p
< o where Q € L log L(S"") and the radial function / satisfying a rougher condition

as a log type.
Define the function spaces

L4(R™) = {h : h be measurable functions on R*, L,(h) < oo},

where

2j+1

Ldr
La(h) = sup f (7)1 (10g(2 + 1))

And define the function space
N, (R*) = {h : h be measurable functions on R*, N,(h) < oo},

where

Na(h) =Y m*2"dy(h),
m>1

with d,,,(h) = supsc~ 2X|E(k, m)| and E(k, m) = {re (25 251 : 271 < |h(r)| < 2"} for
m =2, Etk, 1) = {re (25 2] : |h(r)| < 2}. Indeed, it is noted that for any a > 0,
No(R*) € L4(R*) and L4,p(RT) € Ny(R*) for some b > 1.

Sato’s main result is the following theorem:

Theorem A. [8] Suppose Q is a function in L log L(S™ satisfying (1.1) and
IS prny < ClIfllprny (or b € L4(R*) for some a > 2). Let S be as in (1.2). Then,
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there is a constant C such that
NSy < Clif e

for all p € (1, o).

For the one-parameter case, there are also several other papers. Especially, in [9,10],
weighted L boundedness of singular integrals was discussed. The reader also can refer
to [11-13] for more background materials.

In the article, we mainly consider the L” boundedness for the multiple singular inte-
grals with rough kernels. Suppose that $**(d = 1 or m) is the unit sphere of R? (d >
2) equipped with the usual Lebesgue measure do. Let Q € L'(S"" x §”') satisfy the
following double cancelation condition:

/ Q(u,v)do(u) = 0 and / Q(u,v)do(v) = 0. (1.3)
gn—1 gm-1
For o 2 1,

Ay(R* x R*) = {h : h be measurable functions on R* x R*, ||h]|a, < 00},

where
1
ol ojil o
drds
1, = sup f/m(r,s)w
kjeZ i Ts
2k 2

The multiple singular integral on the product space R” x R” is defined by the fol-
lowing form:

Tf (x1,%2) = p.V. / f(x1 = y1,x2 — y2)K(y1, y2)dy1dys (1.4)

R"xR™
for an appropriate function fon R” x R™, where

K@y, v2) = Il 7" ly2 17"y v5)h(Iyal, [ya). (1.5)

Let L(log L)*(S"" x §”') denote the class of the functions Q defined on §"' x §”*
satisfying the Zygmund condition: for o > 0,

/ 192(6, »)|(log(2 + 12(0, »)]))*do (6)do () < oo.

Sn—1y gm—1

Historically, multiple singular integral was introduced by R. Fefferman and Stein’s
famous work on multiparameter harmonic analysis. Fefferman and Stein [14] proved that
when /& =1, T is bounded on LP(R” x R™) for 1 <p < o if Q) satisfy certain smooth condi-
tions. Their method mainly relies on so-called square function method. Subsequently, in
[15], Duoandikoetxea used the method established in [4] and proved that 7 is bounded on
IP(R" x R™) for 1 <p < > when Q € LI(S"" x §”7) for some ¢ > 1 and i e A,(R* x R*).
In [16], Fan-Guo-Pan proved that T is bounded on I”(R"” x R™) for 1 <p < oo for the case
when Q belongs to certain block spaces that contain LI(S" x 8™ (for p = 2, it was
proved by Jiang and Lu in [17] ) and % = 1. In [18], Chen proved that T is bounded on L”
(R x R™) for 1 <p < > when Q € L(log L)* (S"* x §™™) and /& = 1 where he mainly relies
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on the method of rotation. In [19], Al-Salman, Al-Qassem and Pan proved that T is
bounded on I”(R” x R™) for 1 <p < e when Q € L(log L)*(S"" x §” ") and h e A,, for
some o > 1, where their technique mostly based on refining the Duoandikoetxea-Rubia’s
Fourier transform estimates and Littlewood-paley theory. In the same paper, they also
pointed out that for any & > 0, there is a function Q € L(log L)**(S"" x ') such that T
may fail to be bounded on LP(R” x R™).

The main purpose of this paper is to improve the above results, especially the rough
product radial part. For this reason, we introduce several measurable function spaces
defined on R* x R* : Ay (R* x R*), Lo(R* x R*) and N, (R* x R*) for a > 0, where

these spaces are equipped with the following “norms":

ohs1 i+l o 2+ 21
ds dr drds
o o
IB1IZ, (R xR-) = SUP /sup/ |h(r,s)| +sup /sup/ |h(r,s)|
kez jez s T jez kez rs
2k 2 2 2k

2i+1 P+l

Il 2, (e xRy = S}:_l];/ f |h(r,s)| (log(2 + |h(r, s)|))°‘
jike

2i 2k

Il No (e sy = Y m*2"™Din(h),

m>1

drds
rs

with Dy (h) = supyez2 *27|E(k,j, m)| and E(k j, m) = {(r, s) € (26 21 x (2, 2] :
2" < |h(r, s)| < 2™ for m > 2, E(k j, 1) = {(r, s) e (25 25'] x (2, 21 : |h(r, s)| < 2).

Remark 1.1. Oof course by the usual modification,
Ax(R* x R*) = Zoo([R* x R*) = L®(R* x R*). For simplicity, we let
Ag = Ag(R* X RY), Ag = Ag(R* x RY), Ly = Lo(R* x RY) and N = N (R x R*). It
is easy to check that (1) A, C Za C Ay (2) A, C Zﬁ if 1 < f <o (3) for any a > 0,
N, C Lyand Lyp CN, forany B> 1; (4) forany @ > 1 and B> 0, A, C Lg C Ay

Our main results are the following theorems:

Theorem 1.1. Suppose that Q € L(log L)*(S"" x §”1) satisfying (1.3),

(1) if h e N, or L, for some o > 3, then there is a constant C such that

NTf 2 (Rex gy < Clf L2 (R0xR™).- (1.6)

(2)ifh e A, (a € (1,2]) then there is a constant C, which is independent of ¢, such
that

NTf |l (Rexrm) < C ! o IR N e (Re xRy, (1.7)
(«—1)
for p e (1, ).
Remark 1.2. In [19], it was proved that 1€ A, for some o > 1 and Q € L(log L)*(s™*
x §"1) are sufficient for L” boundedness for the multiple singular integral T. As for p =
2, Theorem 1.1 extended this result. For p # 2, our condition } Za(a € (1,2])is
strong. However, our result gives a sharp constant estimate, which gives the following
corollary when the product radial part is separated (that is, /(r, 5) = h1(r) - hy(s)).
Corollary 1.1. Suppose that Q € L(log L)*(S"™ x §”) satisfying (1.3) and if 4(r, s) =

hi(r) - hy(s), where h; or h, satisfies one of the following case:
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(1) 1y € Ay(R") (o > 1)) and hy € No(R*)(or hy € L,(R*) for some a > 3);
(2) hy € Na(R*)(or hy € L4(R*) fsor some a > 3) and /1, € A(R") ((s > 1)),

then there is a constant C such that
NTf Nl (Rexrmy < ClIf o (Rr xR, (1.8)

for p € (1, o).

Our proof of the above theorem is based on the argument of Sato [8], which mainly
relied on Yano’s extrapolation method. The following theorem is the key step to prove
Theorem 1.1.

Theorem 1.2. Suppose that Q € LY(S""' x §"')(g e (1, 2]) satisfying (1.3).

(1) If he Ayl e (1, 2]), then there exists a constant C, which is independent of g,
a, Q, h, such that

ITf ll2@®exrmy < C 5 1Al a, 12111 (sm=1 scsm=1) | f |12 (R x Ry - (1.9)

1 1
(@-1)*(¢-1)

2)Ifh e Za (@ €(1,2]) then there exists a constant C, which is independent of g,
a, Q, h, such that

NTfllp(Rexrm) < C , BRI a(s1xsm-1) | [f [l (Rex®m), — (1.10)

1 1
(@=1)*(q-1)
for p e (1, «).

Remark 1.3. Corollary 1 in [15] asserted that if # € A, and Q € LY(g > 1)(S"" x ™
1), then T is bounded in L”(R” x R™) for p > 1. After a careful check of its proof, we
find that the condition s € A, is not sufficient for p = 2 since the two partial maximal
functions are taken supremum both j and %, it seems that if # € A,, the partial maxi-
mal function is not pointwise controlled by the one-parameter maximal function case
(line 10-13, [15]). If we substitute # € A, with j ¢ A, Corollary 1 in [15] is corrected.
This is why we introduce the space A . Of course, we remark that our result is mainly
influenced by the idea and the technique established in [15]: Littlewood-Paley theory
for product theory, Fourier transform estimates, etc.

Remark 1.4. The maximal multiple singular integral is defined as

T*f(x1,x2) = sup // fler = y1, %2 = y2)K(y1,y2)dy1dyz |,

£1>0,6,>0
[P11=enly21=€2
where K is as in (1.5). By the estimates we have established and Yano’s extrapolation
method, combining with [20], we have the same result for the maximal multiple singu-
lar integral as in [19]:
Theorem 1.3. Suppose that Q € L(log L)*(S"" x §”") satisfies (1.3) and /1 € A.,
then there exists a constant C, such that

NT*flr(Rexrey < CllAl A f (R0 xR, (1.11)
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for p e (1, ).

We leave the proof to the interested reader. But we do not know whether % can be
extended to more general case like za(l <a < 00)

This paper is organized as the following. In Section 2, we give the proof of Theorem 1.2.
In Section 3, we give the proof of Theorem 1.1 and Corollary 1.1. Throughout this paper,

the letter C will stand for a constant that may vary at each occurrence but that is indepen-

1 1
dent of the essential variables and p’ be the conjugation of p satistying 5 + =1

p/

2 Proof of Theorem 1.2
Let Q, & be as in Theorem 1.2. We let p > 2, define

Rn+m

Erj = {(r1,72) € ot < |yi| < 0 0 < Jpa| < ,of“}

and measures 0y; by

Oj * f (%1, X2) =f/K(y1,yz)f(x1 — Y1, %2 — y2)dy1dys.

Ek, j

So
Tf = Z O’k,]' *f

k,j
Define o* by 0* flx) = supy; ||ox,| * fix)|, where |oy;| denotes the total variation. Let
tij = |0k;j| and define u* by u* fix) = supy; |ur; * fix)]. Let O € (0, 1), o(p) = |1/p - 1/
p’], we have the following two lemmas.
Lemma 2.1. For p > 1 + 6, suppose that Q € L1(S""' x §" ") (q € (1,2]) satisfying

(1.3) and h € Za(Oé € (1,2]) we have

o\ —22/p
N fllp®exrmy < Clogzm|Q||Lq(sn—1xsm—1)||h||zn (1 - 22) f 111 (R xrm)(2-1)

where the constant C is independent of ¢, ¢, Q, h.
Lemma 2.2. (1). Suppose that Q € LY(S"" x §"1)(q e (1,2]) satisfying (1.3) and & €
Ayl e (1,2]),

I Tf 2o xkmy < Clog” plIS211zasi1 xsm-1y 1l ag 1122 (RoxRm. (2.2)

(2). For pe (1 + 6, (1 + 0)/0), suppose that Q € LUS"" x §" ) (g € (1, 2]) satisfying
(1.3) and h € Ay(a € (1,2]) we have

g\ —2(1+5(p))
Tl x&my < Clog® pl|Q|pasm-1xsn-1)l 1|5, (1 - 2_2) [fll@exgmy,  (2:3)

where the constant C is independent of ¢, o, Q, A.

If Lemma 2.2 is proved, since 8 € (0, 1) is arbitrary and we choose p = 27%, then
Theorem 1.2 is an immediate consequence of Lemma 2.2 immediately.

Now, we prove part (1) of Lemma 2.2. For simplicity, we let
A= log2p||Q||Lq(sn71 «sn-1)| ]| a,- Firstly, we have the following estimates for the mea-

sures Oy
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llorill < A (2.4)
by [F 2 |l 20 2.5
16j(E1.62) < CAIp & | 2 |plg,| 20 (2.5)

for some constants ¢;. The equation (2.4) is the consequence of the following result:

llowjll = loril|(R" x R™)
pk+1 pj+l
<[ [ [ 1ewoineadowasmn
o pl STy gmel
< Clog?pl|QIIi (s xsm1) [l a, -
Now, we turn to prove (2.5), note

pk+] /)}4]
61y(61, £2) = / / / Q(u,v)h(r,s)e—hi(él-T“"EZ'W)da(u)da(V)d:;is

ph ol Sn—1 5 gm—1
and we define
F(r,s,&1,6) = f Q(u, v)e 2 E V) dg () do (v).
Sn—l >(Sm—l

Then, by Holder’s inequality,

pflo-l lD/+l
N drds
e = | [ [ Fos e ehen
ok pl
Pl pitl a [ phl pit o
drds drds
<\ [ [ meor [ [reseer
s s
ok pi ok pi
1 1
Pl pitt drd o oo Pl pitt drd o
rds , ,drds
<| [ [ e | i | [ [ e
ot pi ok pi
while here
pk+l p]+l
drds
[ [ e
ok pi
p}ul p[d
—27i(&y r(u—u')+Er-s(v—1")) ’ 7 drds
= Qu, v)Qu, v)e ! 2 do (u')do (v)do (V') s
Pk (sn-1xgm-1)?
Pl it
—2mi(&r(u—u')+&-s(v—1')) drds ’ ’
< Qu,v)Qu, V') e ! 2 s do (u)do (u')do (v)do (V')
(sn—lxsm—l)l ok ol

< Clog’ plIQ 1y gn 1 sm 1y 1P 61171082
1
B
[ do (u)do (') / do (v)do (V)
167y - (u—w)le@ 1§75 - (v —v) |7

n—1 5 Gn—1 m—1 5 gm—1
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1

]. / ! Al

When &g’ < 1 (indeed we set € = _ ), the integrals J do (u)do (v') oq
24 Tl (= )leq

do (v)do (V) 1 - .
d -1 5 gm— ) finit d ind dent of do. S
an (fs 1% 1|$’2~(v—v’)|fq «q 2re finite and independent of ¢ and . So we
have

1 o1
161, (£1,€2)| < Clog® plIhl|a, |21 pasi-1 xsm1y | pFE | 20" |plEy | 20 (2.6)

Since Q satisfies the condition (1.3), we have 63,j(0, &) = 0 and then |6%j(&1, &2)]
equals to

16%(&1,&2) — 6%,i(0, &)

ol pitl
) ) drds
= Q(u, v)h(r, s)[e‘z’”é1 ™_ 1]6_27”52'“’d0 (u)do (v)
s
ok pi Slxgm-l
P ol
; ds ; dr
< Q v h : —2m§z»svd —2mwi€yru 11d
< [ [ ewonegeevac e i @)
pk Sn—1 pj Sm—1
P ol
. ds dr
< f f f f Q(u, v)h(r, s)e 75 dy " | min({2, /&1 |})du
s T
pk Sn—1 pi Sm—1

1 1
< Clog®pllhlla, [1Q1lLa(sr1 xsn1)|p"€1129¢ | plEy | 204

The same way as above, we have |61,j(£1, &2)| equals to

1 ) 1
161,j(£1, &) — 61,j(&1,0)] < Clog? plIh|a, l|Q1La(s1 xsn 1)l Er| 20 |y 20 (2.8)
Also we have |61,j(&1, &2)| equals to

16%j(81,&2) — 6%,i(£1,0) — 63j(0, &) + 61,(0, 0)]
, o oL 1 (2.9)
< Clog”p|[hl|a, [1R|zi(sr1 xsm-1)| 0 127 | &5 | 20"

Consequently, the inequality (2.5) is just the combination of (2.6), (2.7),(2.8) and
(2.9).
Let ¢! € S(R"), ¥? € S(R™), such that

A

. 1
supp(y' (&) C {p <|&l <p}i=1,2,
0 < ¥i(&)

IA

1,i=1,2,
and

DA EN? = ) 1w (E)1 = 1.

k=—00 j=—o0

Let ¥, sz as () (&1) = v (0"81), (WjZ)A(Ez) = Y2(p&,), respectively. Then, we

have
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Tf = > onj*f

k,j

= Z Zak,j * (1//}}+1 ® 1ﬁ]%-m) * (wk1+l ® wﬁ-m) *f

kj 1Lm

£ Z Tl,mf,
ILm

where

Timf = D 0k * (Vo1 @ Vi) * (Vieay ® Vi) # 1. (2.10)

kj

Then, by Plancherel’s theorem and (2.5), we have

T ey = € [ 1uster, 20761, )P der e

ko D(tesljrm)

1 1 R
<ca? min{l,p722q/“’(m71)}min{l,p722‘1’“’(‘m‘71)} Z |f(§1,§2)|2d$1d§2 (2.11)
lJ€ &y (sl jem)

1
—224/0/(\”—1) Im|—1)

1
. . =250 (
< CA2 mln{l,p }mln{l,p 2q'e }llflll%z(ﬂ?"xﬂ?’”)

where D(k, j) = {(& 1) : p** < |€] < p™*, p7 < |n| < p7*'}. By above estimates and
Minkowski’s inequality, we give the proof of part (1).

Now, we turn to prove part (2) of Lemma 2.2, take for Lemma 2.1 is granted. We let

o\ —2
A = 10g2p||9||Lq(sn—lxsm—l)||h||zd and B = (1 — 22) for simplicity. We have

llowjll < A (2.12)
5 S S 513
161j(E1,62)] < coA'|ptE |20 |plgy | 20 (2.13)

b 14
||O’*(f)||Lﬂ(Rn><|Rm) < CpA/BP ||f||Lp(|Rn><Rm) for p>1+90, (2.14)

for some constants ¢; and C,. where Egs. (2.12) and (2.13) follow (2.4) and (2.5),
respectively, (2.14) is just (2.1).

1 1 1
Lemma 2.3. Let u € (1 + 6, 2], define a number v by =~ — )= oy Then, we have the
v u

vector-valued inequality

2 2
1 1
2 2
E |07 * 8,jl < (c1Cy)2A'Bu E 18,1 /
kj kij

Lv(|Rn X |Rm) Lv(|Rn X |Rm)

where ¢; and C, are as in (2.4) and (2.14), respectively.
Proof. The proof is the same way as in one parameter case, and we prove it here for
completeness.

Page 9 of 16



Qu Journal of Inequalities and Applications 2011, 2011:115 Page 10 of 16
http://www.journalofinequalitiesandapplications.com/content/2011/1/115

Since

1> 10k # Gl @esrmy < A1 I8kl ey
k,j kj

and
, 2
[ sup |07 * &jl |t (RrxrRmy < 1|0 % (SUP |8j)ILe(RexrRm) < CuA'Bu || sup |8, ll|Le(®rx®m)
kij kj k.j

Interpolation between the above two inequalities completed the proof of the lemma.
By the Littlewood-Paley theory, we have

12
T f L goeny = Co| (2 |0 (ke @ W) #£]) (2.15)
kj 1P (RN XRM)!
||(Z (Y1 ® Wﬁm) 5 FD) 2 rexrny < Collf 1o (RrxRm), (2.16)

kj

where p € (1, «) and C,, is independent of p. Suppose that 1 +0 <p < 3f0. Then,

1 1 1-6 1 1 1

we can find z € (1 + 0, 2] such that = _ + .Letv: =+ ,byLemma 2.3,
p 2 2u v 2 2u

(2.15) and (2.16), we have

1
| Tymflly < CA'Bu||f]],.
) 1 1-60 6 ) )
Since = + _, by interpolation, we have
p v 2

o (Iml=1)

1-6 _ 0
NTymfllp(Rexrry < CA'B u min{1,p 27 HIf o (Rr xR

Then

1-0 _ 0 \72
NTf (R xRmy < Z | Tymflly < CA'B u (1 —-p 2"'“/) [f 1 (Re xR

Lm

. - o\ 2 1-0 2
Smcep=2‘1“,B=(1_22) and y +1=p,thenwehave

2
ITflI1pRexRn) < CA'BP |If||1p(RexRo)- (2.17)
1N\ -2
When p = 2, by Eq. (2.11) and B > (1 — 22) , we have

WTfll2®exery < D Tomf 2@ xmy < CA'BIIf |2 (Rexgemy.

Im

By duality and interpolation, we can now finish the proof of Lemma 2.2.

Now, we give a proof of Lemma 2.1. Since ||#*f]| < c1A4]|f]|- by taking into account
an interpolation, it suffices to prove (2.1) for p € (1 + 0, 2]. We recall that y;; = |0y
and p*flx) = supy; |pi; * fix)]. The following four estimates for y; are similar with the
equations (2.4) and (2.5):
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il < A', (2.18)
k b e 2.19

|fij(£1, &) — (0, &) < CA'|pkE, |20 |plgy|” 20, (2.19)
. _ 1 . 1 929

(51, €2) — funj(€1,0)| < CA'|p"e| 209 |ple,y |20, (2.20)

1 1
|Akj(E1, £2) — Aj(E1, 0) — finj(0, &) + (0, 0)| < CA'|phy |20 | plgy| 20 (2:21)

where C is independent of g, Q, h, . Choose positive real value functions
¢ € C°(R) (j = 1, 2) satisfying supp(¢;) < {|r| < 1} and ¢; = 1, when |r| < ; Define

(®1)2(&1) = ¢ (10" 1),
(®7)(&2) = pa(lP'E2)),

and measures

(&) = A j(§) — (P4)" (&1) (0, &)

(@) (€)1 (61,0) + (9) (61)(¥])" (62)in (0, 0). 222

So by the definition of 7;; and estimates (2.18)-(2.21), it is easy to check that 7z
satisfies the same estimates as oy, i.e.,

2 ke Faga | g, F 20 2.23
1%ej (61, &2)1 < CA'lp"&| 20 | plEa| =20, (2.23)
where C is independent of ¢, & and Q, i. Also we have

W (x1,%2) < sup(®h ® uf)) (1, x2) + sup(ul) ® ©F) * f(x1,x2)
kj kj

(2.24)

+sup(uufy?) ® @} ® &F) x f(x1,%2) + () (v1,%2),
kij

where

$) 00 x2) = (3 fatg 1, 12) )2
kj

and ,u,,(:j), u}(j) and ,l,l,;(z'lj'z) defined as follows:

A (82) = 1 (0,62), A (€1) = funj (81, 0), ALy (61, £2) = f14(0, 0).
Then, we have
sup(®} ® /L}(zlj) # f (1, %2) < CMIMWDf(x1, %)
k,j

s;;p(u,&? ® ©7) * f(x1,%2) < CMaMDf (31, 3,) (2.25)
)

sup(,u,(zllj'z) ® @), ® B7) * f(x1,%2) < CM1Maf (x1, X2)/ir;(0, 0)
kj

where M; is the Hardy-Littlewood maximal function acting on the x;-variable and M

@ is the partial maximal function, defined as the following

Page 11 of 16



Qu Journal of Inequalities and Applications 2011, 2011:115
http://www.journalofinequalitiesandapplications.com/content/2011/1/115

Mg, = sup g} gil,i=1,2. (2.26)
)
Since
pku Pl drd
rds
Mg (x) < S;lp / / 12(u, v)[1h(r, 5)118(x2 — sv)|do (u)do (v) s
2l j gn—1xgm-1
e . (2.27)
dr ds
SsupClogp/ / / [2(u, v)|do (u) / [h(r, s)| . 1g(x2 — sv)|do (v) S
k,j
pigm=1 gn=1 2k

2k+1

We let p(s) = supk/ Ih(r, S)|Clr and Q(v) = f[o,-1 12(u, v)|do (). Since h ¢ A, and

2k
Qe LUS"" x §"7), then h € A, (R*) and & € LI(S™!). By Lemma 1 of [8], the one-

parameter case, we have for p > 1 + 6,

‘] 72
MW gyl my < Clog?pl|Qlra(sm1xsm1)l1hlIz, (1 —272) 1181 10w

, (2.28)
< CA'B? |81l (rm),
and the same way we have
2 2 -5 -2
| MPgalliprry < Clog?p [l Qlusgsr-1xsm1) | hllz, (1=277) 2 1| &2llwn
, . (2.29)
< CA'B? |2l (Rr).-
On the other hand, it is easy to check,
sup ) f(x1,%2) < Clog?p I| Qluas1xsm1y | hlla, [f (61, %2)1- (2.30)
k,j
So with (2.28)-(2.30) and (2.25), we concluded that for p € (1 + 6, 2],
1 (1) 1 2
I sup (] ® 1) # fllp(mesn) < CABP | flip(rosckn,
kj
2
I sup (122 @ ) # fliroiny < CABP || flliroxiny, (2.31)
kj

2
I sup (;” ® &} ® F) # fll(rrsin) < CAB? || fllisggrcn).
k,j

. , 2
To prove Lemma 2.1, it suffices to prove | 8Nl @ xgmy < CAB? | fllo(wrxim for p

€ (1 + 6, 2]. By a well-known property of Rademacher’s function, this follows from

2
I U(H)llrrexwmy < CA'BP || fllo(wrxwm), (2.32)

for p e (1 + 0, 2], where uf) = Zk,j Ek,jThyj * f with &r; = 1 or -1, and the constant C
is independent of ;. The estimate (2.32) is a consequence of the following lemma:
. 1 _1,1-9 .
Lemma 2.4. We define a sequence {#;}Z] by p; = 2 and g = 2% 2y forjz 1 (We
1-d

note that ;j = |9 where a = 1;9, so {p;} is decreasing and converges to 1 + ¢.) Then,

for j > 1 we have
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I U5 oy < CABP || £l (g ey (2.33)
Proof. Let
Uem(F) = Y 0T % (Dha® Bom) * (Bpa® o) * f
kj

By Plancherel’s theorem and the estimates (2.23), the same way as in (2.11), we have
that

P 2,0 (1-1), . —2, 0 (Iml-1)
I Uim(f) IIfz(WX[Rm)S CA? min(1,p 24« ymin(1,p 2@ ™y 7 ||iz(ne"xuem) o (2.34)

It follows that || U(f)ll2(rrxrm) < Dy | Ukm(F)ll2®exrmy < CAB || fllr2(rexgm). If we
denote by A(s) the claim of Lemma 2.4 for j = s, this proves A(1).

Now, we derive A(s + 1) from A(s) assuming that A(s) holds, which will complete the
proof of Lemma 2.4 by induction. By (2.22) and (2.24), we have that

T = U6 +5up(0f @ ri)) 5 f(3) + sup (i) © ) 5 /()
gl 7

2
+ s;elp(,u,ilj )@ ol ® d>]2) * f(x)
J

(2.35)
= 8()() + 2sup(®; ® D) * f(x) + sgpw,‘fj’ ® ©2)  f(x)
1] 7

+ s;el‘p(,uélj’z) ® ¢, ® d7) *f(x))
i

Note that A; means that I g(P)lly, < CA/Bli I Flpe By (2.35) and (2.31) we have

I 2 () los Ry <11 () os (e + 2( I S}ZIP(CPJ-1 ® M;E,Ij)) * f s (RoxRm)
j
+ sup(//.}(elzj) ® <I>]2) s fll s (Rrxcrm)+ |l s:elp(u;lj’z) ® <I>;1 ® @f) *fllimwoxrey  (2.36)
kj J
2
< CA'BPs || fllirs(rrxgm)-

By (2.36) and (2.34), we can now apply the arguments used in the proof of (2.17) to
get A(s + 1). This completes the proof of Lemma 2.4.

Now, we prove the inequality (2.32) for p e (1 + 0, 2]. Let {pj ]?:ol be as in Lemma 2.4.
Then, we have py,1 < p < py for some N. Thus, interpolation between the estimates of
Lemma 2.4 for j = N and j = N + 1, we have (2.36). This completes the proof of
Lemma 2.1.

3 Proofs of Theorem 1.1 and Corollary 1.1
Proof of Theorem 1.1: We first need to establish a suitable decomposition for Q
defined on §"' x §”!. The main technique is mainly based on Chen [18]. Define a
sequence of sets {Fi}(k e N) on §** x ™7 as:

Fo={(0,w) e "1 x 8" 1:271 < |Q(6,w)| <2} fork =2,3,...
and

Fi = {(6,w) € "' x 8" |1Q(0, w)| < 2} fork = 1.
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We define

Q. (6, w) = Qxr, (6, w) — a(si—l) / Qxg, (v, w)do (u)
snfl

,J(S}H) /QXFK(Q,v)dJ(v)
Sm—1

. 1
a-(snfl)a-(smfl)q

Sn—1y gm—1

Qxr, (u,v)do (u)o (v).

Then, it is easy to check that

Q6,w) = i Q. (6, w) (3.1)

k=1

and all Q,,; satisfies the condition (1.3), i.e.,

/QK(Q,w)da(6)= / (0, w)do (w) = 0 (3.2)

Sn—1 Sm—1
Furthermore, if we set ¢ = o (F,) = fFK do (u)do (v), then for r e (1, «), we have

1
3.3
| Qellirsmxsm-1y < C2%el fork € N. (3.3)

Now, fix h € Ay (a € (1,2]),p € (1, 00) and a function f with || f||zs&mm) < 1, we denote
R(Tf, 2) =|l Touf llir(rr+m). Then, by Theorem 1.2, Egs. (3.1), (3.2) and (3.3), we have

R(Tf, Q) < iR(Tf, Q)=<C

k=1 (o

1 o
) I i, D Il
- k=1

L'k (Sr=1 xsm1)

1 > «
<C I hlls, Y k228!
2 Ay
(¢—1) =

1

«
<C hll S o+ T )e?2%est!
=Claoy I hll, (Lu<3" 223,() <

1 K2 I3
<C Il hllx K223 k14 Y k22%g 3K+l
(¢ — 1)2 Aq Z Z *

k=1 k=1

(3.4)

“C, N e s, (1 " /S 19206, 0)l1og’ (2 + Q(G,w)nda(o)da(w)) :

For p = 2 and a function f with || fllr2(gen) < 1. Denote O(h) = Tnfl12(rrx&m). Sup-
pose that 1 € Ay e (1,2]) and Q € L(log L)*(S™" x §™"), with the same estimate as
in (3.4), we have that

1
o) <C - |
(h) < (1) Il Bl Ay (Re xR (3.5)

Put E; = {(r, s) € R* x R* : |h(r, s)| < 2} and E,, = {(r, s) € R* x R* : 2" < | (1, s)|
< 2"} for m = 2, 3, .. .. Then, by (3.5), we have

O(hye,) =l Thy, 2 (®Re xRy < 5 T hyE, AL (R xR

C
(¢—1)

We follow the extrapolation argument of Zygmund [7]. First we note that

m
I hyg,lla | & xre) < 2"Di*t (h) (3.6)

m
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for m > 1, where D,,(h) be as in the definition of N, in Section 1. By (3.5) and (3.6),
we have
O(h) < > O(hxs,)
m>1

< CZ m? || hxe,lla | ® xR

=1 Lo

m

<C)Y_ m*2"Dp* (h)

m=>1

m
= C( T o+ 0z )m22mD,;',1+1 (h)
Du()<3—" Dy (H)=3—"™

< C(1+ Il hliny (R &)

This ends the proof of Theorem 1.1.

Proof of Corollary 1.1: Since / can be written as separate case /(r) - /15(s), we deal
(1) and (2) by the same procession. We only need to prove part (1) of the corollary.
Suppose that Q € L(log L)*(S"" x §”') and hy, hy € Ay(R*) for e € (1, 2], then
h=hhy e Aa. By part (2) of Theorem 1.1, for p € (1, ) we have

1
| Tf llr (rrxrmy < C(a 1y I AlA, I fll®exmm)
. (3.7)
<C h A |l h . 5 R
=€y Il hilla, ey I halla, @) | flle®exrm)

Suppose that | Qll ogr)2(sm-1xsm-1) = L I fllp®ixrry <1 and hy € Ag(R*) with
| hilla.®e) < L We define U(hy) =l Tn,fllp(rexre). Set Ey = {re R" : |hy(r)] < 2} and
E, ={re R*: 2" < |hy(r)| < 2™} for m > 2. Then, by (3.7), there exists a constant C,
which is independent of o such that

C
U(haxg,) < (1) Il ha x| ag (R (3.8)

for oc € (1, 2]. We note

m
| haxe,lla | (v < 2™dp*t (h2) (3.9)

1
m

for m > 1, where d,,,(h) is as in Section 1. By (3.8) and (3.9), we have

uh) < Y O(haxe,)
m>1

< szz | haxe,lla | ®"

m=1 T

m

<C> m?2mat* 1 (hy)

m>1

m
_ c( s . 3 ) m22"d (hy)
Dy (h1)<3™  dy(hy)=3""

< C(l + Nz(hz)),

which finishes the proof of the corollary.
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