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Abstract

This paper is devoted to the study on the Lp estimates for the multiple singular
integrals with rough kernels on product spaces ℝn × ℝm (n, m ≥ 2). By means of
extrapolation method and Fourier transform estimate, we prove that the multiple
singular integral operators are bounded on Lp(ℝn × ℝm) for the kernel functions: Ω Î
L(log L)2(Sn-1 × Sm-1), h ∈ �̃α(R+ × R+) (α ∈ (1, 2]). Furthermore, we prove that
when Ω Î L(log L)2(Sn-1 × Sm-1) and h satisfying a ‘log’ type condition defined on ℝ+

× ℝ+, the multiple singular integral operators are bounded on L2(ℝn × ℝm), which
improves the well-known result.
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1 Introduction
Let ℝn(n ≥ 2) be n-dimensional Euclidian space and Sn-1 be the unit sphere in ℝn. Sup-

pose that the function Ω Î L1(Sn-1) satisfies the following cancelation condition∫
Sn−1

�(θ)dσ (θ) = 0, (1:1)

where ds denotes the usual Lebesgue surface measure on the unit sphere Sn-1.

Let L(log L)a (Sn-1) denotes the functions Ω defined on Sn-1 satisfying the Zygmund

condition: for a > 0,∫
Sn−1

|�(θ)|(log(2 + |�(θ)|))αdσ (θ) < ∞.

It is noted that for any q > 1, we have the proper inclusion relations hold:

Lq(Sn−1) ⊂ L(log L)α(Sn−1) ⊂ L1(Sn−1),

L(log L)β(Sn−1) ⊂ L(log L)α(Sn−1) if 0 < α < β .

For s ≥ 1, let Δs(ℝ
+) denote the collection of measurable functions h on ℝ+ = {t Î ℝ :

t > 0} satisfying
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||h||�s(R+) = sup
j∈Z

⎛⎜⎝ 2j+1∫
2j

|h(t)|sdt/t

⎞⎟⎠
1/s

< ∞,

where ℤ denotes the set of integers. Also by usual modification, Δ∞ (ℝ+) = L∞(ℝ+).

We note that Δs ⊂ Δt if s >t. We can always assume that h Î Δ1.

A singular integral operator is defined in the following form:

S(f )(x) = p.v.
∫
Rn

f (x − y)K(y)dy = lim
ε→0

∫
|y|>ε

f (x − y)K(y)dy, (1:2)

for an appropriate function f on ℝn, where K (y) = |y|-nh(|y|)Ω(y’), y’ = |y|-1y.

It is well known that if Ω Î L log L(Sn-1), h = 1, by the method of rotations, Cal-

derón and Zygmund [1] proved that S extends to a bounded operator on Lp for all p Î
(1, ∞). In [2], R. Fefferman first introduced the case of rough radial and proved that if

h Î Δ∞ (ℝ+) and Ω satisfy a Lipschitz condition of positive order on Sn-1, then S is

bounded on Lp for 1 <p < ∞. Namazi [3] improved this result by replacing the

Lipschitz condition by the condition that Ω Î Lq(Sn-1) for some q > 1. In [4], Duoandi-

koetxea and Rubio de Francia developed some methods that can be used to study

mapping properties of several kinds of operators in harmonic analysis, where they

proved that S is bounded on Lp for 1 <p < ∞ when h Î Δ2(ℝ
+) and Ω Î Lq(Sn-1). In

[5], Al-Salman and Pan proved that S is bounded on Lp for 1 <p < ∞ when h Î Δs(ℝ
+)

(s > 1) and Ω Î L log L(Sn-1). Recently, using a method called Yano’s extrapolation

method [6,7], Sato [8] proved that S extends to be an operator bounded on Lp for 1 <p

< ∞ where Ω Î L log L(Sn-1) and the radial function h satisfying a rougher condition

as a log type.

Define the function spaces

La(R+) = {h : h be measurable functions on R + , La(h) < ∞},

where

La(h) = sup
j∈Z

2j+1∫
2j

|h(r)|(log(2 + |h(r)|))a dr
r
.

And define the function space

Na(R+) = {h : h be measurable functions on R+,Na(h) < ∞},

where

Na(h) =
∑
m≥1

ma2mdm(h),

with dm(h) = supkÎℤ 2-k|E(k, m)| and E(k, m) = {r Î (2k, 2k+1] : 2m-1 < |h(r)| ≤ 2m} for

m ≥ 2, E(k, 1) = {r Î (2k, 2k+1] : |h(r)| ≤ 2}. Indeed, it is noted that for any a > 0,

Na(R+) ⊂ La(R+) and La+b(R+) ⊂ Na(R+) for some b > 1.

Sato’s main result is the following theorem:

Theorem A. [8] Suppose Ω is a function in L log L(Sn-1) satisfying (1.1) and

||S(f )||Lp(Rn) ≤ C||f ||Lp(Rn) (or h ∈ La(R+) for some a > 2). Let S be as in (1.2). Then,
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there is a constant C such that

||S(f )||Lp(Rn) ≤ C||f ||Lp(Rn)

for all p Î (1, ∞).

For the one-parameter case, there are also several other papers. Especially, in [9,10],

weighted Lp boundedness of singular integrals was discussed. The reader also can refer

to [11-13] for more background materials.

In the article, we mainly consider the Lp boundedness for the multiple singular inte-

grals with rough kernels. Suppose that Sd-1(d = n or m) is the unit sphere of ℝd (d ≥

2) equipped with the usual Lebesgue measure ds. Let Ω Î L1(Sn-1 × Sm-1) satisfy the

following double cancelation condition:∫
Sn−1

�(u, v)dσ (u) = 0 and
∫

Sm−1

�(u, v)dσ (v) = 0. (1:3)

For a ≥ 1,

�α(R+ × R+) = {h : h be measurable functions on R+ × R+, ||h||�α
< ∞},

where

||h||�α
= sup

k,j∈Z

⎛⎜⎝ 2k+1∫
2k

2j+1∫
2j

|h(r, s)|α drds
rs

⎞⎟⎠
1
α

.

The multiple singular integral on the product space ℝn × ℝm is defined by the fol-

lowing form:

Tf (x1, x2) = p.v.
∫

Rn×Rm

f (x1 − y1, x2 − y2)K(y1, y2)dy1dy2 (1:4)

for an appropriate function f on ℝn × ℝm, where

K(y1, y2) = |y1|−n|y2|−m�(y′1, y
′
2)h(|y1|, |y2|). (1:5)

Let L(log L)a(Sn-1 × Sm-1) denote the class of the functions Ω defined on Sn-1 × Sm-1

satisfying the Zygmund condition: for a > 0,∫
Sn−1×Sm−1

|�(θ ,ω)|(log(2 + |�(θ ,ω)|))αdσ (θ)dσ (ω) < ∞.

Historically, multiple singular integral was introduced by R. Fefferman and Stein’s

famous work on multiparameter harmonic analysis. Fefferman and Stein [14] proved that

when h ≡ 1, T is bounded on Lp(ℝn × ℝm) for 1 <p < ∞ if Ω satisfy certain smooth condi-

tions. Their method mainly relies on so-called square function method. Subsequently, in

[15], Duoandikoetxea used the method established in [4] and proved that T is bounded on

Lp(ℝn × ℝm) for 1 <p < ∞ when Ω Î Lq(Sn-1 × Sm-1) for some q > 1 and h Î Δ2(ℝ
+ × ℝ+).

In [16], Fan-Guo-Pan proved that T is bounded on Lp(ℝn × ℝm) for 1 <p < ∞ for the case

when Ω belongs to certain block spaces that contain Lq(Sn-1 × Sm-1) (for p = 2, it was

proved by Jiang and Lu in [17] ) and h = 1. In [18], Chen proved that T is bounded on Lp

(ℝn × ℝm) for 1 <p < ∞ when Ω Î L(log L)2 (Sn-1 × Sm-1) and h = 1 where he mainly relies
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on the method of rotation. In [19], Al-Salman, Al-Qassem and Pan proved that T is

bounded on Lp(ℝn × ℝm) for 1 <p < ∞ when Ω Î L(log L)2(Sn-1 × Sm-1) and h Î Δa for

some a > 1, where their technique mostly based on refining the Duoandikoetxea-Rubia’s

Fourier transform estimates and Littlewood-paley theory. In the same paper, they also

pointed out that for any ε > 0, there is a function Ω Î L(log L)2-ε(Sn-1 × Sm-1) such that T

may fail to be bounded on Lp(ℝn × ℝm).

The main purpose of this paper is to improve the above results, especially the rough

product radial part. For this reason, we introduce several measurable function spaces

defined on R+ × R+ : �̃α(R+ × R+), Lα(R+ × R+) and Nα(R+ × R+) for a > 0, where

these spaces are equipped with the following “norms":

‖h‖�̃α(R+×R+) = sup
k∈Z

⎛⎜⎝ 2k+1∫
2k

sup
j∈Z

2j+1∫
2j

∣∣h(r, s)∣∣α ds
s

dr
r

⎞⎟⎠
1
α

+ sup
j∈Z

⎛⎜⎝ 2j+1∫
2j

sup
k∈Z

2k+1∫
2k

∣∣h(r, s)∣∣α dr
r

ds
s

⎞⎟⎠
1
α

,

‖h‖Lα(R+×R+) = sup
j,k∈Z

2j+1∫
2j

2k+1∫
2k

∣∣h(r, s)∣∣ (log(2 +
∣∣h(r, s)∣∣))α drds

rs
,

‖h‖Nα(R+×R+) =
∑
m≥1

ma2mDm(h),

with Dm(h) = supk,j∈Z2
−k2−j|E(k, j,m)| and E(k, j, m) = {(r, s) Î (2k, 2k+1] × (2j, 2j+1] :

2m-1 < |h(r, s)| ≤ 2m} for m ≥ 2, E(k, j, 1) = {(r, s) Î (2k, 2k+1] × (2j, 2j+1] : |h(r, s)| ≤ 2}.

Remark 1.1. Of course by the usual modification,

�∞(R+ × R+) = �̃∞(R+ × R+) = L∞(R+ × R+). For simplicity, we let

�α = �α(R+ × R+), �̃α = �̃α(R+ × R+), Lα = Lα(R+ × R+) and Nα = Nα(R+ × R+). It

is easy to check that (1) �∞ ⊂ �̃α ⊂ �α; (2) �̃α ⊂ �̃β if 1 ≤ b <a; (3) for any a > 0,

Nα ⊂ Lα and Lα+β ⊂ Nα for any b > 1; (4) for any a > 1 and b > 0, �α ⊂ Lβ ⊂ �1.

Our main results are the following theorems:

Theorem 1.1. Suppose that Ω Î L(log L)2(Sn-1 × Sm-1) satisfying (1.3),

(1) if h ∈ N2 or Lα for some a > 3, then there is a constant C such that

||Tf ||L2(Rn×Rm) ≤ C||f ||L2(Rn×Rm). (1:6)

(2) if h ∈ �̃α(α ∈ (1, 2]), then there is a constant C, which is independent of a, such
that

||Tf ||Lp(Rn×Rm) ≤ C
1

(α − 1)2
||h||�̃α

||f ||Lp(Rn×Rm), (1:7)

for p Î (1, ∞).

Remark 1.2. In [19], it was proved that h Î Δa for some a > 1 and Ω Î L(log L)2(Sn-1

× Sm-1) are sufficient for Lp boundedness for the multiple singular integral T. As for p =

2, Theorem 1.1 extended this result. For p ≠ 2, our condition h ∈ �̃α(α ∈ (1, 2]) is

strong. However, our result gives a sharp constant estimate, which gives the following

corollary when the product radial part is separated (that is, h(r, s) = h1(r) ⋅ h2(s)).
Corollary 1.1. Suppose that Ω Î L(log L)2(Sn-1 × Sm-1) satisfying (1.3) and if h(r, s) =

h1(r) ⋅ h2(s), where h1 or h2 satisfies one of the following case:
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(1) h1 Î Δa(ℝ
+) ((a > 1)) and h2 ∈ N2(R+)(or h2 ∈ La(R+) for some a > 3);

(2) h1 ∈ N2(R+)(or h1 ∈ La(R+) fsor some a > 3) and h2 Î Δs(ℝ
+) ((s > 1)),

then there is a constant C such that

||Tf ||Lp(Rn×Rm) ≤ C||f ||Lp(Rn×Rm), (1:8)

for p Î (1, ∞).

Our proof of the above theorem is based on the argument of Sato [8], which mainly

relied on Yano’s extrapolation method. The following theorem is the key step to prove

Theorem 1.1.

Theorem 1.2. Suppose that Ω Î Lq(Sn-1 × Sm-1)(q Î (1, 2]) satisfying (1.3).

(1) If h Î Δa(a Î (1, 2]), then there exists a constant C, which is independent of q,

a, Ω, h, such that

||Tf ||L2(Rn×Rm) ≤ C
1

(α − 1)2
1

(q − 1)2
||h||�α

||�||Lp(Sn−1×Sm−1)||f ||L2(Rn×Rm). (1:9)

(2) If h ∈ �̃α(α ∈ (1, 2]), then there exists a constant C, which is independent of q,

a, Ω, h, such that

||Tf ||Lp(Rn×Rm) ≤ C
1

(α − 1)2
1

(q − 1)2
||h||�̃α

||�||Lq(Sn−1×Sm−1)||f ||Lp(Rn×Rm), (1:10)

for p Î (1, ∞).

Remark 1.3. Corollary 1 in [15] asserted that if h Î Δ2 and Ω Î Lq(q > 1)(Sn-1 × Sm-

1), then T is bounded in Lp(ℝn × ℝm) for p > 1. After a careful check of its proof, we

find that the condition h Î Δ2 is not sufficient for p ≠ 2 since the two partial maximal

functions are taken supremum both j and k, it seems that if h Î Δ2, the partial maxi-

mal function is not pointwise controlled by the one-parameter maximal function case

(line 10-13, [15]). If we substitute h Î Δ2 with h ∈ �̃2, Corollary 1 in [15] is corrected.

This is why we introduce the space �̃α. Of course, we remark that our result is mainly

influenced by the idea and the technique established in [15]: Littlewood-Paley theory

for product theory, Fourier transform estimates, etc.

Remark 1.4. The maximal multiple singular integral is defined as

T∗f (x1, x2) = sup
ε1>0,ε2>0

∣∣∣∣∣∣∣
∫∫

|y1|≥ε1,|y2|≥ε2

f (x1 − y1, x2 − y2)K(y1, y2)dy1dy2

∣∣∣∣∣∣∣ ,
where K is as in (1.5). By the estimates we have established and Yano’s extrapolation

method, combining with [20], we have the same result for the maximal multiple singu-

lar integral as in [19]:

Theorem 1.3. Suppose that Ω Î L(log L)2(Sn-1 × Sm-1) satisfies (1.3) and h Î Δ∞,

then there exists a constant C, such that

||T∗f ||Lp(Rn×Rm) ≤ C||h||�∞||f ||Lp(Rn×Rm), (1:11)
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for p Î (1, ∞).

We leave the proof to the interested reader. But we do not know whether h can be

extended to more general case like �̃α(1 < α < ∞).

This paper is organized as the following. In Section 2, we give the proof of Theorem 1.2.

In Section 3, we give the proof of Theorem 1.1 and Corollary 1.1. Throughout this paper,

the letter C will stand for a constant that may vary at each occurrence but that is indepen-

dent of the essential variables and p’ be the conjugation of p satisfying
1
p
+
1
p′ = 1.

2 Proof of Theorem 1.2
Let Ω, h be as in Theorem 1.2. We let r ≥ 2, define

Ek,j = {(y1, y2) ∈ Rn+m : ρk <
∣∣y1∣∣ ≤ ρk+1,ρ j <

∣∣y2∣∣ ≤ ρ j+1
}

and measures sk,j by

σk,j ∗ f (x1, x2) =
∫∫
Ek,j

K(y1, y2)f (x1 − y1, x2 − y2)dy1dy2.

So

Tf =
∑
k,j

σk,j ∗ f .

Define s* by s* f(x) = supk,j ||sk,j| * f(x)|, where |sk,j| denotes the total variation. Let

μk,j = |sk,j| and define μ* by μ* f(x) = supk,j |μk,j * f(x)|. Let θ Î (0, 1), δ(p) = |1/p - 1/

p’|, we have the following two lemmas.

Lemma 2.1. For p > 1 + θ, suppose that Ω Î Lq(Sn-1 × Sm-1)(q Î (1,2]) satisfying

(1.3) and h ∈ �̃α(α ∈ (1, 2]), we have

||μ∗f ||Lp(Rn×Rm) ≤ Clog2ρ||�||Lq(Sn−1×Sm−1)||h||�̃α

(
1 − 2− θ

2

)−2.2/p

||f ||Lp(Rn×Rm),(2:1)

where the constant C is independent of q, a, Ω, h.

Lemma 2.2. (1). Suppose that Ω Î Lq(Sn-1 × Sm-1)(q Î (1,2]) satisfying (1.3) and h Î
Δa(a Î (1,2]),

||Tf ||L2(Rn×Rm) ≤ Clog2ρ||�||Lq(Sn−1×Sm−1)||h||�α
||f ||L2(Rn×Rm), (2:2)

(2). For p Î (1 + θ, (1 + θ)/θ), suppose that Ω Î Lq(Sn-1 × Sm-1)(q Î (1, 2]) satisfying

(1.3) and h ∈ �̃α(α ∈ (1, 2]), we have

||Tf ||Lp(Rn×Rm) ≤ Clog2ρ||�||Lq(Sn−1×Sm−1)||h||�̃α

(
1 − 2− θ

2

)−2(1+δ(p))

||f ||Lp(Rn×Rm), (2:3)

where the constant C is independent of q, a, Ω, h.

If Lemma 2.2 is proved, since θ Î (0, 1) is arbitrary and we choose r = 2q’a’, then

Theorem 1.2 is an immediate consequence of Lemma 2.2 immediately.

Now, we prove part (1) of Lemma 2.2. For simplicity, we let

A = log2ρ||�||Lq(Sn−1×Sm−1)||h||�α
. Firstly, we have the following estimates for the mea-

sures sk,j:
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||σk,j|| ≤ c1A (2:4)

|σ̂k,j(ξ1, ξ2) ≤ c2A|ρkξ1|±
1

2q′α′ |ρ jξ2|±
1

2q′α′ (2:5)

for some constants ci. The equation (2.4) is the consequence of the following result:

||σk,j|| = |σk,j|(Rn × Rm)

≤
ρk+1∫
ρk

ρ j+1∫
ρ j

∫
Sn−1×Sm−1

|�(u, v)||h(r, s)|dσ (u)dσ (v)
drds
rs

≤ Clog2ρ||�||L1(Sn−1×Sm−1)||h||�1 .

Now, we turn to prove (2.5), note

σ̂k,j(ξ1, ξ2) =

ρk+1∫
ρk

ρ j+1∫
ρ j

∫
Sn−1×Sm−1

�(u, v)h(r, s)e−2π i(ξ1 ·ru+ξ2 ·sv)dσ (u)dσ (v)
drds
rs

and we define

F(r, s, ξ1, ξ2) =
∫

Sn−1×Sm−1

�(u, v)e−2π i(ξ1 ·ru+ξ2 ·sv)dσ (u)dσ (v).

Then, by Hölder’s inequality,

|σ̂k,j(ξ1, ξ2)| =

∣∣∣∣∣∣∣
ρk+1∫
ρk

ρ j+1∫
ρ j

F(r, s, ξ1, ξ2)h(r, s)
drds
rs

∣∣∣∣∣∣∣
≤

⎛⎜⎝ ρk+1∫
ρk

ρ j+1∫
ρ j

|h(r, s)|α drds
rs

⎞⎟⎠
1
α
⎛⎜⎝ ρk+1∫

ρk

ρ j+1∫
ρ j

|F(r, s, ξ1, ξ2)|α′ drds
rs

⎞⎟⎠
1
α′

≤

⎛⎜⎝ ρk+1∫
ρk

ρ j+1∫
ρ j

|h(r, s)|α drds
rs

⎞⎟⎠
1
α

||�||
α′−2

α′
L1(Sn−1×Sm−1)

⎛⎜⎝ ρk+1∫
ρk

ρ j+1∫
ρ j

|F(r, s, ξ1, ξ2)|2 drdsrs

⎞⎟⎠
1
α′

while here

ρk+1∫
ρk

ρ j+1∫
ρ j

|F(r, s, ξ1, ξ2)|2 drds
rs

=

ρk+1∫
ρk

ρ j+1∫
ρ j

∫∫
(Sn−1×Sm−1)2

�(u, v)�(u′, v′)e−2π i(ξ1·r(u−u′)+ξ2·s(v−v′))dσ (u′)dσ (v)dσ (v′)
drds
rs

≤
∫∫

(Sn−1×Sm−1)2

�(u, v)�(u′, v′)

ρk+1∫
ρk

ρ j+1∫
ρ j

e−2π i(ξ1·r(u−u′)+ξ2·s(v−v′)) drds
rs

dσ (u)dσ (u′)dσ (v)dσ (v′)

≤ Clog2ρ||�||2Lq(Sn−1×Sm−1)|ρkξ1|−ε|ρ jξ2|−ε

·

⎛⎜⎝ ∫
Sn−1×Sn−1

dσ (u)dσ (u′)
|ξ ′

1 · (u − u′)|εq′

⎞⎟⎠
1
q′ ⎛⎜⎝ ∫

Sm−1×Sm−1

dσ (v)dσ (v′)
|ξ ′

2 · (v − v′)|εq′

⎞⎟⎠
1
q′

.
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When εq’ < 1 (indeed we set ε =
1
2q′), the integrals

(∫
sn−1×Sn−1

dσ (u)dσ (u′)
|ξ ′

1 · (u − u′)|εq′

) 1
α′q′

and

(∫
Sm−1×Sm−1

dσ (v)dσ (v′)
|ξ ′

2 · (v − v′)|εq′

)
1

α′q′ are finite and independent of q and a. So we

have

|σ̂k,j(ξ1, ξ2)| ≤ Clog2ρ||h||�α
||�||Lq(Sn−1×Sm−1)|ρkξ1|−

1
2q′α′ |ρ jξ2|−

1
2q′α′ . (2:6)

Since Ω satisfies the condition (1.3), we have σ̂k,j(0, ξ2) = 0 and then |σ̂k,j(ξ1, ξ2)|
equals to

|σ̂k,j(ξ1, ξ2) − σ̂k,j(0, ξ2)|

=

∣∣∣∣∣∣∣
ρk+1∫
ρk

ρ j+1∫
ρ j

∫
Sn−1×Sm−1

�(u, v)h(r, s)[e−2π iξ1 ·ru − 1]e−2π iξ2 ·svdσ (u)dσ (v)
drds
rs

∣∣∣∣∣∣∣
≤

ρk+1∫
ρk

∫
Sn−1

∣∣∣∣∣∣∣
ρ j+1∫
ρ j

∫
Sm−1

�(u, v)h(r, s)e−2π iξ2 ·svdv
ds
s

∣∣∣∣∣∣∣|e−2π iξ1·ru − 1|dudr
r

≤
ρk+1∫
ρk

∫
Sn−1

∣∣∣∣∣∣∣
ρ j+1∫
ρ j

∫
Sm−1

�(u, v)h(r, s)e−2π iξ2 ·svdv
ds
s

∣∣∣∣∣∣∣min({2, r|ξ1|})dudr
r

≤ Clog2ρ||h||�α
||�||Lq(Sn−1×Sm−1)|ρkξ1|

1
2q′α′ |ρ jξ2|−

1
2q′α′ .

(2:7)

The same way as above, we have |σ̂k,j(ξ1, ξ2)| equals to

|σ̂k,j(ξ1, ξ2) − σ̂k,j(ξ1, 0)| ≤ Clog2ρ||h||�α
||�||Lq(Sn−1×Sm−1)|ρkξ1|−

1
2q′α′ |ρ jξ2|

1
2q′α′ . (2:8)

Also we have |σ̂k,j(ξ1, ξ2)| equals to
|σ̂k,j(ξ1, ξ2) − σ̂k,j(ξ1, 0) − σ̂k,j(0, ξ2) + σ̂k,j(0, 0)|

≤ Clog2ρ||h||�α
||�||Lq(Sn−1×Sm−1)|ρkξ1|

1
2q′α′ |ρ jξ2|

1
2q′α′ .

(2:9)

Consequently, the inequality (2.5) is just the combination of (2.6), (2.7),(2.8) and

(2.9).

Let ψ1 ∈ S(Rn), ψ2 ∈ S(Rm), such that

supp(ψ i(ξi)) ⊂ {1
ρ

≤ |ξi| < ρ}, i = 1, 2,

0 ≤ ψ i(ξi) ≤ 1, i = 1, 2,

and

∞∑
k=−∞

|(ψ1)(ρkξ1)|2 =
∞∑

j=−∞
|(ψ2)(ρ jξ2)|2 = 1.

Let ψ1
k ,ψ

2
j as (ψ1

k )
�(ξ1) = ψ1(ρkξ1), (ψ2

j )
�(ξ2) = ψ2(ρ jξ2), respectively. Then, we

have
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Tf =
∑
k,j

σk,j ∗ f

=
∑
k,j

∑
l,m

σk,j ∗ (ψ1
k+1 ⊗ ψ2

j+m) ∗ (ψ1
k+l ⊗ ψ2

j+m) ∗ f

�
∑
l,m

Tl,mf ,

where

Tl,mf =
∑
k,j

σk,j ∗ (ψ1
k+1 ⊗ ψ2

j+m) ∗ (ψ1
k+l ⊗ ψ2

j+m) ∗ f . (2:10)

Then, by Plancherel’s theorem and (2.5), we have

||Tl,mf ||2L2(Rn×Rm) ≤
∑
k,j

C
∫∫

D(k+l,j+m)

|σ̂k,j(ξ1, ξ2)|2|f̂ (ξ1, ξ2)|2dξ1dξ2

≤ CA2 min{1,ρ−2 1
2q′α′ (|l|−1)}min{1,ρ−2 1

2q′α′ (|m|−1)}
∑
k,j∈Z

∫∫
D(k+l,j+m)

|f̂ (ξ1, ξ2)|2dξ1dξ2

≤ CA2 min{1,ρ−2 1
2q′α′ (|l|−1)}min{1,ρ−2 1

2q′α′ (|m|−1)}||f ||2L2(Rn×Rm)

(2:11)

where D(k, j) = {(ξ, h) : r-k-1 ≤ |ξ| ≤ r-k+1, r-j-1 ≤ |h| ≤ r-j+1}. By above estimates and

Minkowski’s inequality, we give the proof of part (1).

Now, we turn to prove part (2) of Lemma 2.2, take for Lemma 2.1 is granted. We let

A′ = log2ρ||�||Lq(Sn−1×Sm−1)||h||�̃α
and B =

(
1 − 2− θ

2

)−2

for simplicity. We have

||σk,j|| ≤ c1A
′ (2:12)

|σ̂k,j(ξ1, ξ2)| ≤ c2A
′|ρkξ1|±

1
2q′α′ |ρ jξ2|±

1
2q′α′ (2:13)

||σ ∗(f )||Lp(Rn×Rm) ≤ CpA
′B

2
p ||f ||Lp(Rn×Rm) for p > 1 + θ , (2:14)

for some constants ci and Cp. where Eqs. (2.12) and (2.13) follow (2.4) and (2.5),

respectively, (2.14) is just (2.1).

Lemma 2.3. Let u Î (1 + θ, 2], define a number v by
1
v

− 1
2
=

1
2u

. Then, we have the

vector-valued inequality∥∥∥∥∥∥∥∥
⎛⎝∑

k,j

|σk,j ∗ gk,j|2
⎞⎠

1
2

∥∥∥∥∥∥∥∥
Lv(Rn×Rm)

≤ (c1Cu)
1
2A′B

1
u

∥∥∥∥∥∥∥∥
⎛⎝∑

k,j

|gk,j|2
⎞⎠

1
2

∥∥∥∥∥∥∥∥
Lv(Rn×Rm)

,

where c1 and Cu are as in (2.4) and (2.14), respectively.

Proof. The proof is the same way as in one parameter case, and we prove it here for

completeness.
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Since

||
∑
k,j

|σk,j ∗ gk,j|||L1(Rn×Rm) ≤ c1A
′||

∑
k,j

|gk,j|||L1(Rn×Rm)

and

|| sup
k,j

|σk,j ∗gk,j|||Lu(Rn×Rm) ≤ ||σ ∗(sup
k,j

|gk,j|)||Lu(Rn×Rm) ≤ CuA′B
2
u || sup

k,j
|gk,j|||Lu(Rn×Rm)

Interpolation between the above two inequalities completed the proof of the lemma.

By the Littlewood-Paley theory, we have

∥∥Tl,mf∥∥Lp(Rn×Rm) ≤ Cp

∥∥∥∥∥∥(
∑
k,j

∣∣∣σk,j ∗ (ψ1
k+l ⊗ ψ2

j+m) ∗ f
∣∣∣)1/2

∥∥∥∥∥∥
Lp(Rn×Rm),

(2:15)

||(
∑
k,j

|(ψ1
k+1 ⊗ ψ2

j+m) ∗ f |)1/2||Lp(Rn×Rm) ≤ Cp||f ||Lp(Rn×Rm), (2:16)

where p Î (1, ∞) and Cp is independent of r. Suppose that 1 + θ ≤ p ≤ 4
3−θ

. Then,

we can find u Î (1 + θ, 2] such that
1
p
=
1
2
+
1 − θ

2u
. Let v :

1
v
=
1
2
+

1
2u

, by Lemma 2.3,

(2.15) and (2.16), we have

||Tl,mf ||v ≤ CA′B
1
u ||f ||v.

Since
1
p
=
1 − θ

v
+

θ

2
, by interpolation, we have

||Tl,mf ||Lp(Rn×Rm) ≤ CA′B
1−θ
u min{1,ρ− θ

2q′α′ (|m|−1)}||f ||Lp(Rn×Rm)

Then

||Tf ||Lp(Rn×Rm) ≤
∑
l,m

||Tl,mf ||p ≤ CA′B
1−θ
u

(
1 − ρ

− θ
2q′α′

)−2

||f ||Lp(Rn×Rm).

Since ρ = 2q
′α′
, B =

(
1 − 2− θ

2

)−2

and
1 − θ

u
+ 1 =

2
p
, then we have

||Tf ||Lp(Rn×Rm) ≤ CA′B
2
p ||f ||Lp(Rn×Rm). (2:17)

When p = 2, by Eq. (2.11) and B >

(
1 − 2−1

2

)−2

, we have

||Tf ||L2(Rn×Rm) ≤
∑
l,m

||Tl,mf ||L2(Rn×Rm) ≤ CA′B||f ||L2(Rn×Rm).

By duality and interpolation, we can now finish the proof of Lemma 2.2.

Now, we give a proof of Lemma 2.1. Since ||μ*f||∞ ≤ c1A||f||∞, by taking into account

an interpolation, it suffices to prove (2.1) for p Î (1 + θ, 2]. We recall that μk,j = |sk,j|

and μ*f(x) = supk,j |μk,j * f(x)|. The following four estimates for μk,j are similar with the

equations (2.4) and (2.5):
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||μk,j|| ≤ A′, (2:18)

|μ̂k,j(ξ1, ξ2) − μ̂k,j(0, ξ2)| ≤ CA′|ρkξ1|
1

2q′α′ |ρ jξ2|−
1

2q′α′ , (2:19)

|μ̂k,j(ξ1, ξ2) − μ̂k,j(ξ1, 0)| ≤ CA′|ρkξ1|−
1

2q′α′ |ρ jξ2|
1

2q′α′ , (2:20)

|μ̂k,j(ξ1, ξ2) − μ̂k,j(ξ1, 0) − μ̂k,j(0, ξ2) + μ̂k,j(0, 0)| ≤ CA′|ρkξ1|
1

2q′α′ |ρ jξ2|
1

2q′α′ ,(2:21)

where C is independent of q, Ω, h, a. Choose positive real value functions

φj ∈ C∞
0 (R) (j = 1, 2) satisfying supp(jj) ⊂ {|r| < 1} and jj = 1, when |r| < 1

2. Define

(�1
k )

�(ξ1) = φ1(|ρkξ1|),
(�2

j )
�(ξ2) = φ2(|ρ jξ2|),

and measures

τ̂k,j(ξ) = μ̂k,j(ξ) − (�1
k)

�(ξ1)μ̂k,j(0, ξ2)

−(�2
j )

�(ξ2)μ̂k,j(ξ1, 0) + (�1
k )

�(ξ1)(�2
j )

�(ξ2)μ̂k,j(0, 0).
(2:22)

So by the definition of τk,j and estimates (2.18)-(2.21), it is easy to check that τk,j
satisfies the same estimates as sk,j, i.e.,

|τ̂k,j(ξ1, ξ2)| ≤ CA′|ρkξ1|±
1

2q′α′ |ρ jξ2|±
1

2q′α′ , (2:23)

where C is independent of q, a and Ω, h. Also we have

μ∗f (x1, x2) ≤ sup
k,j

(�1
k ⊗ μ

(1)
k,j ) ∗ f (x1, x2) + sup

k,j
(μ(2)

k,j ⊗ �2
j ) ∗ f (x1, x2)

+ sup
k,j

(μ(1,2)
k,j ⊗ �1

k ⊗ �2
j ) ∗ f (x1, x2) + g(f )(x1, x2),

(2:24)

where

g(f )(x1, x2) = (
∑
k,j

|τk,j ∗ f (x1, x2)|2)
1
2

and μ
(1)
k,j ,μ

(2)
k,j and μ

(1,2)
k,j defined as follows:

μ̂
(1)
k,j (ξ2) = μ̂k,j(0, ξ2), μ̂

(2)
k,j (ξ1) = μ̂k,j(ξ1, 0), μ̂

(1,2)
k,j (ξ1, ξ2) = μ̂k,j(0, 0).

Then, we have

sup
k,j

(�1
j ⊗ μ

(1)
k,j ∗ f (x1, x2) ≤ CM1M

(1)f (x1, x2)

sup
k,j

(μ(2)
k,j ⊗ �2

j ) ∗ f (x1, x2) ≤ CM2M
(2)f (x1, x2)

sup
k,j

(μ(1,2)
k,j ⊗ �1

k ⊗ �2
j ) ∗ f (x1, x2) ≤ CM1M2f (x1, x2)μ̂k,j(0, 0)

(2:25)

where Mi is the Hardy-Littlewood maximal function acting on the xi-variable and M
(i) is the partial maximal function, defined as the following
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M(i)gi = sup
k,j

|μ(i)
k,j ∗ gi|, i = 1, 2. (2:26)

Since

M(1)g1(x2) ≤ sup
k,j

ρk+1∫
ρk

ρ j+1∫
ρ j

∫
Sn−1×Sm−1

|�(u, v)||h(r, s)||g(x2 − sv)|dσ (u)dσ (v)
drds
rs

≤ sup
k,j

C logρ

ρ j+1∫
ρ j

∫
Sm−1

∫
Sn−1

|�(u, v)|dσ (u)

2k+1∫
2k

|h(r, s)|dr
r

|g(x2 − sv)|dσ(v)
ds
s
.

(2:27)

We let h̄(s) = supk

∫ 2k+1

2k
|h(r, s)|dr

r
and �̄(v) =

∫
Sn−1 |�(u, v)|dσ (u). Since h ∈ �̃α and

Ω Î Lq(Sn-1 × Sm-1), then h̄ ∈ �α(R+) and �̄ ∈ Lq(Sm−1). By Lemma 1 of [8], the one-

parameter case, we have for p > 1 + θ,

||M(1)g1||Lp(Rm) ≤ Clog2ρ||�||Lq(Sn−1×Sm−1)||h||�̃α
(1 − 2− θ

2 )
−2
p ||g1||Lp(Rm)

≤ CA′B
2
p ||g1||Lp(Rm),

(2:28)

and the same way we have

‖ M(2)g2‖Lp(Rn) ≤ Clog2ρ ‖ �‖Lq(Sn−1×Sm−1) ‖ h‖�̃α
(1 − 2

− θ
p )

−2
p ‖ g2‖Lp(Rn)

≤ CA′B
2
p ||g2||Lp(Rn).

(2:29)

On the other hand, it is easy to check,

sup
k,j

μ
(1,2)
k,j ∗ f (x1, x2) ≤ Clog2ρ ‖ �‖Lq(Sn−1×Sm−1) ‖ h‖�α

|f (x1, x2)|. (2:30)

So with (2.28)-(2.30) and (2.25), we concluded that for p Î (1 + θ, 2],

‖ sup
k.j

(
�1

j ⊗ μ
(1)
k.j

)
∗ f‖Lp(Rn×Rm) ≤ CA′B

2
p ‖ f‖Lp(Rn×Rm),

‖ sup
k,j

(
μ
(2)
k,j ⊗ �2

j

)
∗ f‖Lp(Rn×Rm) ≤ CA′B

2
p ‖ f‖Lp(Rn×Rm),

‖ sup
k,j

(
μ
(1,2)
k,j ⊗ �1

k ⊗ �2
j

)
∗ f‖Lp(Rn×Rm) ≤ CA′B

2
p ‖ f‖Lp(Rn×Rm).

(2:31)

To prove Lemma 2.1, it suffices to prove ‖ g(f )‖Lp(Rn×Rm) ≤ CAB
2
p ‖ f‖Lp(Rn×Rm)

for p

Î (1 + θ, 2]. By a well-known property of Rademacher’s function, this follows from

‖ U(f )‖Lp(Rn×Rm) ≤ CA′B
2
p ‖ f‖Lp(Rn×Rm), (2:32)

for p Î (1 + θ, 2], where U(f ) =
∑

k,j εk,jτk,j ∗ f with εk,j = 1 or -1, and the constant C

is independent of εk,j. The estimate (2.32) is a consequence of the following lemma:

Lemma 2.4. We define a sequence {pj}∞j=1 by p1 = 2 and 1
pj+1

= 1
2 + 1−θ

2pj for j ≥ 1. (We

note that 1
pj
= 1−aj

1+θ
, where a = 1−θ

2 , so {pj} is decreasing and converges to 1 + θ.) Then,

for j ≥ 1 we have
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‖ U(f )‖Lpj (Rn×Rm) ≤ CA′B2/pj ‖ f‖Lpj (Rn×Rm). (2:33)

Proof. Let

Uk,m(f ) =
∑
k,j

εk,jτk,j ∗ ( � v1k+l⊗ � v2j+m) ∗ ( � v1k+l⊗ � v2j+m) ∗ f

By Plancherel’s theorem and the estimates (2.23), the same way as in (2.11), we have

that

‖ Ul,m(f ) ‖2L2(Rn×Rm)≤ CA′2 min{1,ρ−2 1
2q′α′ (|l|−1)}min{1,ρ−2 1

2q′α′ (|m|−1)} ‖ f ‖2L2(Rn×Rm) . (2:34)

It follows that ‖ U(f )‖L2(Rn×Rm) ≤ ∑
l,m ‖ Uk,m(f )‖L2(Rn×Rm) ≤ CAB ‖ f‖L2(Rn×Rm). If we

denote by A(s) the claim of Lemma 2.4 for j = s, this proves A(1).

Now, we derive A(s + 1) from A(s) assuming that A(s) holds, which will complete the

proof of Lemma 2.4 by induction. By (2.22) and (2.24), we have that

τ ∗(f )(x) ≤ μ∗(|f |)(x) + sup
k,j

(�1
k ⊗ μ

(1)
k,j ) ∗ f (x) + sup

k,j
(μ(2)

k,j ⊗ �2
j ) ∗ f (x)

+ sup
k,j

(μ(1,2)
k,j ⊗ �1

k ⊗ �2
j ) ∗ f (x)

≤ g(f )(x) + 2(sup
k,j

(�1
k ⊗ μ

(1)
k,j ) ∗ f (x) + sup

k,j
(μ(2)

k,j ⊗ �2
j ) ∗ f (x)

+ sup
k,j

(μ(1,2)
k,j ⊗ �1

k ⊗ �2
j ) ∗ f (x))

(2:35)

Note that As means that ‖ g(f )‖ps ≤ CA′B
2
ps ‖ f‖ps. By (2.35) and (2.31) we have

‖ τ ∗(f )‖Lps (Rn×Rm) ≤‖ g(f )‖Lps (Rn×Rm) + 2(‖ sup
k,j

(�1
j ⊗ μ

(1)
k,j ) ∗ f‖Lps (Rn×Rm)

+ ‖ sup
k,j

(μ(2)
k,j ⊗ �2

j ) ∗ f‖Lps (Rn×Rm)+ ‖ sup
k,j

(μ(1,2)
k,j ⊗ �1

k ⊗ �2
j ) ∗ f‖Lps (Rn×Rm)

≤ CA′B
2
ps ‖ f‖Lps (Rn×Rm).

(2:36)

By (2.36) and (2.34), we can now apply the arguments used in the proof of (2.17) to

get A(s + 1). This completes the proof of Lemma 2.4.

Now, we prove the inequality (2.32) for p Î (1 + θ, 2]. Let {pj}∞j=1 be as in Lemma 2.4.

Then, we have pN+1 ≤ p ≤ pN for some N. Thus, interpolation between the estimates of

Lemma 2.4 for j = N and j = N + 1, we have (2.36). This completes the proof of

Lemma 2.1.

3 Proofs of Theorem 1.1 and Corollary 1.1
Proof of Theorem 1.1: We first need to establish a suitable decomposition for Ω

defined on Sn-1 × Sm-1. The main technique is mainly based on Chen [18]. Define a

sequence of sets {Fk}(k Î N) on Sn-1 × Sm-1 as:

Fκ = {(θ ,w) ∈ Sn−1 × Sm−1 : 2κ−1 ≤ |�(θ ,w)| < 2κ} for κ = 2, 3, . . .

and

F1 = {(θ ,w) ∈ Sn−1 × Sm−1 : |�(θ ,w)| < 2} for κ = 1.
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We define

�κ(θ ,w) = �χFκ
(θ ,w) − 1

σ (Sn−1)

∫
Sn−1

�χFκ
(u,w)dσ (u)

− 1
σ (Sm−1)

∫
Sm−1

�χFκ
(θ , v)dσ (v)

+
1

σ (Sn−1)σ (Sm−1)

∫
Sn−1×Sm−1

�χFκ
(u, v)dσ (u)σ (v).

Then, it is easy to check that

�(θ ,w) =
∞∑

κ=1

�κ(θ ,w) (3:1)

and all Ω� satisfies the condition (1.3), i.e.,∫
Sn−1

�κ(θ ,w)dσ (θ) =
∫

Sm−1

�κ(θ ,w)dσ (w) = 0 (3:2)

Furthermore, if we set eκ = σ (Fκ) =
∫
Fκ
dσ (u)dσ (v), then for r Î (1, ∞), we have

‖ �κ‖Lr(Sn−1×Sm−1) ≤ C2κe

1
r
κ for κ ∈ N.

(3:3)

Now, fix h ∈ �̃α(α ∈ (1, 2]), p ∈ (1,∞) and a function f with‖ f‖Lp(Rn+m) ≤ 1, we denote

R(Tf ,�) =‖ T�,hf‖Lp(Rn+m). Then, by Theorem 1.2, Eqs. (3.1), (3.2) and (3.3), we have

R(Tf ,�) ≤
∞∑
κ=1

R(Tf ,�κ) ≤ C
1

(α − 1)2
‖ h‖�̃α

∞∑
κ=1

κ2 ‖ �κ‖
L
1+
1
κ (Sn−1×Sm−1)

≤ C
1

(α − 1)2
‖ h‖�̃α

∞∑
κ=1

κ22κe
κ

κ+1
κ

≤ C
1

(α − 1)2
‖ h‖�̃α

(
�

eκ<3−κ
+ �
eκ≥3−κ

)
κ22κe

κ
κ+1
κ

≤ C
1

(α − 1)2
‖ h‖�̃α

(∑
κ≥1

κ22κ3− κ2

κ+1 +
∑
κ≥1

κ22κeκ3
κ

κ+1

)

≤ C
1

(α − 1)2
‖ h‖�̃α

⎛⎜⎝1 +
∫

Sn−1×Sm−1

|�(θ ,ω)|log2(2 + |�(θ ,ω)|)dσ (θ)dσ (ω)

⎞⎟⎠ .

(3:4)

For p = 2 and a function f with ‖ f‖L2(Rn+m) ≤ 1. Denote O(h) =‖ Thf‖L2(Rn×Rm). Sup-

pose that h Î Δa(a Î (1, 2]) and Ω Î L(log L)2(Sn-1 × Sm-1), with the same estimate as

in (3.4), we have that

O(h) ≤ C
1

(α − 1)2
‖ h‖�α(R+×R+) (3:5)

Put E1 = {(r, s) Î ℝ+ × ℝ+ : |h(r, s)| ≤ 2} and Em = {(r, s) Î ℝ+ × ℝ+ : 2m-1 < |h(r, s)|

≤ 2m} for m = 2, 3, . . .. Then, by (3.5), we have

O(hχEm) =‖ ThχEm
‖L2(Rn×Rm) ≤ C

(α − 1)2
‖ hχEm‖�α(R+×R+).

We follow the extrapolation argument of Zygmund [7]. First we note that

‖ hχEm‖�
1+

1
m

(R+×R+) ≤ 2mD
m

m+1
m (h) (3:6)
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for m ≥ 1, where Dm(h) be as in the definition of Nα in Section 1. By (3.5) and (3.6),

we have

O(h) ≤
∑
m≥1

O(hχEm)

≤ C
∑
m≥1

m2 ‖ hχEm‖�
1+

1
m

(R+×R+)

≤ C
∑
m≥1

m22mD
m

m+1
m (h)

= C
(

�
Dm(h)<3−m

+ �
Dm(h)≥3−m

)
m22mD

m
m+1
m (h)

≤ C
(
1+ ‖ h‖N2(R+×R+)

)
This ends the proof of Theorem 1.1.

Proof of Corollary 1.1: Since h can be written as separate case h1(r) ⋅ h2(s), we deal

(1) and (2) by the same procession. We only need to prove part (1) of the corollary.

Suppose that Ω Î L(log L)2(Sn-1 × Sm-1) and h1, h2 Î Δa(ℝ
+) for a Î (1, 2], then

h = h1h2 ∈ �̃α. By part (2) of Theorem 1.1, for p Î (1, ∞) we have

‖ Tf‖Lp(Rn×Rm) ≤ C
1

(α − 1)2
‖ h‖�̃α

‖ f‖Lp(Rn×Rm)

≤ C
1

(α − 1)2
‖ h1‖�α(R+) ‖ h2‖�α(R+) ‖ f‖Lp(Rn×Rm)

(3:7)

Suppose that ‖ �‖L(log L)2(Sn−1×Sm−1) ≤ 1, ‖ f‖Lp(Rn×Rm) ≤ 1 and h1 Î Δa(ℝ
+) with

‖ h1‖�α(R+) ≤ 1. We define U(h2) =‖ Th2 f‖Lp(Rn×Rm). Set E1 = {r Î ℝ+ : |h2(r)| ≤ 2} and

Em = {r Î ℝ+ : 2m-1 < |h2(r)| ≤ 2m} for m ≥ 2. Then, by (3.7), there exists a constant C,

which is independent of a such that

U(h2χEm) ≤ C

(α − 1)2
‖ h2χEm‖�α(R+) (3:8)

for a Î (1, 2]. We note

‖ h2χEm‖�
1+

1
m

(R+) ≤ 2md
m

m+1
m (h2) (3:9)

for m ≥ 1, where dm(h) is as in Section 1. By (3.8) and (3.9), we have

U(h) ≤
∑
m≥1

O(h2χEm)

≤ C
∑
m≥1

m2 ‖ h2χEm‖�
1+

1
m

(R+)

≤ C
∑
m≥1

m22md

m
m + 1
m (h2)

= C
(

�
Dm(h1)<3−m

+ �
dm(h2)≥3−m

)
m22md

m
m+1
m (h2)

≤ C(1 +N2(h2)),

which finishes the proof of the corollary.
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