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Abstract

For a polynomial p(z) of degree n, having all zeros in |z| ≤ 1, Jain is shown that

max
|z|=1

∣∣Dαt · · ·Dα2Dα1p(z)
∣∣ ≥ n(n − 1) · · · (n − t + 1)

2t
× [

{(|α1| − 1) · · · (|αt| − 1)}max
|z|=1

∣∣p(z)∣∣ +
{
2t (|α1| · · · |αt|) − {(|α1| − 1) · · · (|αt| − 1)}}min

|z|=1
∣∣p(z)∣∣

]
,

|α1| ≥ 1, |α2| ≥ 1, · · · |αt| ≥ 1, (t < n).

In this paper, the above inequality is extended for the polynomials having all zeros in
|z| ≤ k, where k ≤ 1. Our result generalizes certain well-known polynomial
inequalities.
(2010) Mathematics Subject Classification. Primary 30A10; Secondary 30C10,
30D15.
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1. Introduction and statement of results
Let p(z) be a polynomial of degree n, then according to the well-known Bernstein’s

inequality [1] on the derivative of a polynomial, we have

max
|z|=1

∣∣p′(z)
∣∣ ≤ nmax

|z|=1
∣∣p(z)∣∣ . (1:1)

This result is best possible and equality holding for a polynomial that has all zeros at

the origin.

If we restrict to the class of polynomials which have all zeros in |z| ≤ 1, then it has

been proved by Turan [2] that

max
|z|=1

∣∣p′(z)
∣∣ ≥ n

2
max
|z|=1

∣∣p(z)∣∣ . (1:2)

The inequality (1.2) is sharp and equality holds for a polynomial that has all zeros on

|z| = 1.

As an extension to (1.2), Malik [3] proved that if p(z) has all zeros in |z| ≤ k, where

k ≤ 1, then
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max
|z|=1

∣∣p′(z)
∣∣ ≥ n

1 + k
max
|z|=1

∣∣p(z)∣∣ . (1:3)

This result is best possible and equality holds for p(z) = (z - k)n.

Aziz and Dawood [4] obtained the following refinement of the inequality (1.2) and

proved that if p(z) has all zeros in |z| ≤ 1, then

max
|z|=1

∣∣p′(z)
∣∣ ≥ n

2

{
max
|z|=1

∣∣p(z)∣∣ + min
|z|=1

∣∣p(z)∣∣
}
. (1:4)

This result is best possible and equality attains for a polynomial that has all zeros on

|z| = 1.

Let Dap(z) denote the polar differentiation of the polynomial p(z) of degree n with

respect to a Î ℂ. Then, Dap(z) = np(z) + (a - z)p’(z). The polynomial Dap(z) is of

degree at most n - 1, and it generalizes the ordinary derivative in the sense that

lim
α→∞

[
Dαp(z)

α

]
= p′(z).

Shah [5] extended (1.2) to the polar derivative of p(z) and proved that if all zeros of

the polynomial p(z) lie in |z| ≤ 1, then for every a with |a| ≥ 1, we have

max
|z|=1

∣∣Dαp(z)
∣∣ ≥ n

2
(|α| − 1)max

|z|=1
∣∣p(z)∣∣ . (1:5)

This result is best possible and equality holds as p(z) = (z - 1)n with a ≥ 1.

Aziz and Rather [6] generalized (1.5) by extending (1.3) to the polar derivative of a

polynomial. In fact, they proved that if all zeros of p(z) lie in |z| ≤ k, where k ≤ 1, then

for every a with |a| ≥ k, we get

max
|z|=1

∣∣Dαp(z)
∣∣ ≥ n

1 + k
(|α| − k)max

|z|=1
∣∣p(z)∣∣ . (1:6)

This result is best possible and equality holds for p(z) = (z - k)n with a ≥ k.

In the same paper, Aziz and Rather [6] sharpened the inequality (1.5) by proving that

if all the zeros of p(z) lie in |z| ≤ 1, then for every a with |a| ≥ 1, we would obtain

max
|z|=1

∣∣Dαp(z)
∣∣ ≥ n

2

{
(|α| − 1)max

|z|=1
∣∣p(z)∣∣ + (|α| − 1)min

|z|=1
∣∣p(z)∣∣

}
. (1:7)

This result is best possible and equality attains for p(z) = (z - 1)n with a ≥ 1.

As an extension to the inequality (1.7), Jain [7] proved that if p(z) has all zeros in |z|

≤ 1, then for all a1,... at Î ℂ with |a1| ≥ 1, |a2| ≥ 1, ..., |at| ≥ 1, (1 ≤ t <n), we have

max
|z|=1

∣∣Dαt · · ·Dα2Dα1p(z)
∣∣ ≥ n(n − 1) · · · (n − t + 1)

2t
[

{(|α1| − 1) · · · (|αt| − 1)}max
|z|=1

∣∣p(z)∣∣ +
{
2t (|α1| · · · |αt|) − {(|α1| − 1) · · · (|αt| − 1)}}min

|z|=1
∣∣p(z)∣∣

]
,

(1:8)
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where

DαjDαj−1 · · ·Dα1p(z) = pj(z) =

(n − j + 1)pj−1(z) + (αj − z)pj−1′(z), j = 1, 2, · · · , t,
p0(z) = p(z).

This result is best possible and equality holds as p(z) = (z - 1)n with a1 ≥ 1, a2 ≥ 1,...,

at ≥ 1.

The following result proposes an extension to (1.8). In a precise set up, we have

Theorem 1.1. Let p(z) be a polynomial of degree n having all zeros in |z| ≤ k, where k

≤ 1, then for all a1, ... at Î ℂ with |a1| ≥ k, |a2| ≥ k,..., |at| ≥ k, (1 ≤ t <n),

max
|z|=1

∣∣Dαt · · ·Dα2Dα1p(z)
∣∣ ≥ n(n − 1) · · · (n − t + 1)

(1 + k)t
[

{(|α1| − k) · · · (|αt| − k)}max
|z|=1

∣∣p(z)∣∣ +
{
(1 + k)t (|α1| · · · |αt|) − {(|α1| − k) · · · (|αt| − k)}} k−n min

|z|=k
∣∣p(z)∣∣

]
.

(1:9)

This result is best possible and equality holds for p(z) = (z - k)n with a1 ≥ k, a2 ≥ k,...,

at ≥ k.

If we take k = 1 in Theorem 1.1, then inequality (1.9) reduces to inequality (1.8).

If we take t = 1 in Theorem 1.1, the following refinement of inequality (1.6) can be

obtained.

Corollary 1.2. Let p(z) be a polynomial of degree n, having all zeros in |z| ≤ k, where

k ≤ 1, then for every a Î ℂ with |a| ≥ k,

max
|z|=1

∣∣Dαp(z)
∣∣ ≥ n

1 + k

{
(|α| − k)max

|z|=1
∣∣p(z)∣∣ + (|α| + 1) k−(n−1) min

|z|=k
∣∣p(z)∣∣

}
. (1:10)

This result is best possible and equality occurs if p(z) = (z - k)n with a ≥ k.

If we divide both sides of the above inequality in (1.10) by |a| and make |a| ® ∞,

we obtain a result proved by Govil [8].

2. Lemmas
For proof of the theorem, the following lemmas are needed. The first lemma is due to

Laguerre [9].

Lemma 2.1. If all the zeros of an nth degree polynomial p(z) lie in a circular region C

and w is any zero of Dap(z), then at most one of the points w and a may lie outside C.

Lemma 2.2. If p(z) is a polynomial of degree n, having all zeros in the closed disk |z|

≤ k, k ≤ 1, then on |z| = 1,

∣∣p′(z)
∣∣ ≥ n

1 + k

∣∣p(z)∣∣ . (2:1)

This lemma is due to Govil [10].

Lemma 2.3. If p(z) is a polynomial of degree n, having no zeros in |z| <k, k ≥ 1, then

on |z| = 1,

k
∣∣p′(z)

∣∣ ≤ ∣∣q′(z)
∣∣ , (2:2)

where q(z) = znp(1/z̄) .
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The above lemma is due to Chan and Malik [11].

Lemma 2.4. If p(z) is a polynomial of degree n, having all zeros in the closed disk |z|

≤ k, k ≤ 1, then on |z| = 1,
∣∣q′(z)

∣∣ ≤ k
∣∣p′(z)

∣∣ , (2:3)

where q(z) = znp(1/z̄) .

Proof. Since p(z) has all its zeros in |z| ≤ k, k ≤ 1, therefore q(z) has no zero in |z| <

1/k, 1/k ≥ 1. Now applying Lemma 2.3 to the polynomial q(z) and the result follows.

Lemma 2.5. If p(z) is a polynomial of degree n, having all zeros in the closed disk |z|

≤ k, k ≤ 1, then for every real or complex number a with |a| ≥ k and |z| = 1, we have

∣∣Dαp(z)
∣∣ ≥ n

1 + k
(|α| − k)

∣∣p(z)∣∣ . (2:4)

Proof. Let q(z) = znp(1/z̄) , then |q’(z)| = |np(z) - zp’(z)| on |z| = 1. Thus, on |z| = 1,

we get
∣∣Dαp(z)

∣∣ = ∣∣np(z) + (α − z)p′(z)
∣∣ = ∣∣αp′(z) + np(z) − zp′(z)

∣∣ ≥∣∣αp′(z) − |np(z) − zp′(z)
∣∣ ,

that implies
∣∣Dαp(z)

∣∣ ≥ |α| ∣∣p′(z)
∣∣ − ∣∣q′(z)

∣∣ . (2:5)

By combining (2.3) and (2.5), we obtain
∣∣Dαp(z)

∣∣ ≥ (|α| − k)
∣∣p′(z)

∣∣ .
that along Lemma 2.2, yields

∣∣Dαp(z)
∣∣ ≥ n

1 + k
(|α| − k)

∣∣p(z)∣∣ .

Lemma 2.6. If p(z) = a0 + a1z +
∑n

i=2
aiz

i is a polynomial of degree n, having no zeros

in |z| <k, k ≥ 1, then

k |a1|
|a0| ≤ n. (2:6)

The above lemma is due to Gardner et al. [12].

Lemma 2.7. If p(z) =
∑n

i=0 aiz
i is a polynomial of degree n, having all zeros in |z| ≤ k,

k ≤ 1, then

|an−1|
|an| ≤ nk. (2:7)

Proof. Since p(z) has all zeros in |z| ≤ k, k ≤ 1, therefore

q(z) = znp(1/z̄) = an + an−1z + · · · + a1z
n−1 + a0z

n,

is a polynomial of degree at most n, which does not vanish in |z| < 1/k, 1/k ≥ 1. By

applying Lemma 2.6 for q(z), we get
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1
k |an−1|

|an| ≤ degree{q(z)} ≤ n,

which completes the proof.

Lemma 2.8. If p(z) is a polynomial of degree n having all zeros in |z| ≤ k, k ≤ 1, then

for all a1, ... at Î ℂ with |a1| ≥ k, |a2| ≥ k,..., |at| ≥ k, (1 ≤ t <n), and |z| = 1 we have

∣∣Dαt · · ·Dα2Dα1p(z)
∣∣ ≥ n(n − 1) · · · (n − t + 1)

(1 + k)t
×

{(|α1| − k) · · · (|αt| − k)} ∣∣p(z)∣∣ .
(2:8)

Proof. If |aj| = k for at least one j; 1 ≤ j ≤ t, then inequality (2.8) is trivial. Therefore,

we assume that |aj| >k for all j; 1 ≤ j ≤ t.

In the rest, we proceed by mathematical induction. The result is true for t = 1, by

Lemma 2.5, that means if |a1| >k then

∣∣Dα1p(z)
∣∣ ≥ n

1 + k
(|α1| − k)

∣∣p(z)∣∣ . (2:9)

Now for t = 2, since Dα1p(z) = (nanα1 + an−1) z
n−1 + · · · + (na0 + α1a1) , and |a1| >k,

then Dα1p(z) will be a polynomial of degree (n - 1). If it is not true, then the coeffi-

cient of zn-1 must be equal to zero, which implies

nanα1 + an−1 = 0,

i.e,

|α1| = |an−1|
n |an| .

Applying Lemma 2.7, we get

|α1| = |an−1|
n |an| ≤ k.

But this result contradicts the fact that |a1| >k. Hence, the polynomial Dα1p(z) must

be of degree (n - 1).

On the other hand, since all the zeros of p(z) lie in |z| ≤ k, therefore by applying

Lemma 2.1, all the zeros of Dα1p(z) lie in |z| ≤ k, then using Lemma 2.5 for the poly-

nomial Dα1p(z) of degree n - 1, and |a2 | >k, it concludes that

∣∣Dα2

{
Dα1p(z)

}∣∣ ≥ (n − 1)
1 + k

(|α2| − k)
∣∣Dα1p(z)

∣∣ .
Substituting the term Dα1p(z) from (2.9) in the above inequality, we obtain

∣∣Dα2Dα1p(z)
∣∣ ≥ n(n − 1)

(1 + k)2
(|α1| − k) (|α2| − k)

∣∣p(z)∣∣ .

This implies result is true for t = 2.

At this stage, we assume that the result is true for t = s <n; it means that for |z| = 1,

we have
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∣∣Dαs · · ·Dα2Dα1p(z)
∣∣ ≥ n(n − 1) · · · (n − s + 1)

(1 + k)s
×

{(|α1| − k) · · · (|αs| − k)} ∣∣p(z)∣∣ ,
(2:10)

and we will prove that the result is true for t = s + 1 <n.

According to the above procedure, using Lemmas 2.7 and 2.1, the polynomial

Dα2Dα1p(z) must be of degree (n - 2) for |a1| >k, |a2| >k, and has all zeros in |z| ≤ k.

One can continue that Dαs · · ·Dα2Dα1p(z) will be a polynomial of degree (n - s) for all

a1,... as Î ℂ with |a1| ≥ k, |a2| ≥ k,..., |as| ≥ k, (s <n), and has all zeros in |z| ≤ k.

Therefore, for |as+1| >k, by applying Lemma 2.5 to Dαs · · ·Dα2Dα1p(z) , we get

∣∣Dαs+1

{
Dαs · · ·Dα2Dα1p(z)

}∣∣ ≥ (n − s)
1 + k

(|αs+1| − k)
∣∣Dαs · · ·Dα2Dα1p(z)

∣∣ . (2:11)

By combining the terms (2.10) and (2.11), we obtain

∣∣Dαs+1Dαs · · ·Dα2Dα1p(z)
∣∣ ≥ n(n − 1) · · · (n − s)

(1 + k)s+1
×

{(|α1| − k) · · · (|αs+1| − k)} ∣∣p(z)∣∣ .
This implies that the result is true for t = s + 1. The proof is complete.

Lemma 2.9. If p(z) =
∑n

i=0 aiz
i is a polynomial of degree n, p(z) ≠ 0 in |z| <k, then m

< |p(z)| for |z| <k, and in particular m < |a0|, where m = min|z|=k |p(z)|.

The above lemma is due to Gardner et al. [13].

Lemma 2.10. If p(z) =
∑n

i=0 aiz
i is a polynomial of degree n having all zeros in |z| ≤

k, then

m ≤ kn |an| , (2:12)

where m = min|z|=k |p(z)|.

Proof. If k = 0, then inequality (2.12) is trivial. Now we suppose that k > 0. Since the

polynomial p(z) =
∑n

i=0 aiz
i has all zeros in |z| ≤ k, the polynomial q(z) = znp(1/z) =

an + ... + a0z
n has no zero in |z| < 1

k . Thus, by applying Lemma 2.9 for the polynomial

q(z), we get

min
|z|= 1k

∣∣q(z)∣∣ < |an| . (2:13)

Since min|z|= 1k

∣∣q(z)∣∣ = 1
knmin|z|=k

∣∣p(z)∣∣ , (2.13) implies that
m

kn
< |an|.

3. Proof of the theorem
Proof of Theorem 1.1. Let m = min|z|=k |p(z)|. If p(z) has a zero on |z| = k, then m =

0 and the result follows from Lemma 2.8. Henceforth, we suppose that all the zeros of

p(z) lie in |z| <k, so that m > 0. Now m ≤ |p(z)| for |z| = k, therefore if l is any real or

complex number such that |l| < 1, then
∣∣λm(

z
k

)n∣∣ <
∣∣p(z)∣∣ for |z| = k. Since all zeros

of p(z) lie in |z| <k, by Rouche’s theorem we can deduce that all zeros of the polyno-

mial G(z) = p(z) − λm
( z
k

)n lie in |z| <k. Also it follows from Lemma 2.10, that
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G(z) = p(z) − λ(
m

kn
)zn , hence the polynomial G(z) = p(z) − λ(

m

kn
)zn is of degree n.

Now we can apply Lemma 2.8 for the polynomial G(z) of degree n which has all zeros

in |z| ≤ k. This implies that for all a1,... at Î ℂ with |a1| ≥ k, |a2| ≥ k, ..., |at| ≥ k, (t

<n), on |z| = 1,

∣∣Dαt · · ·Dα2Dα1G(z)
∣∣ ≥ n(n − 1) · · · (n − t + 1)

(1 + k)t
×

{(|α1| − k) · · · (|αt| − k)} ∣∣G(z)∣∣ .
Equivalently

∣∣∣Dαt · · ·Dα2Dα1p(z) − λ
m
kn

{
n(n − 1) · · · (n − t + 1)α1α2 · · · α1

}
zn−t

∣∣∣ ≥
n(n − 1) · · · (n − t + 1)

(1 + k)t
{(|α1| − k) · · · (|αt| − k)}

∣∣∣p(z) − λm
( z
k

)n∣∣∣ . (3:1)

But by Lemma 2.1, the polynomial T(z) = Dαt · · ·Dα2Dα1G(z) has all zeros in |z| ≤ k.

That is,

T(z) = Dαt · · ·Dα2Dα1G(z) �= 0, for |z| > k.

Then, substituting G(z) in the above, we conclude that for every l with |l| < 1, and |

z| >k,

T(z) = Dαt · · ·Dα2Dα1p(z)−
λ
m
kn

{
n(n − 1) · · · (n − t + 1)α1α2 · · · αt

}
zn−t �= 0.

(3:2)

Thus, for |z| >k,

∣∣Dαt · · ·Dα2Dα1p(z)
∣∣ ≥ m

kn
{
n(n − 1) · · · (n − t + 1) |α1| |α2| · · · |αt|

} ∣∣zn−t
∣∣ . (3:3)

If the inequality (3.3) is not true, then there is a point z = z0 with |z0| >k such that

∣∣Dαt · · ·Dα2Dα1p(z0)
∣∣ <

m
kn

{
n(n − 1) · · · (n − t + 1) |α1| |α2| · · · |αt|

} ∣∣zn−t
0

∣∣ .
Now take

λ =
Dαt · · ·Dα2Dα1p(z0)

m
kn

{
n(n − 1) · · · (n − t + 1)α1α2 · · · αt

}
zn−t
0

,

then |l| < 1 and with this choice of l, we have, T(z0) = 0 for |z0| >k, from (3.2). But

it contradicts the fact that T(z) ≠ 0 for |z| >k. Hence, for |z| >k, we have

∣∣Dαt · · ·Dα2Dα1p(z)
∣∣ ≥ m

kn
{
n(n − 1) · · · (n − t + 1) |α1| |α2| · · · |αt|

} ∣∣zn−t
∣∣ .

Taking a relevant choice of argument of l, arg

λ = arg
{
Dαt · · ·Dα2Dα1p(z)

} − arg
{
α1α2 · · · αtz

n−t} , we have
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|Dαt · · ·Dα2Dα1p(z)−
λ
m
kn

{
n(n − 1) · · · (n − t + 1)α1α2 · · · αt

}
zn−t| =

|Dαt · · ·Dα2Dα1p(z)−
|λ|m

kn
{
n(n − 1) · · · (n − t + 1)|α1||α2| · · · |αt|

} |zn−t|,

where |z| = 1.

Therefore, we can rewrite (3.1) as
∣∣Dαt · · ·Dα2Dα1p(z)

∣∣ −
|λ| m

kn
{
n(n − 1) · · · (n − t + 1) |α1| |α2| · · · |αt|

}
zn−t

∣∣∣ ≥
n(n − 1) · · · (n − t + 1)

(1 + k)t
{(|α1| − k) · · · (|αt| − k)}

(
p(z) − |λ| m

kn
|z|n

)
,

where |z| = 1.

In an equivalent way

∣∣Dαt · · ·Dα2Dα1p(z)
∣∣ ≥ n(n − 1) · · · (n − t + 1)

(1 + k)t
[

{
(|α1| − k) · · · (|αt| − k)

∣∣p(z)∣∣} +
|λ| {(1 + k)t (|α1| |α2| · · · |αt|) − {(|α1| − k) · · · (|αt| − k)}}m

kn
].

Making |l| ® 1, Theorem 1.1 follows.
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