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1. Introduction
Many physical and chemical phenomena can be modeled with fractional differential

equations. However, finding solutions to such equations may not be possible in most

cases, particularly the nonlinear ones. Instead, many researchers have been studying

the qualitative attributes of the solutions without having them explicitly. In particular,

the existence and uniqueness of solutions of a wide class of Cauchy-type problems

have been intensively investigated; see for example [1] and the references therein. Also

classes of boundary value problems have been considered. For example in [2,3], the

authors established the existence and uniqueness of the solution for a class of linear

and superlinear fractional differential equations.

Inequalities play an important role in the study of existence, uniqueness, stability,

continuous dependence, and perturbation. In [4-7], bounds for solutions of fractional

differential inequalities of order 0 <a < 1 are obtained. Those bounds are generaliza-

tions and extensions of analogous bounds from the integer order case [8,9]. In [5], a

number of Bihari-type inequalities for the integer order derivatives are extended to

non-integer orders. However, the coefficients of these inequalities are assumed to be

continuous at the left end of the interval of definition.

In this article, we extend these inequalities to ones with singular integrable coeffi-

cients of the form

|Dαu (t) | ≤ a (t) + b (t)

t∫
0

c (s)

⎛
⎝ k∑

j=0

|Dβj u (s)

⎞
⎠

n

ds,
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and

|Dαu (t) | ≤ a (t) +

t∫
0

c (s)
m∑
i=0

|Dγi u (s)|
k∑
j=0

|Dβj u (s) |ds,

where 0 <a < 1, 0 ≤ b0 <b1 < ... <bk <a, 0 ≤ g0 <g1 < ... <gm <a, n ≥ 1 is an integer,

and a, b Î C(0, T] ∩ L1(0,T). Also we give some applications.

The rest of the article is organized as follows. In Section 2, we introduce some defi-

nitions and results that we use in our proofs. Section 3 contains the main results. The

last section is devoted to some applications.

2. Preliminaries
In this section, we introduce some notations, definitions, and lemmas which will be

needed later. For more details, we refer the reader to [1,8,10,11].

We denote by Lp, 1 ≤ p ≤ ∞, the Lebesgue spaces, and by AC[a, b] the space of all

absolutely continuous functions on [a, b], -∞ <a <b < ∞.

Definition 1. Let f Î L1(a, b), the integral

Iαa+ f (x) =
1

� (α)

x∫
a

f (t)

(x − t)1−α
dt, x > a, α > 0,

is called the Riemann-Liouville fractional integral of order a of the function f. Here,

Γ(a) is the gamma function.

Definition 2. The expression

Dα
a+ f (x) =

1
� (1 − α)

− d

dx

x∫
a

f (t)

(x − t)α
dt, x > a, 0 < α < 1,

is called the Riemann-Liouville fractional derivative of order a of the function f.

Note that Dα
a+ f (x) =

d
dx

I1−α
a+ f (x) . We use the notation fa to denote Iαa+ f . We set

I0a+ f = D0
a+ f = f .

Definition 3. Let 0 <a < 1. A function f Î L1(a, b) is said to have a summable frac-

tional derivative Dα
a+ f on (a, b) if I1−α

a+ f ∈ AC
[
a, b

]
.

Definition 4. We define the space Iαa+
(
Lp (a, b)

)
, a > 0, 1 ≤ p < ∞, to be the space of

all functions f such that f = Iαa+ϕ for some � Î Lp(a, b).

Theorem 5. A function f is in Iαa+ (L1) , 0 < α < 1 , if and only if f1-a Î AC[a, b], and

f1-a (a) = 0 (see [[11], Theorem 2.3, p. 43]).

Lemma 6. If a > 0 and b > 0, then

Iαa+I
β
a+ f (t) = Iα+β

a+ f (t) ,

is satisfied at almost every point t Î [a, b] for f Î L1 (a, b), 1 ≤ p ≤ ∞ (see [[1], p. 73]).

Lemma 7. If f Î AC [a, b], then I1-a f Î AC [a, b], 0 <a < 1 (see [[11], Lemma 2.1,

p. 33]).
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Corollary 8. If f Î L1 (a, b) has a summable fractional derivative Dα
a+ f , 0 <a < 1, on

(a, b), then for 0 ≤ b <a < 1 we have

Dβ
a+ f (t) = Iα−β

a+ Dα
a+ f (t) +

f1−α (a)
�(α − β)

(t − a)α−β−1.

Proof. Since I1−α
a+ f ∈ AC

[
a, b

]
, then we can write

I1−α
a+ f (t) = IDI1−α

a+ f (t) + I1−α
a+ f (a) .

Also from Lemmas 6 and 7 we have

I1−β
a+ f (t) = Iα−β

a+ I1−α
a+ f (t) ∈ AC

[
a, b

]
.

Thus, f has a summable fractional derivative Dβ
a+ f given by

Dβ
a+ f (t) = DI1−β

a+ f (t) = DIα−β
a+

(
IDI1−α

a+ f (t) + I1−α
a+ f (a)

)
= Iα−β

a+ Dα
a+ f (t) +

I1−α
a+ f (a)

� (α − β)
(t − a)α−β−1.

Lemma 9. Let v, f, g and k be non-negative continuous functions on [a, b]. Let ω be

a continuous, non-negative and non-decreasing function on [0, ∞), with ω(0) = 0 and

ω(u) > 0 for u > 0, and let F(t) = max0≤s≤t f(s) and G(t) = max0≤s≤t g(s). Assume that

v (t) ≤ f (t) + g (t)

t∫
a

k (s) ω (v (s)) ds, t ∈ [a, b].
Then

v (t) ≤ H−1

⎡
⎣H (F (t)) + G (t)

t∫
a

k (s) ds

⎤
⎦ , t ∈ [a,T) ,

where H (v) =

v∫
v0

dτ

ω (τ )
, 0 <v0 ≤ v, H-1 is the inverse of H and T >a is such that

⎡
⎣H (F (t)) + G (t)

t∫
a

k (s) ds

⎤
⎦ ∈ Dom

(
H−1), for all t Î [a, T) (see [[8], Corollary 5.5]).

Let I ⊂ R, and g1, g2: I ® R\{0} We write g1 ∝ g2 if g2/g1 is non-decreasing in I.

Lemma 10. Let f(t) be a positive continuous function on [a, b], and kj(t, s), 1 ≤ j ≤ n,

be non-negative continuous functions for a ≤ s ≤ t <b which are monotonic non-

decreasing in t for any fixed s. Let gj(u), j = 1, 2, ..., n, be non-decreasing continuous

functions on [0, ∞), with gj(0) = 0, gj(u) > 0 for u > 0, and g1 ∝ g2 ∝... ∝ gn in (0, ∞). If

u(t) is a non-negative continuous functions on [a, b] and satisfy the inequality

u (t) ≤ f (t) +
n∑
j=1

t∫
a
kj (t, s) gj (u (s)) ds, t ∈ [a, b] ,
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then

u (t) ≤ cn (t) , a ≤ t < T,

where c0 (t) = max
0≤s≤t

f (s) ,

cj (t) = G−1
j

[
Gj
(
cj−1 (t)

)
+

t∫
a
kj (t, s) ds

]
, j = 1, · · · ,n,

Gj (u) =
u∫
uj

dx
gj (x)

, u > 0, uj > 0,

and T is chosen so that the function cj(t), j = 1, 2, ..., n, are defined for a ≤ t <T (see

[[8], Theorem 10.3]).

Lemma 11. For non-negative ai, i = 1, 2, ..., k,(
k∑
i=1

ai

)n

≤ kn−1
k∑
i=1

ani , n ≥ 1.

Definition 12. We denote by CL1(a, b) the space of all functions f such that

f ∈ C (a, b
] ∩ L1 (a, b) .

Lemma 13. If f ∈ CL1 (a, b) , then Iαa+ f ∈ CL1 (a, b) ,α > 0 .

Proof. Clearly if a ≥ 1, then Iαa+ f = Ia+I
α−1
a+ f ∈ AC

[
a, b

]
. For 0 <a < 1, it follows from

Fubini’s theorem that Iαa+ f ∈ L1 (a, b) . So, it remains to show that Iαa+ f is continuous at

every t0 Î (a, b]. We have the following two cases.

Case 1. t0 Î (a, b), and t Î (t0, b]. Then

|Iαa+ f (t) − Iαa+ f (t0) | ≤ 1
� (α)

⎡
⎣ t0∫

a

|(t − s)α−1 − (t0 − s)α−1||f (s) |ds +
t∫

t0

|(t − s)α−1f (s) |ds
⎤
⎦

≤ 1
� (α)

⎡
⎣ t0∫

a

|(t − s)α−1 − (t0 − s)α−1||f (s) |ds + max
t0≤s≤t

|f (s) |
t∫

t0

(t − s)α−1ds

⎤
⎦

=
1

� (α)

⎡
⎣ t0∫

a

|(t − s)α−1 − (t0 − s)α−1||f (s) |ds + max
t0≤s≤t

|f (s) | (t − t0)α

α

⎤
⎦ .

Clearly the right-hand side ®0 as t ® t0. This implies that lim
t→t0

Iαa+ f (t) = Iαa+ f (t0) and

thus the continuity.

Case 2. t0 Î (a, b], and t Î (a, t0), the proof is similar to that of case 1.

Remark 1.

1. If f Î C (a, b) and lim
t→a+

f (t) = c < ∞ then f Î CL1 (a, b).

2. If f Î C (a, b), and lim
t→a+

f (t) = c < ∞ then (t-a)s f Î C[a, b] for all s > 0.

Lemma 14. Let 0 <s <a < 1, and (t-a)s f(t)Î C[a, b]. Then Iαa+ f is continuous on [a, b].

(This lemma is proven in [12].)

Next we extend the inequalities in [8] (Lemmas 1.1 and 4.1) to functions in C(0, T].

Lemma 15. Let f(t) and g(t) be continuous functions in (0, T), T > 0. Let v(t) be a

differentiable function for t > 0 such that lim
t→0+

v (t) = v0 ≤ ∞ . If
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v′ (t) ≤ f (t) + g (t) v (t) , t ∈ (0,T) , (1)

then,

v (t) ≤ v0 exp

⎛
⎝ t∫

0

g (s) ds

⎞
⎠ +

t∫
0

f (s) exp

⎛
⎝ t∫

s

g (τ ) dτ

⎞
⎠ ds, t ∈ (0,T) .

Proof. We write (1) as

[
v′ (s) − g (s) v (s)

]
e

t∫
s
g(τ )dτ ≤ f (s) e

t∫
s
g(τ )dτ

,

and obtain

d
ds

⎛
⎝v (s) e

t∫
s
g(τ )dτ

⎞
⎠ ≤ f (s) e

t∫
s
g(τ )dτ

.

By integrating both sides over (ε, t), ε > 0, we obtain

v (t) ≤ v (ε) e

t∫
s
g(τ )dτ

+

t∫
ε

f (s) e

t∫
s
g(τ )dτ

ds, t ≥ ε > 0.

The result follows by taking the limit as ε ® 0.

Remark 2.

1. If v0 < ∞, and f, g Î CL1(0, T), then the right-hand side is bounded.

2. If v0 = 0, and g Î CL1(0, T), then the first term of the right hand said equal to

zero.

Lemma 16. Let v(t) be a positive differentiable function on (0, T) such that

lim
t→0+

v (t) = v0 ≥ 0 , and

v′ (t) ≤ h (t) v (t) + k (t) vp (t) , t ∈ (0,T) ,

where the functions h and k are continuous functions on (0, T), and p ≥ 0, p ≠ 1, is a

constant. Then,

v (t) ≤ exp

⎛
⎝ t∫

0

h (s) ds

⎞
⎠
⎡
⎣vq0 + q

t∫
0

k (s) exp

⎛
⎝−q

s∫
0

h (τ ) dτ

⎞
⎠ds

⎤
⎦
1
q
, t ∈ (0,T) ,

where q = 1-p and T is chosen so that the expression between the brackets is posi-

tive in the interval (0, T).

Proof. Let z =
vq

q
, then z0 = lim

t→0+
z (t) =

vq0
q

and

z′ = vq−1v′ ≤ vq−1 (hv + kvp
)
= vqh + k = qhz + k.
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By Lemma 15, we obtain

z (t) ≤ z0e
q

t∫
0
h(τ )dτ

+

t∫
0

k (s) e
q

t∫
s
h(τ )dτ

ds, t > 0.

or

vq (t) ≤
≥
e
q

t∫
0
h(τ )dτ

⎡
⎣vq0 + q

t∫
0

k (s) e
−q

s∫
0
h(τ )dτ

ds

⎤
⎦ ,

where ≤ (respectively, ≥) hold for q > 0 (respectively, q < 0). In both cases, this esti-

mate implies the result.

Below, we use the terms non-increasing and non-decreasing to refer to monotonic

functions only.

3. Main results
In this section, we present and prove our main results. Without loss of generality, we

take the left end of the intervals to be 0 and drop the subscript a+.

Theorem 17. Let a, b Î CL1(0, T), T > 0, be non-negative functions, and ts b(t) Î C

[0, T], where 0 < σ < min
0≤j≤k

{
α − βj

}
< 1,0 ≤ b0 <b1 < ... <bk <a < 1. Let c Î C[0, T]

be a non-negative function. Let u Î L1(0, T) be such that u1-a Î AC[0, T] and satisfy

the inequality

|Dαu (t) | ≤ a (t) + b (t)

t∫
0

c (s)

⎛
⎝ k∑

j=0

|Dβj u (s) |
⎞
⎠

n

ds, t ∈ (0,T) , (2)

where n > 1 an integer.

Then,

|Dαu (t) | ≤ a (t) + b (t)

⎧⎨
⎩(L (t))1−n − (n − 1)

t∫
0

h (s) ds

⎫⎬
⎭

−1
n − 1

, t ∈ (0,T)
(3)

provided that g Î L1(0, T), and

[L (t)]n−1

t∫
0

h (s) ds <
1

n − 1
,

where

L (t) = max
0≤s≤t

s∫
0

g (τ ) dτ ,

g (t) = 2n−1c (t)

⎛
⎝ k∑

j=0

[
Iα−βj a (t) +

|u1−α (0)

�
(
α − βj

) tα−βj−1

]⎞⎠
n

,

(4)
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and

h (t) = 2n−1c (t)

⎛
⎝ k∑

j=0

Iα−βj b (t)

⎞
⎠

n

. (5)

Proof. Let

φ (t) =

t∫
0

c (s)

⎛
⎝ k∑

j=0

|Dβj u (s) |
⎞
⎠

n

ds. (6)

Then, clearly j(0) = 0,

φ′ (t) = c (t)

⎛
⎝ k∑

j=0

|Dβj u (t) |
⎞
⎠

n

, (7)

and

|Dαu (t) | ≤ a (t) + b (t) φ (t) . (8)

By Corollary 8 and Equation 7 we have

φ′ (t) ≤ c (t)

⎛
⎝ k∑

j=0

[
Iα−βj |Dαu (t) | + |u1−α (0) tα−βj−1

�
(
α − βj

)
]⎞⎠

n

. (9)

Substituting (8) into (9), and using Lemma 11, we obtain

φ′ (t) ≤ 2n−1c (t)

⎡
⎣
⎛
⎝ k∑

j=0

[
Iα−βj a (t) +

|u1−α (0) tα−βj−1

�
(
α − βj

)
]⎞⎠

n

+

⎛
⎝ k∑

j=0

Iα−βj
[
b (t) φ (t)

]⎞⎠
n⎤
⎦ (10)

Since j(t) is non-decreasing, we can write (10) as

φ′ (t) ≤ g (t) + h (t) φn (t) , (11)

where g(t) and h(t) are as defined by (4) and (5).

By integrating both sides of (11) over (0, t) we obtain

φ (t) ≤ l (t) +

t∫
0

h (s) φn (s) ds, (12)

where l (t) =

t∫
0

g (s) ds . Since g(t) is non-negative and integrable, l(t) is non-decreas-

ing and continuous on [0, T]. Thus max
0≤s≤t

l (s) = L (t) . Also from the assumptions and

Lemma 14, h(t) Î C[0. T].

By applying Lemma 9 with ω(v) = vn we obtain

φ (t) ≤ H−1

⎛
⎝H (L (t)) +

t∫
0

h (s) ds

⎞
⎠ , t ∈ [0,T] ,
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where H (v) =
v1−n − v1−n

0

1 − n
and

H−1 (x) =
[
v1−n
0 − (n − 1) x

] −1
n − 1 . That is

φ (t) ≤
⎛
⎝(L (t))1−n − (n − 1)

t∫
0

h (s) ds

⎞
⎠

−1
n − 1

, (13)

as long as

[L (t)]n−1

t∫
0

h (s) ds <
1

n − 1
.

Our result follows from (8) and the bound in (13).

Corollary 18. If in addition to the hypotheses of Theorem 17, u Î Ia (L1(0,T)) then g

(t) reduces to

g (t) = 2n−1c (t)

⎛
⎝ k∑

j=0

aα−βj (t)

⎞
⎠

n

.

Proof. This follows from Theorem 5.

Remark 3. If α − βj > 1 − 1
n
, for all 0 ≤ j ≤ k, and

(
k∑
j=0

Iα−βj a (t)

)n

∈ L1 (0,T) , then

g Î L1(0, T).

For n = 1 we have the following inequality

Theorem 19. Let a, b Î CL1(0, T) be non-negative functions. Let c Î C(0, T] be a

non-negative function. Let u Î L1(0, T) be such that u1-a Î AC[0, T], 0 <a < 1, and

satisfy the inequality

|Dαu (t) | ≤ a (t) + b (t)

t∫
0

c (s)
k∑
j=0

|Dβj u (s) |ds, t ∈ (0,T) (14)

with 0 ≤ b0 <b1 < ... <bk <a. Then

|Dαu (t) | ≤ a (t) + b (t)

t∫
0

g (s) exp

⎛
⎝ t∫

s

h (τ ) dτ

⎞
⎠ ds, t ∈ (0,T) (15)

where

g (t) = c (t)
k∑
j=0

[
Iα−βj a (t) +

|u1−α (0)

�
(
α − βj

) tα−βj−1

]
, (16)

and

h (t) = c (t)
k∑
j=0

Iα−βj b (t). (17)

Proof. This follows by applying Lemma 15 to (11).
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Corollary 20. If k = 0 and b0 = b in Theorem 19, then g(t) and h(t) reduce to

g (t) = c (t)

[
Iα−βa (t) +

| u1−α (0) |
� (α − β)

tα−β−1

]
,

and

h (t) = c (t) Iα−βb (t) .

Corollary 21. If in addition to the hypotheses of Theorem 19, u Î Ia(L1(0, T)), then

g(t) reduces to

g (t) = c (t)
k∑
j=0

Iα−βj a (t).

Proof. This follows from Theorem 5.

For the next theorem we use the following expressions. Let

L1 (t) = c (t) |u1−α (0) |
j∑

j=0

tα−βj−1

�
(
α − βj

) ,

L2 (t) = c (t)
j∑

j=0

Iα−βj a (t) ,

L3 (t) = c (t)
j∑

j=0

tα−βj

�
(
α − βj + 1

) .

(18)

Theorem 22. Let a Î C(0, T) be such that lim
t→0+

a (t) = a0 is non-zero and finite. Let

c Î C(0, T] be a non-negative function. Let u Î L1(0, T) be such that u1-a Î AC[0, T],

0 <a < 1, and satisfy the inequality

|Dαu (t) | ≤ a (t) +

t∫
0

c (s) |Dαu (s) |
k∑
j=0

|Dβj u (s) |ds, t ∈ (0,T) (19)

where 0 ≤ b0 <b1 < ... <bk <a.
(a) If a(t) is positive and non-decreasing then

|Dαu (t) | ≤ a (t) exp

⎛
⎝ t∫

0

L1 (s) ds

⎞
⎠
⎡
⎣1 −

t∫
0

L2 (s) exp

⎛
⎝ s∫

0

L1 (τ ) dτ

⎞
⎠ds

⎤
⎦

−1

, t ∈ (0,T1)

where T1 is the largest value of t for which

⎡
⎣1 −

t∫
0

L2 (s) exp

⎛
⎝ s∫

0

L1 (τ ) dτ

⎞
⎠ds

⎤
⎦ > 0 .

(b) If a(t) is non-negative and non-increasing then

|Dαu (t) | ≤ exp

⎛
⎝ t∫

0

L1 (s) ds

⎞
⎠
⎡
⎣a−1

0 −
t∫

0

L3 (s) exp

⎛
⎝ s∫

0

L1 (τ ) dτ

⎞
⎠ds

⎤
⎦

−1

, t ∈ (0,T2)
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where T2 is the largest value of t for which⎡
⎣a−1

0 −
t∫

0

L3 (s) exp

⎛
⎝ s∫

0

L1 (τ ) dτ

⎞
⎠ds

⎤
⎦ > 0.

Proof.

(a) When a(t) is positive and non-decreasing we can write the inequality (19) as

|Dαu (t) |
a (t)

≤ 1 +

t∫
0

c (s)
a (s)

|Dαu (s)|
k∑
j=0

|Dβj u (s)|ds, t ∈ (0,T) . (20)

Let ψ(t) denote the right-hand side of (20). Then ψ(0) = 1,

|Dαu (t) | ≤ a (t) ψ (t) , (21)

and

ψ ′ (t) =
c (t)
a (t)

|Dαu (s) |
k∑
j=0

|Dβj u (t) |. (22)

Since ψ(t) is non-decreasing then by Corollary 8 we can write (22) in the form

ψ ′ (t) ≤ L1 (t) ψ (t) + L2 (t) ψ2 (t) ,

where L1(t) and L2(t) are as defined in (18).

Using Lemma 16 (with p = 2) we obtain

ψ (t) ≤ exp

⎛
⎝ t∫

0

L1 (s) ds

⎞
⎠
⎡
⎣1 −

t∫
0

L2 (s) exp

⎛
⎝ s∫

0

L1 (τ ) dτ

⎞
⎠ ds

⎤
⎦

−1

,

as long as

[
1 −

t∫
0
L2 (s) exp

( s∫
0
L1 (τ ) dτ

)
ds
]

> 0 .

(b) When a(t) is non-negative and non-increasing we can write (19) in the form

|Dαu (t) | ≤ a0 +

t∫
0

c (s) |Dαu (s) |
k∑
j=0

|Dβj u (s) |ds. (23)

Denoting the right-hand side of (23) by �(t), we have

|Dαu (s) | ≤ ϕ (t) ,

and �(t) = a0. By differentiation of � we obtain

ϕ′ (t) = c (t) |Dαu (t) |
k∑
j=0

|Dβj u (t) | ≤ c (t) ϕ (t)
k∑
j=0

|Dβj u (t) |.

Then, we proceed as in the first part of the proof.

Corollary 23. Let a Î C(0, T) be such that lim
t→0+

a (t) = a0 is non-zero and finite. Let

c Î C(0, T] be a non-negative function. Let u Î Ia (L1(0, T)), 0 <a < 1, satisfy the

inequality (19). Let
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D1 (t) = c (t)
k∑
j=0

Iα−βj a (t) ,D2 (t) = c (t)
k∑
j=0

tα−βj

�
(
α − βj + 1

) .
Then,

(a) If a(t) is positive and non-decreasing; and D1 Î L1(0, T), then

|Dαu (t) | ≤ a (t)

⎡
⎣1 −

t∫
0

D1 (s) ds

⎤
⎦

−1

,

as long as
t∫
0
D1 (s) ds < 1 .

(b) If a(t) is non-negative and non-increasing; and D2 Î L1(0, T), then

|Dαu (t) | ≤
⎡
⎣a−1

0 −
t∫

0

D2 (s) ds

⎤
⎦

−1

,

as long as

⎡
⎣a−1

0 −
t∫

0

D2 (s) ds

⎤
⎦ > 0 .

Proof. The result follows from Theorem 5 and Corollary 8.

For the next theorem, we introduce the following expressions.

K1 (t) =
c (t) u21−α (0)

a (t)

m∑
i=0

k∑
j=0

t2α−βj−γi−2

�
(
α − βj

)
� (α − γi)

,

K2 (t) =
c (t) |u1−α (0) |

a (t)

m∑
i=0

k∑
j=0

(
tα−βj−1

�
(
α − βj

) Iα−γi a (t) +
tα−γi−1

� (α − γi)
Iα−βj a (t)

)
,

K3 (t) =
c (t)
a (t)

m∑
i=0

k∑
j=0

Iα−βj a (t) Iα−γi a (t),

K (t) = max
0≤s≤t

⎡
⎣1 +

s∫
0

K1 (τ ) dτ

⎤
⎦ ,

K0 (t) = max
0≤s≤t

⎡
⎣a0 +

s∫
0

a (τ )K1 (τ ) dτ

⎤
⎦ .

(24)

Theorem 24. Let a Î C(0, T)with lim
t→0+

a (t) = a0 non-zero and finite. Let c Î C[0, T]

be non-negative. Let u Î L1(0, T) be such that u1-a Î AC[0, T], 0 <a < 1, and satisfy

the inequality

|Dαu (t) | ≤ a (t) +

t∫
0

c (s)
m∑
i=0

|Dγi u (s) |
k∑
j=0

|Dβj u (s) |ds, t ∈ (0,T) , (25)

where 0 ≤ b0 <b1 < ... <bk <a, 0 ≤ g0 <g1 < ... <gm <a.
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(a) If a(t) is positive and non-decreasing; K1 Î L1(0, T), and K2, K3 Î C[0, T), then

|Dαu (t) | ≤ a (t)K (t) exp

⎛
⎝ t∫

0

K2 (s) ds

⎞
⎠
⎡
⎣1 − K (t) exp

⎛
⎝ t∫

0

K2 (s) ds

⎞
⎠ t∫

0

K3 (s) ds

⎤
⎦

−1

, t ∈ (0,T3) ,

where T3 is the largest value of t for which the bracket is positive.

(b) If a(t) is non-negative and non-increasing; a(t) K1(t) Î L1(0, T), a(t) K2(t), a(t) K3

(t) Î C[0, T), then

|Dαu (t) | ≤ K0 (t) exp

⎛
⎝ t∫

0

a (s)K2 (s) ds

⎞
⎠
⎡
⎣1 − K0 (t) exp

⎛
⎝ t∫

0

a (s)K2 (s) ds

⎞
⎠ t∫

0

a (s)K3 (s) ds

⎤
⎦

−1

,

t Î (0, T4), where T4 is the largest value of t for which the bracket is positive.

Proof.

(a) Suppose a(t) is positive and non-decreasing. Then, we can write the inequality

(25) as

|Dαu (t) |
a (t)

≤ 1 +

t∫
0

c (s)
a (s)

m∑
i=0

|Dγi u (s) |
k∑
j=0

|Dβj u (s) |ds. (26)

Let ψ(t) denote the right-hand side of (26). Then, ψ(0) = 1,

|Dαu (t) | ≤ a (t) ψ (t) , (27)

and

ψ ′ (t) =
c (t)
a (t)

m∑
i=0

|Dγi u (t) |
k∑
j=0

|Dβj u (t) |. (28)

Since ψ is non-decreasing, by Corollary 8 we have

|Dβj u (t) | ≤ ψ (t) Iα−βj a (t) +
|u1−α (0) |tα−βj−1

�
(
α − βj

) , j = 0, 1, 2, . . . , k. (29)

and

|Dγi u (t) | ≤ ψ (t) Iα−γi a (t) +
|u1−α (0) |tα−γi−1

� (α − γi)
, i = 0, 1, 2, . . . ,m. (30)

By substituting (29) and (30) into (28) and since ψ is non-decreasing, we obtain

ψ ′ ≤ K1 (t) + K2 (t) ψ (t) + K3 (t) ψ2 (t) , (31)

where K1(t), K2(t) and K3(t) are as defined in (24). By integrating (31) we obtain

ψ (t) ≤ 1 +

t∫
0

K1 (s) ds+

t∫
0

K2 (s)ψ (s) ds +

t∫
0

K3 (s)ψ2 (s) ds. (32)
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Applying Lemma 10 with

c0 (t) = max
0≤s≤t

⎡
⎣1 +

s∫
0

K1 (τ ) dτ

⎤
⎦ ,

c1 (t) = c0 (t) exp

t∫
0

K2 (s) ds,

c2 (t) =

⎡
⎣c−1

1 (t) −
t∫

0

K3 (s) ds

⎤
⎦

−1

.

We obtain our result.

(b) Suppose a(t) is non-negative and non-increasing. Then, we can write (25) in the

form

|Dαu (t) | ≤ a0 +

t∫
0

c (s)
m∑
i=1

|Dγi u (s) |
k∑
j=1

|Dβj u (s) |ds. (33)

Denoting the right-hand side of (33) by �(t), we have |Da u(t)| ≤ �(t), �(0) = a0, and

ϕ′ (t) = c (t)
m∑
i=1

|Dγi u (t) |
k∑
j=1

|Dβj u (t) |.

The reset of the proof is similar to that of the first part.

Corollary 25. Let a Î C(0, T), with lim
t→0+

a (t) = a0 non-zero and finite. Let c Î C[0,

T] be non-negative. Let u Î Ia(L1(0, T)), 0 <a < 1, satisfy the inequality (25). Let

K1 (t) =
c (t)
a (t)

m∑
i=0

k∑
j=0

Iα−γi a (t) Iα−βj a (t),

K2 (t) = c (t)
k∑
j=0

m∑
i=0

t2α−βj−γi

�
(
α − βj + 1

)
� (α − γi + 1)

.

(a) If a(t) is positive and non-decreasing; and if K1 Î L1(0, T), then

|Dαu (t) | ≤ a (t)

⎡
⎣1 −

t∫
0

K1 (s) ds

⎤
⎦

−1

,

as long as
t∫
0
K1 (s) ds < 1.

(b) If a(t) is non-negative and non-increasing and K2 Î L1(0, T), then

|Dαu (t) | ≤
⎡
⎣a−1

0 −
t∫

0

K2 (s) ds

⎤
⎦

−1

,

as long as

⎡
⎣a−1

0 −
t∫

0

K2 (s) ds

⎤
⎦ > 0 .
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Proof. The result follows from Theorem 5 and Corollary 8.

4. Applications
In this section, we illustrate our previous results by some applications. In particular, we

show how to use these results to prove existence and determine the asymptotic beha-

vior for some classes of fractional differential equations.

We consider the following Cauchy-type problem

Dαu (t) = f
(
t,Dβ0u (t) ,Dβ1u (t) , . . .Dβku (t)

)
, t > 0,

I1−αu (0) = u0 ∈ R,
(34)

where 0 ≤ b0 <b1 < ... <bk <a < 1, and f is a continuous function in all its variables.

Proposition 26. If u(t) has a assumable fractional derivative Dbu in (0, T), 0 ≤ b ≤ 1,

then for a ≥ b,

IαDβu (t) = uα−β (t) − u1−β (0)

� (α)
tα−1.

(See [[11], p. 48].) In particular, we have

Theorem 27. If u Î L1(0, T) such that I1-a u Î AC[0, T]and satisfy the problem (34),

then

u (t) = Iαf
(
t,
{
Dβj u (t)

}k
j=0

)
+

u0
� (α)

tα−1. (35)

Theorem 28. Suppose

|f (t,Dβ0u,Dβ1u, . . . ,Dβku
) | ≤ a (t) + b (t)

t∫
0

c (s)

⎛
⎝ k∑

j=0

|Dβj u (s)

⎞
⎠

n

ds, t > 0,

with a, b Î CL1(0, T) and c Î C[0, T] are non-negative, and ts b(t) Î C[0, T],

0 < σ < min
0≤j≤k

{
α − βj

}
< 1 . Further suppose the following hold.

(a) α − βj > 1 − 1
n
, for all 0 ≤ j ≤ k,

(b)

(
k∑
j=0

Iα−βj a (t)

)n

∈ L1 (0,T) ,

(c) (L (t))n−1
t∫
0
h (s) ds <

1
n − 1

, L (t) = max
0≤s≤t

s∫
0
g (τ ) dτ , where g(t) and h(t) are as

defined by (4) and (5).

If u Î L1(0, T) is a local solution of (34) that has a summable fractional derivative Da

u(t), then this solution exists for t Î (0, T0), where T0 is the largest value in (0, T) such

that (L (t))n−1
t∫
0
h (s) ds <

1
n − 1

.

Proof. Following the proof of Theorem 17, we have

|Dαu (t) | ≤ a (t) + b (t)

⎧⎨
⎩(L (t))1−n − (n − 1)

t∫
0

h (s) ds

⎫⎬
⎭

−1
n − 1

= B (t)
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for all 0 <t <T0. By theorem 27, we have

|u (t) | ≤ |IαDαu| + |u0|
� (α)

tα−1 ≤ IαB (t) +
|u0|

� (α)
tα−1.

Therefore, u(t) is bounded by a continuous function.

Example 1. Consider the problem

D0.8u (t) = f (t, u (t)) , t ∈ (0,π ] ,

I0.2u (0) = 1,

with f satisfying the inequality

|f (t, u (t)) | ≤ sin t√
t
+

1√
t

t∫
0

s2u2 (s) ds ≤ 1√
t
+

1√
t

t∫
0

s2u2 (s) ds.

Then, we can take T0 = 0.17826. Thus, if u Î L1(0, π) is a local solution with a sum-

mable fractional derivative D0.8 u(t), this solution exists for 0 <t < 0.17826.

Theorem 29. Suppose that

|f (t,Dβ0u,Dβ1u, . . . ,Dβku
) | ≤ a (t) +

t∫
0

c (s)|Dαu (s) |
k∑
j=0

|Dβj u (s) |ds, t > 0,

where 0 ≤ b0 <b1 < ... <bk <a < 1, a Î C(0, T) with lim
t→0+

a (t) = a0 non-zero and

finite, and c Î C(0, T) is non-negative. Let Lk(t), k = 1, 2, 3, and Tj, j = 1, 2 be as in

Theorem 22.

Then, we consider the following cases.

(a) a(t) is positive and non-decreasing, L1, L2 Î CL1(0, T), and

1 −
t∫

0

L2 (s) exp

⎛
⎝ s∫

0

L1 (τ ) dτ

⎞
⎠ds > 0, t ∈ (0,T1) .

In this case, if u Î L1(0, T) is a local solution of (34) that has a summable fractional

derivative Da u(t), then this solution exists for all t Î (0, T1).

(b) a(t) is non-negative and non-increasing, L1, L3 Î CL1(0, T), and

a−1
0 −

t∫
0

L3 (s) exp

⎛
⎝ s∫

0

L1 (τ ) dτ

⎞
⎠ ds > 0, t ∈ (0,T2) .

In this case, if u Î L1(0, T) is a local solution of (34) that has a summable fractional

derivative Da u(t), then this solution exists for all t Î (0, T2)

Proof. The result follows from Theorems 22 and 27.

Example 2. Consider the problem

D0.7u (t) = f
(
t,D0.2u (t)

)
, t ∈ (0, 2] ,

I0.3u (0) = 0.1,
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with f satisfying the inequality

|f (t,D0.2u (t)
) | ≤ t

et − 1
+

t∫
0

1
3
√
s
|D0.7u (s) ||D0.2u (s)|ds.

We have L1(t) = 0, L3(t) = 1.14 t0.17 Î CL1(0, 1), and 1-0.97 t0.17 > 0, t Î (0, 1.02638).

Thus, if u Î L1(0, 2) is a local solution with a summable fractional derivative D0.7 u

(t), then this solution exists for all t Î (0, 1.02638).

Theorem 30. Suppose that

|f (t, u,Dβ0u, . . . ,Dβk u
) | ≤ a (t) +

t∫
0

c (s)
m∑
i=0

|Dγi u (s) |
k∑
j=0

|Dβj u (s) |ds, t ∈ (0,T) ,

where 0 ≤ b0 <b1 < ... <bk <a < 1, 0 ≤ g0 <g 1 < ... <g m <a < 1, a Î C(0, T) with

lim
t→0+

a (t) = a0 non-zero and finite, and c Î C[0, T] is non-negative. Let Ki(t), i = 1, 2,

3, K (t) , K0 (t) , T3 and T4 be as in Theorem 24. Then, we consider the following

cases.

(a) a(t) is positive and non-decreasing,
c (t)
a (t)

t2α−βj−γi−2 ∈ L1 (0,T) for all i, j, K2, K3

Î C[0, T), and

1 − K (t) exp

⎛
⎝ t∫

0

K2 (s) ds

⎞
⎠ t∫

0

K3 (s) ds > 0, t ∈ (0,T3).

In this case, if u Î L1(0, T) is a local solution of (34) that has a summable fractional

derivative Da u(t), then this solution exists for all t Î (0, T3).

(b) a(t) is non-negative and non-increasing, a(t) K2(t), a(t) K3(t) Î C[0, T),

c (t) t2α−βj−γi−2 ∈ L1 (0,T) for all i, j, and

1 − K0 (t) exp

⎛
⎝ t∫

0

a (s)K2 (s) ds

⎞
⎠ t∫

0

a (τ )K3 (s) ds > 0, t ∈ (0,T4).

In this case, if u Î L1(0, T) is a local solution of (34) that has a summable fractional

derivative Da u(t), then this solution exists for all t Î (0, T4).

Proof. The result follows from Theorems 24 and 27.

Example 3. Consider the problem

D0.6u (t) = f (t, u (t)) , t ∈ (0, 1] ,

I0.4u (0) = 0.5,

with f satisfying the inequality

|f (t, u (t)) | ≤ et − 1√
t

+

t∫
0

(
es − 1

)
u2 (s) ds.
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By calculation we have 1 − 3.26t1.7e1.05t
1.2

> 0 for t Î (0, 0.404986). Thus, if u Î L1
(0, 1) is a local solution with a summable fractional derivative D0.6 u(t), then this solu-

tion exists for all t Î (0, 0.404986).

Example 4. Consider the problem

D0.7u (t) = f (t, u (t)) , t ∈ (0, 1] ,

I0.3u (0) = 0.1,

with f satisfy the inequality

|f (t, u (t)) | ≤ sin
√
t

2
√
t

+

t∫
0

(
es − 1

)
u2 (s) ds.

It follows that if u Î L1(0, 1) is a local solution with a summable fractional derivative

D0.7 u(t), then this solution exists for all t Î (0, 1).

Finally, we show how the results in Section 3 can provide information about the

behavior of the solutions for large values of t. For this purpose, we utilize the following

lemma which is proved in [13].

Lemma. 31. Let a, l, ω > 0, then

t1−α
t∫
0

(t − s)α−1sλ−1e−ωsds ≤ Const. t > 0

Theorem 32. Suppose f in (34) satisfy the inequality

|f (t,Dβ0u,Dβ1u, . . .Dβku
) | ≤ a (t) + b (t)

t∫
0

c (s)
k∑
j=0

|Dβj u (s) |ds, t > 0,

with 0 ≤ b0 <b1 < ... <bk <a < 1, a, b Î CL1(0, T) and c Î C(0, T] are non-negative.

Further, suppose the following.

1.

t∫
0

g (s) exp

⎛
⎝ t∫

s

h (τ ) dτ

⎞
⎠ ds ≤ M, where M is a positive constant, and g(t), h(t) are

as defined by (16) and (17).

2. a (t) ≤ M1tλ1−1e−ω1t, M1,λ1,ω1 > 0 .

3. b (t) ≤ M2tλ2−1e−ω2t , M2,λ2,ω2 > 0 .

If u Î L1(0, T) is a local solution of (34) that has a summable fractional derivative Da

u(t), then

|u (t) | ≤ C
t1−α

, t > 0,

where C is positive constant.

Proof. From Theorems 27 and 19, we have

|u (t) | ≤ IαZ (t) +
|u0|

� (α)
tα−1,
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where

Z (t) = a (t) + b (t)

t∫
0

g (s) exp

⎛
⎝ t∫

s

h (τ ) dτ

⎞
⎠ ds.

Since
t∫
0
g (s) exp

( t∫
s
h (τ ) dτ

)
ds ≤ M, then

Z (t) ≤ a (t) +Mb (t)

and

t1−α|u (t) | ≤ t1−αIαa (t) +Mt1−αIαb (t) +
|u0|
� (α)

.

The conditions 2-3 and Lemma 31 yield the result.
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