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Abstract

An attempt has been made to give a criteria to a family of functions defined in the
space of analytic functions to be univalent. Such criteria extended earlier univalence
criteria of Pescar’s-type of analytic functions.
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1. Introduction and preliminaries

Let A denote the class of analytic functions of the form f (z) = z +
∑∞

k=2 akz
k in the

open unit disk U = {z : |z| < 1} normalized by f(0) = f’(0) - 1 = 0.

We denote by S the subclass of A consisting of functions which are univalent in U.

The results in this communication are motivated by Pescar [1]. In [1], a new criteria

for an analytic function to be univalent is introduced which is true only for two fixed

natural numbers. Then, Breaz and Breaz [2] introduced a new integral operator using

product n-multiply analytic functions and gave another univalence criteria for such

analytic integral operators. Using such integral operator, we extend the criteria given

by Pescar in 2005 and prove that it is true for any two consecutive natural numbers.

First, we recall the main results of Pescar introduced in 1996 and later 2005 as

follow:

Lemma 1.1. [1,3] Let a be a complex number with Re a > 0 such that c Î ℂ,

|c| ≤ 1, c �= −1. If f Î A satisfies the condition
∣∣∣∣∣c|z|2α + (1 − |z|2α)

zf
′′
(z)

αf ′(z)

∣∣∣∣∣ ≤ 1, ∀z ∈ U,

then the function (Fα(z))α = α
∫ z
0 t

α−1f ′(t)dt is analytic and univalent in U.

Lemma 1.2. [1] Let the function f Î A satisfies

∣∣∣∣z
2f ′(z)
f 2(z)

− 1

∣∣∣∣ ≤ 1, ∀z ∈ U. Also, let

α ∈ R(α ∈ [1,
3
2
]) and c Î ℂ. If |c| ≤ 3 − 2α

α
(c �= −1) and |g(z)| ≤ 1, then the function

Ga(z) defined by (Gα(z))α = α
∫ z
0 [f (t)]

α−1 is in the univalent function class S.

Lemma 1.3. [4] If f Î A satisfies the condition

∣∣∣∣z
2f ′(z)
f 2(z)

− 1

∣∣∣∣ ≤ 1, ∀z ∈ U, then the

function f is univalent in U.
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Lemma 1.4. (Schwarz Lemma) Let the analytic function f be regular in the open unit

disk U and let f(0) = 0. If
∣∣f (z)∣∣ ≤ 1, (z ∈ U) then |f(z)| ≤ |z| where the equality holds

true only if f(z) = kz and |k| = 1.

Breaz (cf., [2,5]) introduced a family of integral operators for fi Î A univalent in U
denoted by Gn,a such that

Gn,α(z) =
[
(n(α − 1) + 1)

∫ z

0
[f1(t)]

α−1 · · · [fn(t)]α−1dt
] 1
n(α − 1) + 1 , fi ∈ A. (1)

In the case of n = 1, the operator Gn,a becomes identical to the operator Ga given in

Lemma 1.2 which was introduced by Pescar in 1996.

2. Main univalence criteria for analytic function
In this section, we make a criteria for space of analytic functions to be univalent. We

give proof and applications only for the first theorem and for the remaining theorems

we use the same techniques.

Theorem 2.1. Let fi Î A,

∣∣∣∣ z
2f ′

i(z)

(fi(z))
2 − 1

∣∣∣∣ ≤ 1, z ∈ U for all i = {1, 2, ..., n}.

If

|c| ≤ 1 +
(

α − 1
α

) (
4M(3n − 2n)

2n

)
n, α ∈ R, c ∈ C

and
∣∣fi(z)∣∣ ≤ M, ∀i andM ≥ 1.

Then, the family of functions f denoted by Gn,a belong to the class S.

Theorem 2.2. Let fi Î A,

∣∣∣∣ z
2f ′

i(z)

(fi(z))
2 − 1

∣∣∣∣ ≤ 1, z ∈ U for all i = {1, 2, ..., n}.

If

|c| ≤ 1 +
(

α − 1
α

) (
6M(4n − 3n)

3n

)
n, α ∈ R, c ∈ C

and
∣∣fi(z)∣∣ ≤ M, ∀i andM ≥ 1.

Then, the family of functions f denoted by Gn,a belong to the class S.

Theorem 2.3. Let fi Î A,

∣∣∣∣ z
2f ′

i(z)

(fi(z))
2 − 1

∣∣∣∣ ≤ 1, z ∈ U for all i = {1, 2, ..., n}.

If

|c| ≤ 1 +
(

α − 1
α

) (
8M(5n − 4n)

4n

)
n, α ∈ R, c ∈ C

and
∣∣fi(z)∣∣ ≤ M, ∀i andM ≥ 1.

Then, the family of functions f denoted by Gn,a belong to the class S.
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Proof of Theorem 2.1. Since for each fi Î A implies

fi(z)
z

= 1 +
∞∑
2

anz
n−1, ∀i

and

fi(z)
z

= 1 at z = 0, ∀i.

We can write

n∏
i=1

fi(z)
z

= 1 at z = 0.

Now suppose that

F(z) =
∫ z

0

[
f1(t)
t

]α−1

· · ·
[
fn(t)
t

]α−1

dt

and taking logarithmic derivative and doing some mathematics we get

F′′(z) = (α − 1)
∞∑
i=2

(
fi(z)
z

)α−2
⎛
⎝zf ′

i(z) − fi(z)
z2

n∏
j=1

(
fj(z)

(z)

)α−1
⎞
⎠ ,

⇒ zF′′(z)
F′(z)

= (α − 1)
∞∑
i=2

(
zf ′

i(z)
fi(z)

− 1
)
,

⇒
∣∣∣∣zF

′′(z)
F(z)

∣∣∣∣ ≤ (α − 1)
∞∑
i=2

(∣∣∣∣z
2f ′

i(z)
fi(z))2

∣∣∣∣
∣∣∣∣ fi(z)z

∣∣∣∣ + 1
)
.

Using hypothesis of Theorem 2.1 such as

∣∣∣∣ z
2f ′

i(z)

(fi(z))
2

∣∣∣∣ ≤ 2,
∣∣fi(z)∣∣ ≤ M, ∀i for M ≥ 1

and after doing calculation we get

∣∣∣∣ zF
′′(z)

F′(z)

∣∣∣∣ ≤ (α − 1)
m∑
i=1

(2M + (2M + 1)), ∵ 2M ≥ 1,

⇒
∣∣∣∣zF

′′(z)
F′(z)

∣∣∣∣ ≤ (α − 1)
m∑
i=1

(
2M +

(
2M +

2M
2

)
+

(
3M +

3M
2

))
, ∵ 3M/2 ≥ 1

⇒
∣∣∣∣zF

′′(z)
F′(z)

∣∣∣∣ ≤ (α − 1)
m∑
i=1

(
2M + 3M +

9M
2

M + · · · + nth term
)
.

Therefore, by Lemma 1.1, we get
∣∣∣∣∣c|z|2α + (1 − |z|2α)

zF
′′
(z)

αF′(z)

∣∣∣∣∣ ≤ |c| + 1
α

∣∣∣∣∣
zF

′′
(z)

F′(z)

∣∣∣∣∣ ≤ |c| + 1
α

∣∣∣∣∣
zF

′′
(z)

F′(z)

∣∣∣∣∣ ,

⇒
∣∣∣∣∣c|z|2α + (1 − |z|2α)

zF
′′
(z)

αF′(z)

∣∣∣∣∣ ≤ |c| + 1
α

∣∣∣∣∣
zF

′′
(z)

F′(z)

∣∣∣∣∣
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and
∣∣∣∣∣c|z|2α + (1 − |z|2α)

zF
′′
(z)

αF′(z)

∣∣∣∣∣ ≤ |c|+
(

α − 1
α

) n∑
i=1

(
2M + 3M +

9
2
M + · · · + nth term

)
.

Hence, after calculation, we have
∣∣∣∣∣c|z|2α + (1 − |z|2α)

zF
′′
(z)

αF′(z)

∣∣∣∣∣ ≤ |c| +
(

α − 1
α

) n∑
i=1

(
4M(3n − 2n)

2n

)

or

∣∣∣∣∣c|z|2α + (1 − |z|2α)
zF

′′
(z)

αF′(z)

∣∣∣∣∣ ≤ |c| +
(

α − 1
α

)
n

(
4M(3n − 2n)

2n

)
,

and again using the hypothesis of Theorem 2.1 we get
∣∣∣∣∣c|z|2α + (1 − |z|2α)

zF
′′
(z)

αF′(z)

∣∣∣∣∣ ≤ 1,

and hence proved.

Theorem 2.4. Let fi Î A,

∣∣∣∣ z
2f ′

i(z)

(fi(z))
2 − 1

∣∣∣∣ ≤ 1, z ∈ U for all i = {1, 2, ..., n}.

If

|c| ≤ 1 +
(

α − 1
α

) (
6M(3n − 2n)

3n

)
n, α ∈ R, c ∈ C

and
∣∣fi(z)∣∣ ≤ M, ∀i andM ≥ 1.

Then, the family of functions f denoted by Gn,a belong to the class S.

Proof. Using the proof of Theorem 2.1, we have
∣∣∣∣zF

′′(z)
F(z)

∣∣∣∣ ≤ (α − 1)
∞∑
i−2

(∣∣∣∣ z
2f ′

i(z)

(fi(z))
2

∣∣∣∣
∣∣∣∣ fi(z)z

∣∣∣∣ + 1
)
.

Again, using the hypothesis, we get
∣∣∣∣zF

′′(z)
F′(z)

∣∣∣∣ ≤ (α − 1)
m∑
i=1

(2M + (2M + 1)), ∵ 2M ≥ 1,

⇒
∣∣∣∣ zF

′′(z)
F′(z)

∣∣∣∣ ≤ (α − 1)
m∑
i−1

(
2M +

(
M +

M

2

)
+

(
M +

2M
9

))
,

⇒
∣∣∣∣ zF

′′(z)
F′(z)

∣∣∣∣ ≤ (α − 1)
m∑
i=1

(
2M +

4
3
M +

8
9
M + · · · + nth term

)
.

Thus, we have
∣∣∣∣∣c|z|2α + (1 − |z|2α)

zF
′′
(z)

αF′(z)

∣∣∣∣∣ ≤ |c| + 1
α

∣∣∣∣∣
zF

′′
(z)

F′(z)

∣∣∣∣∣ ≤ |c| + 1
α

∣∣∣∣∣
zF

′′
(z)

F′(z)

∣∣∣∣∣ ,

⇒
∣∣∣∣∣c|z|2α + (1 − |z|2α)

zF
′′
(z)

αF′(z)

∣∣∣∣∣ ≤ |c| + 1
α

∣∣∣∣∣
zF

′′
(z)

F′(z)

∣∣∣∣∣
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and
∣∣∣∣∣c|z|2α + (1 − |z|2α zF

′′
(z)

αF′(z)

∣∣∣∣∣ ≤ |c| +
(

α − 1
α

) n∑
i=1

(
2M +

4
3
M +

8
9
M + · · · + nth term

)
,

which implies that
∣∣∣∣∣c|z|2α + (1 − |z|2α)

zF
′′
(z)

αF′(z)

∣∣∣∣∣ ≤ |c| + (
α − 1

α
)

n∑
i=1

(
6M(3n − 2n)

3n

)

or

∣∣∣∣∣c|z|2α + (1 − |z|2α)
zF

′′
(z)

αF′(z)

∣∣∣∣∣ ≤ |c| +
(

α − 1
α

)
n

(
6M(3n − 2n)

3n

)
.

Again, using the hypothesis of Theorem 2.1, we get
∣∣∣∣∣c|z|2α + (1 − |z|2α)

zF
′′
(z)

αF′(z)

∣∣∣∣∣ ≤ 1,

and hence proved.

Similarly, we proved the following theorems:

Theorem 2.5. Let fi Î A,

∣∣∣∣ z
2f ′

i(z)

(fi(z))
2 − 1

∣∣∣∣ ≤ 1, z ∈ U for all i = {1, 2, ..., n}.

If

|c| ≤ 1 +
(

α − 1
α

) (
8M(4n − 3n)

4n

)
n, α ∈ R, c ∈ C

and
∣∣fi(z)∣∣ ≤ M, ∀i andM ≥ 1.

Then, the family of functions f denoted by Gn,a belong to the class S.

Theorem 2.5. Let fi Î A,

∣∣∣∣ z
2f ′

i(z)

(fi(z))
2 − 1

∣∣∣∣ ≤ 1, z ∈ U for all i = {1, 2, ..., n}.

If

|c| ≤ 1 +
(

α − 1
α

)(
10M(5n − 4n)

5n

)
n, α ∈ R, c ∈ C

and
∣∣fi(z)∣∣ ≤ M, ∀i andM ≥ 1.

Then, the family of functions f denoted by Gn,a belong to the class S.

3. Applications of univalence criteria
Considering n = 1 in Theorem 2.1, we obtain the following application:

Corollary 3.1. Let fi Î A,

∣∣∣∣ z
2f ′

i(z)

(fi(z))
2 − 1

∣∣∣∣ ≤ 1, z ∈ U for all i = {1, 2, ..., n}.

If

|c| ≤ 1 +
(

α − 1
α

)
(2M), α ∈ R, c ∈ C
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and
∣∣fi(z)∣∣ ≤ 1, ∀i.

Then, the family of functions f denoted by Gn,a belong to the class S.

Considering M = n = 11 in Theorem 2.1, we obtain second application as follow:

Corollary 3.2. Let fi Î A,

∣∣∣∣ z
2f ′

i(z)

(fi(z))
2 − 1

∣∣∣∣ ≤ 1, z ∈ U for all i = {1, 2, ..., n}.

If

|c| ≤
(
3α − 2

α

)
, α ∈ R, c ∈ C

and
∣∣fi(z)∣∣ ≤ 1, ∀i.

Then, the family of functions f denoted by Gn,a belong to the class S.

Considering M = 1 in Theorem 2.1, we obtain third application such as:

Corollary 3.3. Let fi Î A,

∣∣∣∣ z
2f ′

i(z)

(fi(z))
2 − 1

∣∣∣∣ ≤ 1, z ∈ U for all i = {1, 2, ..., n}.

If

|c| ≤ 1 +
(

α − 1
α

)(
(3n − 2n)

2n−2

)
n, α ∈ R, c ∈ C

and
∣∣fi(z)∣∣ ≤ 1, ∀i.

Then, the family of functions f denoted by Gn,a belong to the class S.

If we substitute n = 1 and M = n = 1 in Theorem 2.4, we get the results of Corol-

laries 3.1 and 3.2, respectively.

Other work related to integral operators concerning on univalence criteria and prop-

erties can be found in [6,7].
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