RESEARCH Open Access

Radius properties for analytic and p-valently starlike functions

Neslihan Uyanik¹ and Shiqeyoshi Owa^{2*}

Full list of author information is available at the end of the article

Abstract

Let \mathcal{A}_p be the class of functions f(z) which are analytic in the open unit disk $\mathbb U$ and satisfy $\frac{z^p}{f(z)} \neq 0 (z \in \mathbb U)$. Also, let $\mathcal{S}_p^*(\alpha)$ denotes the subclass of \mathcal{A}_p consisting of f(z) which are p-valently starlike of order $\alpha(0 \le \alpha < p)$. A new subclass $\mathcal{U}_p(\lambda)$ of \mathcal{A}_p is introduced by

$$\left|z^2\left(\frac{z^{p-1}}{f(z)}-\frac{1}{z}\right)'\right| \leq \lambda \quad (z \in \mathbb{U})$$

for some real $\lambda > 0$. The object of the present paper is to consider some radius properties for $f(z) \in \mathcal{S}_p^*(\alpha)$ such that $\delta^{-p} f(\delta z) \in \mathcal{U}_p(\lambda)$.

2010 Mathematics Subject Classification: Primary 30C45.

Keywords: Analytic, radius problem, Cauchy-Schwarz inequality, p-valently starlike of order α .

1 Introduction

Let A_p be the class of functions f(z) of the form

$$f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n$$
 $(p = 1, 2, 3, ...)$ (1.1)

which are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$ and satisfy

$$\frac{z^p}{f(z)} = 1 + \sum_{n=n+1}^{\infty} b_n z^{n-p} \neq 0 \quad (z \in \mathbb{U}).$$
 (1.2)

For $f(z) \in A_p$, we say that f(z) belongs to the class $\mathcal{U}_p(\lambda)$ if it satisfies

$$\left| z^2 \left(\frac{z^{p-1}}{f(z)} - \frac{1}{z} \right)' \right| \le \lambda \quad (z \in \mathbb{U})$$
 (1.3)

for some real number $\lambda > 0$.

Let us consider a function $f_{\delta}(z)$ given by

$$f_{\delta}(z) = \frac{z^{p}}{(1-z)^{\delta}} \quad (\delta \in \mathbb{R}). \tag{1.4}$$

^{*} Correspondence: owa@math. kindai.ac.jp

²Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan

Then, we can write that

$$f_{\delta}(z) = \frac{z^p}{1 + \sum_{n=1}^{\infty} a_n z^n}$$

with

$$a_n = (-1)^n \binom{\delta}{n}$$

and

$$\left|z^{2}\left(\frac{z^{p-1}}{f_{\delta}(z)}-\frac{1}{z}\right)'\right| = \left|\sum_{n=1}^{\infty} (n-1)a_{n}z^{n}\right|$$

$$< \sum_{n=1}^{\infty} (n-1)|a_{n}|.$$

Thus, if $\delta = 2$, then

$$\left|z^2\left(\frac{z^{p-1}}{f_2(z)}-\frac{1}{z}\right)'\right|<1.$$

This shows that $f_2(z) \in \mathcal{U}_p(\lambda)$ for $\lambda \ge 1$.

If δ = 3, then we have that

$$\left|z^2\left(\frac{z^{p-1}}{f_3(z)}-\frac{1}{z}\right)'\right|<5$$

Which shows that $f(z) \in \mathcal{U}_p(\lambda)$ for $\lambda \ge 5$.

Further, if $\delta = 4$, then

$$\left| z^2 \left(\frac{z^{p-1}}{f_4(z)} - \frac{1}{z} \right)' \right| < 11$$

which shows that $f(z) \in \mathcal{U}_p(\lambda)$ for $\lambda \ge 11$.

If p = 1, then $f(z) \in \mathcal{U}_1(\lambda)$ is defined by

$$\left| z^2 \left(\frac{1}{f(z)} - \frac{1}{z} \right)' \right| \le \lambda \quad (z \in \mathbb{U}) \tag{1.5}$$

for some real number $\lambda > 0$. Note that (1.5) is equivalent to

$$\left|f'(z)\left(\frac{z}{f(z)}\right)^2-1\right| \leq \lambda \quad (z \in \mathbb{U}).$$

Therefore, this class $\mathcal{U}_1(\lambda)$ was considered by Obradović and Ponnusamy [1]. Further-more, this class was extended as the class $\mathcal{U}(\beta_1, \beta_2; \lambda)$ by Shimoda et al. [2].

Let $S_p^*(\alpha)$ denotes the subclass of A_p consisting of f(z) which satisfy

$$Re\left(\frac{zf'(z)}{f(z)}\right) > \alpha \quad (z \in \mathbb{U})$$
 (1.6)

for some real α ($0 \le \alpha < p$).

A function $f(z) \in \mathcal{S}_p^*(\alpha)$ is said to be p-valently starlike of order α in \mathbb{U} (cf. Robertson [3]).

2 Coefficient inequalities

For $f(z) \in A_p$, we consider the sufficient condition for f(z) to be in the class $\mathcal{U}_p(\lambda)$.

Lemma 1 If $f(z) \in A_p$ satisfies

$$\sum_{n=p+2}^{\infty} (n-p-1)|b_n| \le \lambda, \tag{2.1}$$

then $f(z) \in \mathcal{U}_1(\lambda)$.

Proof We note that

$$\left| z^{2} \left(\frac{z^{p-1}}{f(z)} - \frac{1}{z} \right)' \right| = \left| \sum_{n=p+1}^{\infty} (n-p-1)b_{n} z^{n-p} \right|$$

$$< \sum_{n=p+1}^{\infty} (n-p-1)|b_{n}|.$$

Therefore, if

$$\sum_{n=p+1}^{\infty} (n-p-1)|b_n| = \sum_{n=p+2}^{\infty} (n-p-1)|b_n| \leq \lambda,$$

then $f(z) \in \mathcal{U}_p(\lambda)$.

Example 1 If we consider a function $f(z) \in A_p$ given by

$$\frac{z^p}{f(z)} = 1 + b_{p+1}z + \sum_{n=p+2}^{\infty} \frac{\lambda e^{i\varphi}}{(n-p)(n-p-1)^2} z^{n-p} \neq 0 \quad (z \in \mathbb{U})$$

with

$$b_n = \frac{\lambda e^{i\varphi}}{(n-p)(n-p-1)^2} (\lambda > 0, \varphi \in \mathbb{R})$$

for $n \ge p + 2$, then we see that

$$\begin{split} \sum_{n=p+2}^{\infty} \left(n-p-1 \right) |b_n| &= \sum_{n=p+2}^{\infty} \frac{\lambda e^{i\varphi}}{(n-p)(n-p-1)} \\ &< \lambda \sum_{n=p+2}^{\infty} \left(\frac{1}{n-p-1} - \frac{1}{n-p} \right) = \lambda. \end{split}$$

Thus, this function f(z) satisfies the inequality (2.1). Also, we see that

$$\left| z^2 \left(\frac{z^{p-1}}{f(x)} - \frac{1}{z} \right)' \right| = \left| \sum_{n=p+2}^{\infty} \frac{\lambda e^{i\varphi}}{n-p-1)(n-p)} z^{n-p} \right|$$
$$< \lambda \sum_{n=n+2}^{\infty} \left(\frac{1}{n-p-1} - \frac{1}{n-p} \right) = \lambda.$$

Therefore, we say that $f(z) \in \mathcal{U}_p(\lambda)$.

Next, we discuss the necessary condition for the class $\mathcal{S}_p^*(\alpha)$.

Lemma 2 *If* $f(z) \in \mathcal{S}_p^*(\alpha)$ *satisfies*

$$\frac{z^p}{f(z)} = 1 + \sum_{n=p+1}^{\infty} b_n z^{n-p} \neq 0 \quad (z \in \mathbb{U})$$

with $b_n = |b_n| e^{i(n-p)\theta}$ (n = p + 1, p + 2, p + 3,...), then

$$\sum_{n=n+1}^{\infty} (n+\alpha-2p)|b_n| \leq p-\alpha.$$

Proof Let us define the function F(z) by

$$F(z) = \frac{z^{p}}{f(z)} = 1 + \sum_{n=n+1}^{\infty} b_{n} z^{n-p}.$$

It follows that

$$Re\left(\frac{zf'(z)}{f(z)}\right) = Re\left(p - \frac{zF'(z)}{F(z)}\right)$$

$$= Re\left(\frac{p - \sum_{n=p+1}^{\infty} (n-2p)b_n z^{n-p}}{1 + \sum_{n=p+1}^{\infty} b_n z^{n-p}}\right)$$

$$= Re\left(\frac{p - \sum_{n=p+1}^{\infty} (n-2p)|b_n|e^{i(n-p)\theta} z^{n-p}}{1 + \sum_{n=p+1}^{\infty} |b_n|e^{i(n-p)\theta} z^{n-p}}\right) > \alpha$$

for $z \in \mathbb{U}$. Letting $z = |z| e^{-i\theta}$, we have that

$$\frac{p - \sum_{n=p+1}^{\infty} (n-2p)|b_n||z|^{n-p}}{1 + \sum_{n=p+1}^{\infty} |b_n||z|^{n-p}} > \alpha \quad (z \in \mathbb{U}).$$

If we take $|z| \rightarrow 1$, we obtain that

$$\frac{p - \sum_{n=p+1}^{\infty} (n - 2p)|b_n|}{1 + \sum_{n=p+1}^{\infty} |b_n|} \ge \alpha$$

which implies that

$$\sum_{n=p+1}^{\infty} (n+\alpha-2p)|b_n| \leq p-\alpha.$$

Remark 1 If we take p = 1 in Lemmas 1 and 2, then we have that

(i)
$$f(z) \in \mathcal{A}_1$$
, $\sum_{n=2}^{\infty} (n-2)|b_n| \leq \lambda \Rightarrow f(z) \in \mathcal{U}_1(\lambda)$

and

$$(ii) \ f(z) \in \mathcal{S}^*(\alpha), \quad |b_n| = |b_n| e^{i(n-1)\theta} \Rightarrow \sum_{n=2}^{\infty} (n+\alpha-2) |b_n| \leq 1-\alpha.$$

3 Radius problems

Our main result for the radius problem is contained in

Theorem 1 Let $f(z) \in \mathcal{S}_p^*(\alpha)$ $(p - 1 \le \alpha < p)$ with

$$\frac{z^p}{f(z)}=1+\sum_{n=n+1}^\infty b_nz^{n-p}\neq 0\quad (z\in\mathbb{U}).$$

and $b_n = |b_n| e^{i(n-p)\theta}$ (n = p + 1, p + 2, p + 3, ...). If $\delta \in \mathbb{C}(|\delta| < 1)$, then $\frac{1}{\delta^p} f(\delta z)$ belongs to the class $\mathcal{U}_p(\lambda)$ for $0 < |\delta| \leq |\delta_0(\lambda)|$, where $|\delta_0(\lambda)|$ is the smallest positive root of the equation

$$|\delta|^2 \sqrt{1 - \alpha} - (1 - |\delta|^2) \lambda = 0, \tag{3.1}$$

that is.

$$|\delta_0(\lambda)| = \sqrt{\frac{\lambda}{\lambda + \sqrt{1 - \alpha}}}.$$
(3.2)

Proof Since

$$f(\delta z) = \delta^p z^p + \sum_{n=p+1}^{\infty} a_n \delta^n z^n,$$

we have that

$$\frac{z^p}{\frac{1}{\delta^p}f(\delta z)} = 1 + \sum_{n=p+1}^{\infty} b_n \delta^{n-p} z^{n-p}.$$

In view of Lemma 1, we have to show that

$$\sum_{n=p+2}^{\infty} (n-p-1)|b_n||\delta|^{n-p} \leqq \lambda.$$

Note that $f(z) \in \mathcal{S}_p^*(\alpha)$ satisfies

$$|b_n| \leq \frac{p-\alpha}{n+\alpha-2p} < 1 \quad (p-1 \leq \alpha < p).$$

Applying Cauchy-Schwarz inequality, we obtain that

$$\sum_{n=p+2}^{\infty} (n-p-1)|b_n||\delta|^{n-p} \leq \left(\sum_{n=p+2}^{\infty} (n-p-1)|b_n|^2\right)^{\frac{1}{2}} \left(\sum_{n=p+2}^{\infty} (n-p-1)|\delta|^{2(n-p)}\right)^{\frac{1}{2}}$$

$$\leq \left(\sum_{n=p+2}^{\infty} (n-p-1)|\delta|^{2(n-p)}\right)^{\frac{1}{2}} \sqrt{p-\alpha}.$$

Let $|\delta|^2 = x$. Then, we have that

$$\sum_{n=p+2}^{\infty} (n-p-1)x^{n-p} = x^2 \left(\sum_{n=p+2}^{\infty} (n-p-1)x^{n-p-2} \right)$$

$$= x^2 \left(\sum_{n=p+2}^{\infty} x^{n-p-1} \right)'$$

$$= x^2 \left(\sum_{n=1}^{\infty} x^{n-1} \right)$$

$$= \frac{x^2}{(1-x)^2}.$$

This gives us that

$$\sum_{n=p+2}^{\infty} (n-p-1)|b_n||\delta|^{n-p} \leq \frac{|\delta|^2 \sqrt{p-\alpha}}{1-|\delta|^2}.$$

Let us define the function $h(|\delta|)$ by

$$h\big(|\delta|\big) = |\delta|^2 \sqrt{p-\alpha} - \big(1-|\delta|^2\big)\lambda.$$

Then, $h(|\delta|)$ satisfies $h(0) = -\lambda < 0$ and $h(1) = \sqrt{p - \alpha} > 0$. Indeed, we have that $h(|\delta_0(\lambda)|) = 0$ for

$$0<|\delta_0(\lambda)|=\sqrt{\frac{\lambda}{\lambda+\sqrt{p-\alpha}}}<1.$$

This completes the proof of the theorem.

Corollary 1 Let $f(z) \in \mathcal{S}_1^*(\alpha)$ $(0 \le \alpha < 1)$ with

$$\frac{z}{f(z)} = 1 + \sum_{n=2}^{\infty} b_n z^{n-1} \neq 0 \quad (z \in \mathbb{U})$$

and $b_n = |b_n| e^{i(n-1)\theta}$ (n = 2, 3, 4,...). If $\delta \in \mathbb{C}$ $(|\delta| < 1)$, then $\frac{1}{\delta}f(\delta z)$ belongs to the class $\mathcal{U}_1(\lambda)$ for $0 < |\delta| \leq |\delta_0(\lambda)|$, where $|\delta_0(\lambda)|$ is the smallest positive root of the equation

$$|\delta|^2 \sqrt{1-\alpha} - (1-|\delta|^2)\lambda = 0,$$

that is.

$$|\delta_0(\lambda)| = \sqrt{\frac{\lambda}{\lambda + \sqrt{1 - \alpha}}}.$$

Remark 2 In view of (3.2), we define the function $g(\lambda)$ by

$$g(\lambda) = |\delta_0(\lambda)| = \sqrt{\frac{\lambda}{\lambda + \sqrt{p - \alpha}}}.$$

Then, we have that

$$g'(\lambda) = \frac{1}{2} \sqrt{\frac{p-\alpha}{\lambda(\lambda + \sqrt{p-\alpha})^3}} > 0$$

for $\lambda > 0$. Therefore, $|\delta_0(\lambda)|$ given by (3.2) is increasing for $\lambda > 0$.

Remark 3 If we put $\alpha = p - \frac{1}{2}$ in Theorem 1, then

$$|\delta_0(\lambda)| = \sqrt{\frac{2\lambda}{2\lambda + \sqrt{2}}}.$$

Therefore, if we consider $\lambda = \frac{1}{2}$, then we see that

$$\left|\delta_0\left(\frac{1}{2}\right)\right| = \sqrt{\frac{1}{1+\sqrt{2}}} = 0.64359\dots$$

and if we make $\lambda = 5$, then we have that

$$|\delta_0(5)| = \sqrt{\frac{10}{10 + \sqrt{2}}} = 0.93600...$$

Author details

¹Department of Mathematics, Kazim Karabekir Faculty of Education, Atatürk University, 25240 Erzurum, Turkey

²Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan

Authors' contributions

QF carried out the main part of this article. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 28 June 2011 Accepted: 7 November 2011 Published: 7 November 2011

References

- Obradović, M, Ponnusamy, S: Radius properties for subclasses of univalent functions. Analysis. 25, 183–188 (2005). doi:10.1524/anly.2005.25.3.183
- Shimoda, Y, Hayami, T, Owa, S: Notes on radius properties of certain univalent functions. Acta Univ Apul 377–383 (2009). (Special Issue)
- 3. Robertson, MS: On the theory of univalent functions. Ann Math. 37, 374-408 (1936). doi:10.2307/1968451

doi:10.1186/1029-242X-2011-107

Cite this article as: Uyanik and Owa: Radius properties for analytic and p-valently starlike functions. *Journal of Inequalities and Applications* 2011 2011:107.