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Abstract

Let Ay, be the class of functions f(z) which are analytic in the open unit disk U and
satisfy ff; 7oeev). Also, let Sp(a) denotes the subclass of A, consisting of f(z) which
are p-valently starlike of order (0 £ o <p). A new subclass Uy(1) of A, is
introduced by

=1 1\’
“(io~2)

f@) =
for some real A > 0. The object of the present paper is to consider some radius

properties for f(z) € Sy(a) such that 8§77f(8z) € Up(1).
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1 Introduction

Let Ay be the class of functions flz) of the form

fe)=2+ > ad" (p=1,23,...) (1.1)

n=p+1

which are analytic in the open unit disk U = {z € C: |z| < 1} and satisfy

=1+ Z bd" P40 (z€U). (1.2)

n=p+1

zP

f(@)

For f(z) € Ap, we say that f{z) belongs to the class U,(1) if it satisfies

—1 1\

(<)
flz) =z

for some real number A > 0.

<i (zel) (1.3)

Let us consider a function fj(z) given by

Zp

@=L

(6 €R). (1.4)
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Then, we can write that

zP

>y an"

fs(z) = -

with

o0

o= ()
> (n—1)az"

and
(70|

< Z(n — 1)|an|.

Thus, if 0 = 2, then
p—1 !
2 < z 1 )
hz) =z
This shows that f2(z) € Uy(1) for A 2 1.
If 0 = 3, then we have that

) ( 2711 >/
z J—
(@) =
Which shows that f(z) € Uy(A) for A 2 5.
Further, if 0 = 4, then

) ( P | )/
Z —
falz) =z
which shows that f(z) € Uy(2) for A 2 11.
If p = 1, then f(z) € Uy (1) is defined by

< 1.

<5

<11

zz(f(lz) - i)} <ir (zel) (1.5)

for some real number A > 0. Note that (1.5) is equivalent to

f m(f(zz))z !

Therefore, this class U (1) was considered by Obradovi¢ and Ponnusamy [1].

<A (zel).

Further-more, this class was extended as the class U(B1, 82; 1) by Shimoda et al. [2].
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Let Sy(a) denotes the subclass of A, consisting of flz) which satisfy

zf '(Z))
Re >a (zeU (1.6)
(e (eb)

for some real o (0 £ o < p).

A function f(z) € S;; (@) is said to be p-valently starlike of order & in U (cf. Robert-
son [3]).

2 Coefficient inequalities
For f(z) € Ay, we consider the sufficient condition for fiz) to be in the class U, ().
Lemma 1 If f(z) € Apsatisfies

[ee]

D (n—p-1)lbal £, (2.1)
n=p+2

then f(z) € Ur(2).

Proof We note that

p—l / oo
(5 =) 7| X =p =D

n=p+1

< Y (n=p—1)lbal.

n=p+1

Therefore, if

Yo (—p=1)lbal= Y (n—p—1)bal £ 2,
n=p+1 n=p+2
then f(z) € Up(A).

Example 1 If we consider a function f(z) € A, given by

2 ad el
() =1+bpaz+ Z

n—p
2 opn—p—rys 70 EEY

with
rei

b, =
(n=p)(n—p-1)

,(A>0¢€R)

for n 2 p + 2, then we see that

2 (=== D )

n=p+2 n=p+2

nd 1 1
<A Z <n_p_1 —n_p>=x.

n=p+2
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Thus, this function flz) satisfies the inequality (2.1). Also, we see that

“(-2)

ind Ael? B
Iy o
i =P = 1)(n—p)

ind 1 1
SE (bt )

n=p+2

Therefore, we say that f(z) € Uy(1).
Next, we discuss the necessary condition for the class Sy (a).

Lemma 2 If f(2) € S; (@) satisfies

z

p o0
=1+ nnip
@) 1+ > b2 40 (z€V)

n=p+1

with b, = |b,| €"P? (n=p+1,p+2,p+3,.), then

D> (n+a—2p)by Sp—a.

n=p+1

Proof Let us define the function F(z) by

F(z) = f?i) =1+ i by2" .

n=p+1

It follows that

zf'(2)\ _ _ zF(2)
r(F5) ()
_ Re (P = Yadpn (n— 2p)b,,z"ﬁ>

1+ ZZZ[HI b"zn_p

P = Yonper (1= 2p) [yl P27
1+ Zn:erl |bn|el("—P)9zn—p

for z € U. Letting z = |z| €™, we have that

p— 30 (1= 29)Ibullzl""

z e V).
1+ ZZZPH |bn|z|"—P ( )

If we take |z| — 17, we obtain that

p— 2 nsper (n—2p) byl
1+ z:;ip+l|b”|

1\

o

which implies that

Z (n+a—2p)|by| £p—a.

n=p+1

Remark 1 If we take p = 1 in Lemmas 1 and 2, then we have that
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(i) f(2) € A1, Y (n—2)Ibal < = f(2) € Us(1)
n=2

and

(ii) f(2) € S* (@), |bal = bl =Y (n+a —2)[by| £1—c.

n=2

3 Radius problems
Our main result for the radius problem is contained in
Theorem 1 Let f(z) € Sy(@) (p - 1 £ o <p) with

=1+ > b2 #0 (zeV).

n=p+1

2
f(2)

and b, = | b,| €" P (n=p+1,p+ 2, p+3,..) If §€C(8| <1), then

;pf(Sz) belongs to the class Uy(M)for 0 < |8| < |80(X)|, where |0o(A)] is the smallest

positive root of the equation
181°V1 —a — (1 —8*)x =0,

that is,

|80(M|=\/“j1_a.

Proof Since

[o.¢]
f(8z) = 8’2 + Z an8"z",

n=p+1
we have that
b ad
L o1 Y b,
s/ (69) n=p+l

In view of Lemma 1, we have to show that

Y (n—p—1)balls]" P =2

n=p+2

Note that f(z) € Sf,k () satisfies

p—«o
< — 1<
|bn|:n+a_2p<1 (p 1:a<p)

(3.1)

(3.2)
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Applying Cauchy-Schwarz inequality, we obtain that

1

n=p+2 n=p+2 n=p+2
1
00 2
= DBRCETER Rl BV R
n=p+2
Let |5|> = x. Then, we have that
[o.¢] oo
Z (n—p—1)x"" = Z (n—p—1)x""2
n=p+2 n=p+2

(1-x)°*
This gives us that
oo
p o PP~
—p— p
2 (n—p= Dbl = T Y

n=p+2
Let us define the function A(|J|) by

h(18]) = 81°y/p — & — (1 — [8]*)A.

Then, & (|d]) satisfies 4 (0) = -4 < 0 and h(1) = \/p —a > 0. Indeed, we have that &

(166(4) |) = 0 for

A
0<|50(A)|=/“\/p_a <1.

This completes the proof of the theorem.
Corollary 1 Let f(z) € Sf(o) (0 £ o < 1) with

f(zz) =1 +§2:bnz"1 70 (ze )

and b, = |b,| "V (n =2,3,4,.). If 6 € C (|0 < 1), then ;f (8z) belongs to the

class Ui (X) for 0 < |8| < [80(1)|, where |0o(A)| is the smallest positive root of the equa-

tion

181°V1 —a — (1 —|8*)x =0,

© 00 2 o
D (n—p—1)lbll8"" < (Z (n—p-— 1)|bn|2) (Z (n—p—1)[s]2"

1

;
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that is,

1Bo(3)1 = )»+\/)\1—Ot.

Remark 2 In view of (3.2), we define the function g(1) by

802) = 180(%)] = M\/Ap_a.

Then, we have that

’ 1 p—O[
A) = 0
$W= o s rvp—ay

for A > 0. Therefore, |dp(A)| given by (3.2) is increasing for A > 0.

1
Remark 3 If we put o = p — ) in Theorem 1, then

2A

180(2)] = e 2

1
Therefore, if we consider A = 5’ then we see that

1 1
1) = =0.64359...
0(2)‘ 1++/2

and if we make A = 5, then we have that

180(5)| = 10 =0.93600
0 10+42
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