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We give some necessary and sufficient conditions for the class of Appell polynomials to
satisfy well-known Turan’s inequality. Among the other corollaries, we apply our results
to some classes of orthogonal polynomials.
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1. Introduction

A real sequence {an}, n = 0,1,2, . . . generates a sequence of Appell polynomials defined
as:

An(x) :=
n∑

k=0
ak

(
n

k

)
xn−k; n= 0,1,2, . . . . (1.1)

This class of polynomials is of importance in real and combinatorial analysis [1, 2]. For
example, the classical Bernoulli and Laguerre polynomials belong to Appell class.

It is said that the sequence of polynomials {Cn(x)} have T property if it satisfies Turan’s
inequality

C2
n(x)−Cn−1(x)Cn+1(x)≥ 0, x ∈ [a,b], n∈N. (1.2)

We will also consider inverse Turan’s inequality and say that {Cn(x)} have T− property
if it satisfies

C2
n(x)−Cn−1(x)Cn+1(x)≤ 0, x ∈ [a,b], n∈N. (1.3)

For x ∈ [−1,1], T property was proved by Turán for Legendre’s polynomials [5]; in
[3] this property proved Szegö for Laguerre polynomials (x ∈ R).

In 1964, Ikeda proved T property for Bernoulli polynomials and x ∈ [0,1].
Nowadays, the possibility of T (T−) property for various classes of polynomials still

attracts the attention of mathematicians.
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2. Results

Our task in this paper is to investigate T property of Appell polynomials in two cases. In
the first case we suppose that the generating sequence {an} consists of positive numbers.
In the second case we assume that all polynomials from the sequence {An(x)} have real
zeros only.

As concerns the first case, we can formulate the next theorem.

Theorem 2.1. If the generating sequence {an} consists of positive numbers only, then
(i) the sequence {An(x)} have T (T−) property for x ∈ (0,b] if and only if the sequence
{an} have T (T−) property;

(ii) the sequence {Bn(x)} defined by

Bn(x) :=
(
An(x)/an

)1/n
; B0(x) := 1, n∈N , (2.1)

is monotone nondecreasing (nonincreasing) for x ∈ (0,b] if and only if the sequence {an}
have T (T−) property.

From the above theorem follow some T property criteria.

Proposition 2.2. If the sequence {an} of positive numbers have not T (T−) property then
also {An(x)} have not this property for x ∈ [a,b], a≤ 0 < b.

Proposition 2.3. If the sequence {An(x)/an} have T− (T) property for x ∈ (0,b] then the
sequence {An(x)} have T (T−) property for x ∈ [0,∞).

Proposition 2.4. Define

A(σ)
n (x) :=

n∑

k=0
aσk

(
n

k

)
xn−k, σ ∈ R; A(1)

n (x)=An(x). (2.2)

If {An(x)} have T property for x > 0 then {Aσ
n(x)} have T property for σ ≥ 0 and T− prop-

erty for σ < 0.
Analogous statement takes place if {An(x)} have T− property.

T property implies bounds for An(x). Namely,

Proposition 2.5. If {An(x)} (A0(x) = a0 = 1, an > 0, n ∈ N) have T property for x ∈
(0,b], then

an
an1
≤ An(x)

An
1(x)

≤ 1, x ∈ [0,b], n∈N. (2.3)

If {An(x)} have T− property then the reverse inequalities hold.

In the sequel we will not assume positivity of the sequence {an}, but
Theorem 2.6. If all the zeros of polynomials An(x), n∈N are real, then

(i) the generating sequence {an} have T property;
(ii) the sequence {An(x)} have T property for x ∈ R.
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This theorem is particularly useful in the case of sequences of orthogonal polynomials.
Because of orthogonality, all their zeros are real and, as a corollary of Theorem 2.6., we
get

Proposition 2.7. The sequence of Hermite polynomials have T property for x ∈ R.

Denote by {L(a)n (x)} the sequence of generalized Laguerre polynomials of order a >−1.
Then

Proposition 2.8. The sequence {L(a)n (x)/
(
n+a
n

)
} have T property for x ∈ R.

For a = 0 we obtain Szego’s theorem concerning Laguerre polynomials, mentioned
above.

If the sequence of polynomials {Qn(x)} is not from Appell class, then the following
assertion can be useful.

Theorem 2.9. If, for fixed t ∈ [a,b], polynomials Rn(x) defined by

Rn(x) :=
n∑

k=0
Qk(t)

(
n

k

)
xn−k, n∈N , (2.4)

have all its zeros real, then the sequence {Qn(x)} have T property for x ∈ [a,b].

As a corollary we have the next

Proposition 2.10. If {P(λ)
n (x)} denotes the sequence of ultraspherical polynomials with

parameter λ >−1/2, then the sequence {P(λ)
n (x)/P(λ)

n (1)} have T property for x ∈ [−1,1].
For λ = 1/2 we obtain Turan’s assertion on Legendre’s polynomials and for λ = 1 we

proved T property for the sequence {Un(x)/(n+1)}, x ∈ [−1,1], where Un(x)= P(1)
n (x)

is a Tchebychef polynomial of second kind.

3. Proofs

To prove part (i) of Theorem 2.1, suppose first T (T−) property of the sequence {An(x)}
for x ∈ (0,b]. Then the polynomial P(x),

P(x) := A2
n(x)−An−1(x)An+1(x)

= a2n− an−1an+1 + (n− 1)
(
anan−1− an+1an−2

)
x+ ···+ (a21− a0a2

)
x2n−2

(3.1)

is nonnegative (nonpositive) for x ∈ (0,b].
Using the identity

A′n(x)= nAn−1(x), (3.2)

we obtain

P′(x)= (n− 1)
(
An(x)An−1(x)−An+1(x)An−2(x)

)
. (3.3)

Hence, polynomials P(x) and P′(x) are of the same sign, that is, P(x) is either nonnegative
and nondecreasing or nonpositive and nonincreasing for x ∈ (0,b].
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Since it is also continuous in x, it follows that P(0)= a2n− an−1an+1 has the same sign
as P(x), x ∈ (0,b].

Suppose now that the sequence {an} has T (T−) property.
Putting cn = cn(x) := anx−n, x > 0; n= 0,1,2, . . . , we have to prove thatT (T−) property

of {cn} implies the same property for the sequence {Cn}, where

Cn :=
n∑

k=0

(
n

k

)
ck; n= 0,1,2, . . . . (3.4)

It is easy to check that T (T−) property of {cn} implies this property for the sequence

{c(1)n }, defined by c(1)n := cn + cn−1.
By induction, the same is valid for sequences {c(m)

n }, where

c(m+1)
n := c(m)

n + c(m)
n−1, m= 1,2, . . . . (3.5)

It is only left to note that c(n)n = Cn.

Remark 3.1. It follows that T (T−) property of the sequence {an} implies the same prop-
erty of {An(x)} for x ∈ [0,∞).

To prove part (ii) of Theorem 2.1, assume first that {an} have T property. By (i), the
sequence {An(t)} also have this property for t > 0, that is,

An(t)
An+1(t)

≥ An−1(t)
An(t)

(3.6)

or, by (3.2),

1
n+1

A′n+1(t)
An+1(t)

≥ 1
n

A′n(t)
An(t)

. (3.7)

Integrating (3.7) over t ∈ [0,x], we get

(
An+1(x)/an+1

)1/(n+1) ≥ (An(x)/an
)1/n

; n= 1,2, . . . . (3.8)

This means that the sequence {Bn(x)} is monotone nondecreasing for each fixed x > 0.
T− case can be treated similarly.
Suppose now that {Bn(x)} is monotone and consider the polynomial Q(x) defined by

Q(x) := (An+1(x)/an+1
)n− (An(x)/an

)n+1
. (3.9)

By assumption, Q(x) is nonnegative (nonpositive) for x ∈ (0,b], b > 0.
We have Q(0)= 0 and, by (3.2)

Q′(0)= n(n+1)
(
an/an+1− an−1/an

)
; n= 1,2, . . . . (3.10)

Therefore,

Q(x)= n(n+1)
(
an/an+1− an−1/an

)
x+ ···+

((
a0/an+1

)n− (a0/an)n+1
)
xn(n+1). (3.11)
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Since x is independent of n, we see from (3.11) that, for sufficiently small positive x, the
signs of Q(x) and Q′(0) have to be the same, that is, the part (ii) is also proved.

Proof of Proposition 2.2. This is a consequence of the assertion (i) of Theorem 2.1. �

Proof of the next proposition needs the following lemma.

Lemma 3.2. If the sequence {bn}, b0 := 1 of positive numbers have T (T−) property, then
the sequence {b1/nn } is nonincreasing (nondecreasing).
Proof. T property implies b2n ≥ bn−1bn+1, n∈N . Hence

(
b0b2

)(
b1b3

)2
(b2b4)3 ···

(
bn−1bn+1

)n ≤ b21b
4
2b

6
3 ···b2nn . (3.12)

This gives bnn+1 ≤ bn+1n , that is, {b1/nn } is nonincreasing.
Proof of T− case goes along the same lines. �

Proof of Proposition 2.3. Assume that {An(x)/an} have T− property for x ∈ (0,b]. Then
Lemma 3.2 asserts {(An(x)/an)1/n} nondecreasing for x ∈ (0,b]. By part (ii) of
Theorem 2.1 this implies T property for {an} which in turn, by part (i) and Remark 3.1,
gives T property of {An(x)} for x ∈ [0,∞). �

Proof of Proposition 2.4. This is a consequence of Theorem 2.1, part (i) and the fact that, if
{an} have T property, then {aσn} have T property for σ ≥ 0 and T− property for σ < 0. �

Proof of Proposition 2.5. T property and Lemma 3.2 imply {(An(x))1/n} nonincreasing.
Therefore An(x)1/n ≤A1(x).

On the other hand, by Theorem 2.1 part (i), T property of {An(x)} implies T property
for {an} which in turn, by part (ii), implies that the sequence {(An(x)/an)1/n} is nonde-
creasing. Hence

(
An(x)/an

)1/n ≥ A1(x)/a1; x > 0, n= 1,2, . . . . (3.13)

This is exactly the left-hand side of the inequality from Proposition 2.4.
The other case can be treated similarly. �

Proof of Theorem 2.6. We will prove first the part (ii) of this theorem. For this purpose,
let

An+1(x)= a0

n∏

i=0

(
x− xi

)
, xi ∈ R, n= 0,1,2, . . . . (3.14)

Taking logarithmic derivative, by (3.2), we get

(n+1)
An(x)
An+1(x)

= A′n+1(x)
An+1(x)

=
n∑

i=0

1
x− xi

. (3.15)

Analogously,

(n+1)
nAn−1(x)An+1(x)− (n+1)A2

n(x)
A2
n+1(x)

=
(
A′n+1(x)
An+1(x)

)′
= −

n∑

i=0

1
(
x− xi

)2 . (3.16)
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Therefore, by Cauchy’s inequality, we obtain

A2
n(x)

A2
n+1(x)

=
(

1
n+1

n∑

i=0

1
x− xi

)2
≤ 1

n+1

n∑

i=0

1
(
x− xi

)2

= (n+1)A2
n(x)−nAn−1(x)An+1(x)

A2
n+1(x)

,

(3.17)

which is equivalent to T property for the sequence {An(x)}, x ∈ R. �

Since an = An(0), the assertion (i) follows from (ii) for x = 0.

Proof of Proposition 2.7. The classical Hermite polynomials {Hn(x)} are defined by [4,
page 105],

Hn(x)
n!

=
[n/2]∑

i=0

(−1)i
i!

(2x)n−2i(
n− 2i

)
!
, n= 0,1,2, . . . . (3.18)

To see that the sequence {Hn(x/2)} belongs to the Appell class, write (3.18) in the form

Hn(x/2)=
n∑

i=0
hi

(
n

i

)
xn−i, (3.19)

where

h2k = (−1)k(2k)!
k!

; h2k+1 = 0; k = 0,1,2, . . . . (3.20)

Since all their zeros are real [4, page 110], by Theorem 2.6, part (ii), T property follows
for x ∈ R. �

Proof of Proposition 2.8. The class of generalized Laguerre polynomials {L(a)n (x)} of order
a >−1 is defined by [4, page 100]

L(a)n (x)=
n∑

i=0

(
n+ a

n− i

)
(−x)i
i!

. (3.21)

All its zeros are real and positive [4, page 110]. For x �= 0, an elementary transform gives

xnL(a)n (1/x)/

(
n+ a

n

)
= Γ(a+1)

n∑

i=0

(−1)i
Γ(i+ a+1)

(
n

i

)
xn−i. (3.22)

Now, we can apply Theorem 2.6, part (ii). �

Proof of Theorem 2.9. This assertion is a consequence of Theorem 2.6, part (i). �

Proof of Proposition 2.10. An explicit form of ultraspherical polynomials of order λ is the
following [4, page 85]

P(λ)
n (x)=

[n/2]∑

i=0
(−1)i Γ(n− i+ λ)

Γ(λ)Γ(i+1)Γ(n− 2i+1)
(2x)n−2i. (3.23)
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All its zeros are real and belong to the interval (−1,1). We also have

P(λ)
n (1)=

(
n+2λ− 1

n

)
= (−1)nP(λ)

n (−1). (3.24)

[4, page 81].
For the proof we will use the following identity [4, page 384]:

n∑

k=0

P(λ)
k (t)

P(λ)
k (1)

(
n

k

)
xn−k = (1+2tx+ x2

)n/2P(λ)
n
[(
1+2tx+ x2

)−1/2
(t+ x)

]

P(λ)
n (1)

. (3.25)

Taking t ∈ (−1,1) we can see that all the zeros {xi} of the polynomial on the right-hand
side of (3.25) are real and given by

xi = ti

√
1− t2

1− t2i
− t, (3.26)

where {ti} are corresponding zeros of P(λ)
n (t).

Hence, by (3.24) and Theorem 2.9, we obtain the assertion of Proposition 2.10. �
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