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Motivated by the problem of R. Ger, we show that the generalized Goła̧b-Schinzel equa-
tion is superstable in the class of functions hemicontinuous at the origin. As a conse-
quence, we obtain the form of approximate solutions of that equation.
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1. Introduction

The Goła̧b-Schinzel equation

f
(
x+ f (x)y

)= f (x) f (y) (1.1)

and its generalized version

f
(
x+ f (x)k y

)= λ f (x) f (y) (1.2)

play a significant role in the theory of functional equations. Some information on the
applications of (1.1) and (1.2) in the determination of substructures of algebraical struc-
tures, in the theory of geometric objects and classification of near-rings and quasialge-
bras, can be found, for example, in [1–5] and in the recent survey paper [6].

At the 38th International Symposium on Functional Equations (2000, Noszvaj, Hun-
gary), R. Ger raised, among others, the problem of Hyers-Ulam stability for the Goła̧b-
Schinzel-type functional equations (see [6, page 21] and [12]). In the case of (1.1), this
problem has been studied in [7, 8, 10]. Recently, in [9] it has been proved that (1.2) is
superstable in the class of continuous functions f :R→R. In the present paper, we deal
with the stability problem for (1.2) in the case where f is defined on a linear space over
the field K of real or complex numbers and takes its values in K .

Throughout the paper, N, Z, and R stand for the sets of all positive integers, integers,
and real numbers, respectively.
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2 Approximate solutions of the Goła̧b-Schinzel equation

2. Results

From now on we assume that K is a field of real or complex numbers, X is a vector
space over K and k ∈ N, λ ∈ K \ {0} and ε ≥ 0 are fixed. We begin with some remarks
concerning bounded solutions of the inequality

∣
∣ f
(
x+ f (x)k y

)− λ f (x) f (y)
∣
∣≤ ε for x, y ∈ X. (2.1)

Remark 2.1. A straightforward calculation shows that every function f : X → K such that
| f (x)| ≤min{1/|λ|,ε/2} for x ∈ X satisfies (2.1).

Remark 2.2. If f : X → K is an unbounded function satisfying (2.1), then f (0) = 1/λ.
Otherwise, setting in (2.1) y = 0, we would have

∣
∣ f (x)

∣
∣≤ ε

∣
∣1− λ f (0)

∣
∣ for x ∈ X. (2.2)

Remark 2.3. If f : X → K is a bounded function satisfying (2.1), then

∣
∣ f (x)

∣
∣≤ 1+

√
1+4|λ|ε
2|λ| for x ∈ X. (2.3)

In fact, suppose that f : X → K is a bounded function satisfying (2.1) and

M := sup
{∣∣ f (x)

∣
∣ : x ∈R

}
>
1+
√
1+4|λ|ε
2|λ| . (2.4)

Then

|λ|M2−M− ε > 0. (2.5)

Therefore, taking a sequence (xn : n∈N) of elements of X such that limn→∞ | f (xn)| =M,
we obtain

λ2 f
(
xn
)2

> λ2M2−|λ|ε > |λ|M (2.6)

for sufficiently large n∈N. Since

λ f
(
xn + f

(
xn
)k
xn
)
≤ |λ|M for n∈N, (2.7)

this yields that

∣
∣
∣λ f

(
xn + f

(
xn
)k
xn
)
− λ2 f

(
xn
)2∣∣
∣≥ λ2 f

(
xn
)2−|λ|M (2.8)

for sufficiently large n∈N. Furthermore, by (2.5),

lim
n→∞

(
λ2 f

(
xn
)2−|λ|M

)
= λ2M2−|λ|M > |λ|ε. (2.9)
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Consequently,
∣
∣
∣λ f

(
xn + f

(
xn
)k
xn
)
− λ2 f

(
xn
)2∣∣
∣ > |λ|ε (2.10)

for sufficiently large n∈N, which contradicts (2.1).

To formulate the main result of the paper, we need the following definition (cf. [13,
page 427]).

Definition 2.4. A function f : X → K is hemicontinuous at the origin provided, for every
x ∈ X , the function fx : K → K , given by

fx(t)= f (tx) for t ∈ K , (2.11)

is continuous at 0.

Theorem 2.5. If f : X → K is a hemicontinuous at the origin function satisfying (2.1), then
either (2.3) holds, or

f
(
x+ f (x)k y

)= λ f (x) f (y) for x, y ∈ X. (2.12)

Proof. Assume that a function f : X → K is hemicontinuous at the origin and satisfies
(2.1). In view of Remark 2.3, it is enough to consider the case, where f is unbounded.
Then, according to Remark 2.2, f (0) = 1/λ. Thus, setting in (2.1) x = 0 and replacing y
by λk y, we obtain

∣
∣ f
(
λk y

)− f (y)
∣
∣≤ ε for y ∈ X. (2.13)

Further, inserting in (2.1) (y− x)/ f (x)k in place of y, we get
∣
∣
∣
∣ f (y)− λ f (x) f

(
y− x

f (x)k

)∣∣
∣
∣≤ ε for x ∈ X \ f −1{0}, y ∈ X. (2.14)

Take a sequence (xn : n∈N) of elements of X \ f −1({0}) such that

lim
n→∞

∣
∣ f
(
xn
)∣∣=∞. (2.15)

For x, y ∈ X and n∈N, define

cn(x, y) := λkxn + λk f
(
xn
)k
x+ f

(
λk
(
xn + f

(
xn
)k
x
))k

y,

dn(x, y) := λk
(
xn + f

(
xn
)k
x+ f

(
xn
)k
f (x)k y

)
.

(2.16)

Then, for every x, y ∈ X and n∈N, we have

f
(
dn(x, y)

)− λ f
(
xn
)
f
(
x+ f (x)k y

)

= f
(
λk
(
xn + f

(
xn
)k
x+ f

(
xn
)k
f (x)k y

))
− f

(
xn + f

(
xn
)k
x+ f

(
xn
)k
f (x)k y

)

+ f
(
xn + f

(
xn
)k(

x+ f (x)k y
))
− λ f

(
xn
)
f
(
x+ f (x)k y

)
.

(2.17)
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Note that in view of (2.1) and (2.13), for every x, y ∈ X , the right-hand side of the last
equality is bounded. Thus

lim
n→∞

f
(
dn(x, y)

)

λ f
(
xn
) = f

(
x+ f (x)k y

)
for x, y ∈ X. (2.18)

Next, by (2.1) and (2.13), we get

λ f (x)= lim
n→∞

f
(
xn + f

(
xn
)k
x
)

f
(
xn
) = lim

n→∞
f
(
λk
(
xn + f

(
xn
)k
x
))

f
(
xn
) for x ∈ X. (2.19)

Hence

lim
n→∞

∣
∣
∣ f
(
λk
(
xn + f

(
xn
)k
x
))∣∣
∣=∞ for x ∈ X \ f −1({0}). (2.20)

Since, in view of (2.1), for every x, y ∈ X and n∈N, we have

∣
∣
∣ f
(
cn(x, y)

)− λ f
(
λk
(
xn + f

(
xn
)k
x
))

f (y)
∣
∣
∣

=
∣
∣
∣ f
(
λk
(
xn+ f

(
xn
)k
x
)
+ f
(
λk
(
Xn+ f

(
xn
)k
x
))k

y
)
−λ f

(
λk
(
xn+ f

(
xn
)k
x
))

f (y)
∣
∣
∣≤ ε,
(2.21)

this yields that

λ f (y)= lim
n→∞

f
(
cn(x, y)

)

f
(
λk
(
xn + f

(
xn
)k
x
)) for x ∈ X \ f −1({0}), y ∈ X. (2.22)

Thus, taking into account (2.19), we get

lim
n→∞

f
(
cn(x, y)

)

f
(
xn
) = λ2 f (x) f (y) for x ∈ X \ f −1({0}), y ∈ X. (2.23)

Hence, for every x, y ∈ X \ f −1({0}), we have

cn(x, y)∈ X \ f −1({0}), (2.24)

so, in view of (2.14),

lim
n→∞

f
(
dn(x, y)

)− λ f
(
cn(x, y)

)
f
((
dn(x, y)− cn(x, y)

)/
f
(
cn(x, y)

)k)

λ f
(
xn
) = 0. (2.25)

Therefore, taking into account (2.18) and (2.23), for every x, y ∈ X \ f −1({0}), we obtain

f
(
x+ f (x)k y

)= λ2 f (x) f (y) lim
n→∞ f

(
dn(x, y)− cn(x, y)

f
(
cn(x, y)

)k

)

. (2.26)
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Moreover, for every x, y ∈ X \ f −1({0}), we have

dn(x, y)− cn(x, y)

f
(
cn(x, y)

)k =
λk f (xn)k f (x)k − f

(
λk
(
xn + f

(
xn
)k
x
))k

f
(
cn(x, y)

)k y (2.27)

and, by (2.19) and (2.23),

lim
n→∞

λk f
(
xn
)k
f (x)k − f

(
λk
(
xn + f

(
xn
)k
x
))k

f
((
cnx, y

))k

= lim
n→∞

(
f
(
xn
)

f
(
cn(x, y)

)
)k
⎛

⎜
⎜
⎝λ

k f (x)k −
⎛

⎜
⎝
f
(
λk
(
xn + f

(
xn
)k
x
))

f
(
xn
)

⎞

⎟
⎠

k
⎞

⎟
⎟
⎠= 0.

(2.28)

Thus, as f is hemicontinuous at the origin, we get

lim
n→∞ f

(
dn(x, y)− cn(x, y)

f
(
cn(x, y)

)k

)

= fy(0)= f (0)= 1
λ
. (2.29)

Hence, in view of (2.26), we obtain

f
(
x+ f (x)k y

)= λ f (x) f (y) for x, y ∈ X \ f −1({0}). (2.30)

Next, taking in (2.30) x = 0 and replacing y by λk y, we get

f
(
λk y

)= f (y) for y ∈ X \ f −1({0}). (2.31)

Since, by (2.19), for every x ∈ X \ f −1({0}) and n∈N,

xn + f
(
xn
)k
x ∈ X \ f −1({0}), (2.32)

making use of (2.30) and (2.31), we conclude that

f
(
λk
(
xn + f

(
xn
)k
x
))
= f

(
xn + f

(
xn
)k
x
)
= λ f

(
xn
)
f (x). (2.33)

Thus

cn(x, y)= dn(x, y) for x ∈ X \ f −1({0}), y ∈ X , n∈N, (2.34)

whence taking into account (2.18) and (2.23), we get

f
(
x+ f (x)k y

)= λ f (x) f (y) for x ∈ X \ f −1({0}), y ∈ X. (2.35)

As for x ∈ f −1({0}), (2.12) trivially holds, this completes the proof. �

Remark 2.6. FromTheorem 2.5, it follows that (1.2) is superstable in the class of functions
f : X → K hemicontinuous at the origin. For more information concerning superstability
we refer to [11, Chapter 4] and [14, Chapter 5].



6 Approximate solutions of the Goła̧b-Schinzel equation

Remark 2.7. Theorem 2.5 remains true, if instead of the hemicontinuity at the origin,
we assume that for every x ∈ X \ f −1({0}), there exists a limit (not necessarily finite)
l(x) := limt→0 f (tx). In such a case from (2.26) we derive that

f
(
x+ f (x)k y

)= λ2 f (x) f (y)l(y) for x, y ∈ X \ f −1({0}). (2.36)

Thus, in view of (2.19), we obtain

l(y)= 1
λ2 f (y)

lim
n→∞

f
(
xn + f

(
xn
)k
y
)

f
(
xn
) = 1

λ
for y ∈ X \ f −1({0}). (2.37)

Consequently, (2.36) becomes (2.30) and, arguing as previously, we get the assertion.

Now, applying Theorem 2.5, we obtain the following results, which generalize to some
extend [9, Propositions 1–3].

Proposition 2.8. If |λk| �= 1, then every hemicontinuous at the origin function f : X → K
satisfying (2.1) is bounded.

Proof. Suppose that |λk| �= 1 and f : X → K is an unbounded function hemicontinuous
at the origin and satisfies (2.1). Then, according to Theorem 2.5, (2.12) is valid. Thus,
taking in (2.12) x = 0 and using Remark 2.2, we get f (λ−k y) = f (y) for y ∈ X , whence
by induction

f
(
λnk y

)= f (y) for y ∈ X , n∈ Z. (2.38)

As f is hemicontinuous at the origin, letting in the last equality n→∞, whenever |λk| < 1;
and n→−∞ otherwise, we obtain

f (y)= fy(0)= f (0)= 1
λ

for y ∈ X. (2.39)

Hence f is constant, which yields a contradiction and completes the proof. �

Proposition 2.9. Assume that λ = 1 and f : X → K is an unbounded function hemicon-
tinuous at the origin. Then f satisfies (2.1) if and only if f (X)⊂R or k = 1, and

(i) if f (X)⊂R, then there exists a nontrivial R-linear functional L : X →R such that
(1◦) in the case where k is an odd number,

f (x)= (L(x) + 1
)1/k

for x ∈ X (2.40)

or

f (x)= (max
{
L(x) + 1,0

})1/k
for x ∈ X ; (2.41)

(2◦) in the case where k is even, f is of the form (2.41);
(ii) if f (X) \R �= ∅ and k = 1, then there exists a nontrivial C-linear functional L : X →

C such that

f (x)= L(x) + 1 for x ∈ X. (2.42)
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Proof. It is easy to check that each of conditions (i) and (ii) implies (2.1). So, assume that
f satisfies (2.1). Then, by Theorem 2.5,

f
(
x+ f (x)k y

)= f (x) f (y) for x, y ∈ X. (2.43)

Further, in view of Remark 2.2, f (0) = 1. Since f is hemicontinuous at the origin, this
means that the origin is an algebraically interior point of the set X \ f −1({0}) (see [4,
Definition 1]). Thus, applying [4, Theorem 3], we get the assertion. �

Proposition 2.10. Assume that λ=−1.
(i) If k is an odd number, then every hemicontinuous at the origin function f : X → K

satisfying (2.1) is bounded.
(ii) If k is even, then an unbounded and hemicontinuous at the origin function f : X → K

satisfies (2.1) if and only if there exists a nontrivial R-linear functional L : X → R
such that

f (x)=−(max
{
L(x) + 1,0

})1/k
for x ∈ X. (2.44)

Proof. Suppose that f : X → K is an unbounded and hemicontinuous at the origin func-
tion satisfying (2.1). Then, applying Theorem 2.5 and Remark 2.2, we get

f
(
x+ f (x)k y

)=− f (x) f (y) for x, y ∈ X (2.45)

and f (0)=−1, respectively. Therefore, if k is an odd number, then making use of (2.45)
with x = 0, we obtain that f is an even function. Hence, replacing in (2.45) y by −y, we
conclude that a function f :=− f satisfies (2.43). So, arguing as in the proof of Proposition
2.9, we obtain that one of the conditions (i) and (ii) of Proposition 2.9 is valid for f . As
f is even, this gives a contradiction.

Now, assume that k is an even number. Then from (2.45) we deduce again that f :=
− f satisfies (2.43) (however, contrary to the previous case, f need not be even). Thus,
repeating the arguments from the proof of Proposition 2.9, we obtain that there exists a
nontrivial R-linear functional L : X →R such that

f (x)= (max
{
L(x) + 1,0

})1/k
for x ∈ X. (2.46)

This implies (2.44). Since the converse is easy to check, the proof is completed. �
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