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We consider two quasistatic frictionless contact problems for viscoelastic bodies with long
memory. In the first problem the contact is modelled with Signorini’s conditions and
in the second one is modelled with normal compliance. In both problems the adhesion
of the contact surfaces is taken into account and is modelled with a surface variable,
the bonding field. We provide variational formulations for the mechanical problems and
prove the existence of a unique weak solution to each model. The proofs are based on
arguments of time-dependent variational inequalities, differential equations, and a fixed
point theorem.Moreover, we prove that the solution of the Signorini contact problem can
be obtained as the limit of the solutions of the contact problem with normal compliance
as the stiffness coefficient of the foundation converges to infinity.
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tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The adhesive contact between deformable bodies, when a glue is added to prevent rela-
tive motion of the surfaces, has received recently increased attention in the mathematical
literature. Basic modelling can be found in [7–9, 12, 17]. Analysis of models for adhesive
contact can be found in [1–6, 10] and in the recent monographs [15, 16]. An application
of the theory of adhesive contact in the medical field of prosthetic limbs was considered
in [13, 14]; there, the importance of the bonding between the bone-implant and the tis-
sue was outlined, since debonding may lead to decrease in the persons ability to use the
artificial limb or joint.

The novelty in all the above papers is the introduction of a surface internal variable, the
bonding field, denoted in this paper by β; it describes the pointwise fractional density of
active bonds on the contact surface, and sometimes referred to as the intensity of adhesion.
Following [7, 8], the bonding field satisfies the restrictions 0 ≤ β ≤ 1; when β = 1 at a
point of the contact surface, the adhesion is complete and all the bonds are active; when
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β = 0 all the bonds are inactive, severed, and there is no adhesion; when 0 < β < 1 the
adhesion is partial and only a fraction β of the bonds is active. We refer the reader to the
extensive bibliography on the subject in [9, 12, 13, 15, 16].

The aim of this paper is to continue the study of adhesive problems begun in [3, 4, 6].
There, models for dynamic or quasistatic process of frictionless adhesive contact between
a deformable body and a foundation have been analyzed and simulated; the contact was
described with normal compliance or was assumed to be bilateral, and the behavior of
the material was modelled with a nonlinear Kelvin-Voigt viscoelastic constitutive law;
the models included the bonding field as an additional dependent variable, defined and
evolving on the contact surface; the existence of a unique weak solution to the models
has been obtained by using arguments of evolutionary equations in Banach spaces and a
fixed point theorem.

In this paper we study two quasistatic problems of frictionless adhesive contact. The
novelty with respect to the papers referred to in the previous paragraph consists in the
fact that here we model the material’s behavior with a viscoelastic constitutive law with
long memory and the contact with Signorini’s conditions or with normal compliance.
We derive a variational formulation of the problems and prove the existence of a unique
weak solution to each one. To this end, we use similar arguments as in [3, 4, 6] but with
a different choice of functionals and operators, since the constitutive law and the contact
boundary conditions, here and in the above-mentioned papers, are different. Moreover,
we study the behavior of the solutions of the problem with normal compliance as the
stiffness coefficient of the foundation tends to infinity.

The paper is structured as follows. In Section 2, we present some notation and prelim-
inary material. In Section 3, we state the mechanical models of viscoelastic frictionless
contact with adhesion, list the assumptions on the data, and derive their variational for-
mulation. In Sections 4 and 5, we present our main existence and uniqueness results,
Theorems 4.1 and 5.1, which state the unique weak solvability of the adhesive frictionless
contact problem with Signorini and normal compliance conditions, respectively. Finally,
in Section 6 we prove a convergence result, Theorem 6.1; it states that the solution of the
adhesive contact problem with normal compliance converges to the solution of the adhe-
sive Signorini contact problem as the stiffness coefficient of the foundation converges to
infinity.

2. Notations and preliminaries

Everywhere in this paper we denote by Sd the space of second-order symmetric tensors on
Rd (d = 1,2,3), while “·” and ‖ · ‖ represent the inner product and the Euclidean norm
on Rd and Sd, respectively. Thus, for every u,v ∈Rd and σ ,τ ∈ Sd we have

u · v = uivi, ‖v‖ = (v · v)1/2, σ · τ = σi jτi j , ‖τ‖ = (τ · τ)1/2. (2.1)

Here and below, the indices i, j, k, l run between 1 and d and the summation convention
over repeated indices is adopted.

Let Ω ⊂ Rd be a bounded domain with a Lipschitz continuous boundary Γ. In what
follows we use the standard notation for the Lp and Sobolev spaces associated toΩ and Γ,



M. Selmani and M. Sofonea 3

and the index that follows a comma indicates a derivative with respect to the correspond-
ing component of the spatial variable x ∈Ω.We also use the spaces

H1 =H1(Ω)d = {u= (ui
)
: ui ∈H1(Ω)

}
,

Q = {σ = (σi j
)
: σi j = σji ∈ L2(Ω)

}
,

Q1 =
{
σ ∈Q : σi j, j ∈ L2(Ω)

}
.

(2.2)

These are real Hilbert spaces endowed with the inner products given by

(u,v)H1 =
∫

Ω
u · vdx+

∫

Ω
ε(u) · ε(v)dx,

(σ ,τ)Q =
∫

Ω
σ · τ dx,

(σ ,τ)Q1 =
∫

Ω
σ · τ dx+

∫

Ω
Divσ ·Divτ dx,

(2.3)

respectively, where ε :H1(Ω)d → Q and Div : Q1 → L2(Ω)d are the deformation and the
divergence operators defined by

ε(u)= (εi j(u)
)
, εi j(u)= 1

2

(
ui, j +uj,i

)
, Divσ = (σi j, j

)
. (2.4)

The associated norms on the spaces H1, Q, and Q1 are denoted by ‖ · ‖H1 , ‖ · ‖Q, and
‖ · ‖Q1 , respectively.

Since the boundary Γ is Lipschitz continuous, the unit outward normal vector ν on
the boundary is defined almost everywhere. For every vector field v ∈ H1 we use the
notation v for the trace of v on Γ and we denote by vν and vτ the normal and the tangential
components of v on the boundary, given by

vν = v · ν, vτ = v− vνν. (2.5)

For a regular (say C1) stress field σ , the application of its trace on the boundary to ν is the
Cauchy stress vector σν. We define, similarly, the normal and tangential components of
the stress on the boundary by the formulas

σν = (σν) · ν, στ = σν− σνν, (2.6)

and we recall that the following Green’s formula holds:

∫

Ω
σ · ε(v)dx+

∫

Ω
Divσ · vdx =

∫

Γ
σν · vda ∀v ∈H1. (2.7)

For every real Banach space (X ,‖ · ‖X) and T > 0 we use the classical notation for the
spaces Lp(0,T ;X) and Wk,p(0,T ;X) where 1 ≤ p ≤ +∞, k = 1,2, . . . , and we denote by
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C([0,T];X) the space of continuous functions on [0,T] with values on X , with the norm

‖x‖C([0,T];X) = max
t∈[0,T]

∥
∥x(t)

∥
∥
X . (2.8)

Moreover, we use the dot above to indicate the derivative with respect to the time variable
and, for a real number r, we use r+ to represent its positive part, that is, r+ =max{0,r}.

3. Problems statement

We consider a viscoelastic body which occupies the domain Ω ⊂ Rd, and assume that
its boundary Γ is divided into three disjoint measurable parts Γ1, Γ2, and Γ3 such that
measΓ1 > 0. Let T > 0 and let [0,T] denote the time interval of interest. The body is
clamped on Γ1 × (0,T) and, therefore, the displacement field vanishes there. A volume
force of density f0 acts in Ω× (0,T) and surface tractions of density f2 act on Γ2× (0,T).
The body is in an adhesive frictionless contact with an obstacle, the so-called founda-
tion, over the potential contact surface Γ3. Moreover, the process is quasistatic, that is,
the inertial terms are neglected in the equation of motion. We use a linearly viscoelas-
tic constitutive law with long memory to model the material’s behavior and an ordinary
differential equation to describe the evolution of the bonding field.

For the first problem, we consider here the contact is modelled with Signorini’s con-
ditions with adhesion. Thus, the classical model for the process is the following.

Problem 3.1. Find a displacement field u :Ω× [0,T]→Rd, a stress field σ :Ω× [0,T]→
Sd, and a bonding field β : Γ3× [0,T]→ [0,1] such that, for all t ∈ [0,T],

σ(t)=�ε
(
u(t)

)
+
∫ t

0
�(t− s)ε

(
u(s)

)
ds in Ω, (3.1)

Divσ(t) + f0(t)= 0 in Ω, (3.2)

u(t)= 0 on Γ1, (3.3)

σ(t)ν = f2(t) on Γ2, (3.4)

uν(t)≤ 0, σν(t)− γνRν
(
uν(t)

)
β2(t)≤ 0,

(
σν(t)− γνRν

(
uν(t)

)
β2(t)

)
uν(t)= 0 on Γ3,

(3.5)

−στ(t)= pτ
(
β(t)

)
Rτ
(
uτ(t)

)
on Γ3, (3.6)

β̇(t)=−
(
β(t)

(
γνRν

(
uν(t)

)2
+ γτ

∥
∥Rτ

(
uτ(t)

)∥∥2
)
− εa

)

+
on Γ3, (3.7)

β(0)= β0 on Γ3. (3.8)

We now describe the equations and conditions involved in our model above.
First, (3.1) represent the viscoelastic constitutive law with memory, in which � and

� denote the elasticity and the relaxation fourth-order tensors, respectively. Equation
(3.2) is the equilibrium equation while (3.3) and (3.4) are the displacement and traction
boundary conditions, respectively.
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Conditions (3.5) represent the Signorini conditions with adhesion where γν is a given
adhesion coefficient and Rν is the truncation operator defined by

Rν(s)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L if s <−L,
−s if −L≤ s≤ 0,

0 if s > 0.

(3.9)

Here L > 0 is the characteristic length of the bond beyond which it does not offer any
additional traction. The introduction of the operator Rν, together with the operator Rτ

defined below, is motivated by the mathematical arguments but it is not restrictive for the
applied point of view, since no restriction on the size of the parameter L is made in what
follows. Thus, by choosing L very large, we can assume that Rν(uν)=−uν and, therefore,
from (3.5) we recover the contact conditions

uν ≤ 0, σν + γνuνβ
2 ≤ 0,

(
σν + γνuνβ

2)uν = 0 on Γ3× (0,T). (3.10)

These conditions were used in [5, 12] to model the unilateral adhesive contact. It follows
from (3.5) that there is no penetration between the body and the foundation, since uν ≤ 0
during the process. Also, note that when the bonding field vanishes, then the contact
conditions (3.5) become the classical Signorini contact conditions with zero gap function,
that is

uν ≤ 0, σν ≤ 0, σνuν = 0 on Γ3× (0,T). (3.11)

Condition (3.6) represents the adhesive contact condition on the tangential plane in
which pτ is a given function and Rτ is the truncation operator given by

Rτ(v)=
⎧
⎪⎨

⎪⎩

v if ‖v‖ ≤ L,

L
v
‖v‖ if ‖v‖ > L.

(3.12)

This condition shows that the shear on the contact surface depends on the bonding field
and on the tangential displacement, but as long as it does not exceed the bond length L.
The frictional tangential traction is assumed to be much smaller than the adhesive one
and, therefore, omitted.

Next, (3.7) represents the ordinary differential equation which describes the evolution
of the bonding field and it was already used in [3, 5], see also [15, 16] for more details.
Here, besides γν, two new adhesion coefficients are involved, γτ and εa, and Rν(s)2 is
a short notation for (Rν(s))2, that is, Rν(s)2 = (Rν(s))2. Notice that in this model once
debonding occurs, bonding cannot be reestablished since, as it follows from (3.7), β̇ ≤ 0.

Finally, (3.8) represents the initial condition in which β0 is the given initial bonding
field.

For the second problem, we study in this paper that the contact is modelled with nor-
mal compliance and adhesion, and therefore the classical model for the process is the
following.
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Problem 3.2. Find a displacement field u :Ω× [0,T]→Rd, a stress field σ :Ω× [0,T]→
Sd, and a bonding field β : Γ3× [0,T]→ [0,1] such that, for all t ∈ [0,T],

σ(t)=�ε
(
u(t)

)
+
∫ t

0
�(t− s)ε

(
u(s)

)
ds in Ω, (3.13)

Divσ(t) + f0(t)= 0 in Ω, (3.14)

u(t)= 0 on Γ1, (3.15)

σν(t)= f2(t) on Γ2, (3.16)

−σν(t)= pν
(
uν(t)

)− γνβ
2Rν
(
uν(t)

)
on Γ3, (3.17)

−στ(t)= pτ
(
β(t)

)
Rτ
(
uτ(t)

)
on Γ3, (3.18)

β̇(t)=−
(
β(t)

(
γνRν

(
uν(t)

)2
+ γτ

∥
∥Rτ

(
uτ(t)

)∥∥2
)
− εa

)

+
on Γ3, (3.19)

β(0)= β0 on Γ3. (3.20)

Note that the equations and conditions involved in Problem 3.2 have the same mean-
ing as those involved in Problem 3.1. The difference arises from the fact that here we
replace Signorini’s contact conditions with adhesion, (3.5), with the normal compliance
contact condition with adhesion, (3.17), where pν is a given positive function which will
be described below. In this condition the interpenetrability between the body and the
foundation is allowed, that is, uν can be positive on Γ3. The contribution of the adhesive
traction to the normal one is represented by the term γνβ2Rν(uν); the adhesive traction
is tensile and is proportional, with proportionality coefficient γν, to the square of the in-
tensity of adhesion and to the normal displacement, but as long as it does not exceed the
bond length L. Themaximal tensile traction is γνL. The contact condition (3.17) was used
in various papers; see, for example, [3, 4, 15, 16] and the references therein.

We turn to the variational formulation of the mechanical Problems 3.1 and 3.2. To this
end, for the displacement field we need the closed subspace of H1 defined by

V = {v ∈H1 | v = 0 on Γ1
}
. (3.21)

Since measΓ1 > 0, Korn’s inequality holds; thus, there exists a constant cK > 0, that de-
pends only on Ω and Γ1, such that

∥
∥ε(v)

∥
∥

� ≥ cK‖v‖H1 ∀v ∈V. (3.22)

A proof of Korn’s inequality may be found in [11, page 79]. On V we consider the inner
product and the associated norm given by

(u,v)V =
(
ε(u),ε(v)

)
Q, ‖v‖V =

∥
∥ε(v)

∥
∥
Q ∀u,v ∈V. (3.23)

It follows from Korn’s inequality that ‖ · ‖H1 and ‖ · ‖V are equivalent norms on V and
therefore (V ,‖ · ‖V ) is a real Hilbert space. Moreover, by the Sobolev trace theorem there
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exists a constant c0, depending only on Ω, Γ1, and Γ3, such that

‖v‖L2(Γ3)d ≤ c0‖v‖V ∀v ∈V. (3.24)

For the bonding field we will use the set

� = {θ : [0,T]−→ L2
(
Γ3
)
: 0≤ θ(t)≤ 1∀t ∈ [0,T], a.e. on Γ3

}
. (3.25)

Finally, we consider the space of fourth-order tensor fields:

Q∞ =
{
�= (�i jkl

)
: �i jkl =� jikl =�kli j ∈ L∞(Ω), 1≤ i, j,k, l ≤ d

}
, (3.26)

which is a real Banach space with the norm

‖�‖Q∞ = max
0≤i, j,k,l≤d

∥
∥�i jkl

∥
∥
L∞(Ω). (3.27)

We assume that the elasticity tensor � and the relaxation tensor � satisfy

�∈Q∞, (3.28a)

∃α > 0 such that �ξ · ξ ≥ α‖ξ‖2 ∀ξ ∈ Sd, a.e. x ∈Ω,

�∈ C
(
[0,T];Q∞

)
.

(3.28b)

The normal compliance function pν and the tangential function pτ satisfy the assump-
tions

pν : Γ3×R−→R+, (3.29a)

∃Lν > 0 such that
∣
∣pν

(
x,r1

)− pν
(
x,r2

)∣∣≤ Lν

∣
∣r1− r2

∣
∣∀r1,r2 ∈R, a.e. x ∈ Γ3,

(3.29b)
(
pν
(
x,r1

)− pν
(
x,r2

))(
r1− r2

)≥ 0 ∀r1,r2 ∈R, a.e. x ∈ Γ3, (3.29c)

the mapping x �−→ pν(x,r) is measurable on Γ3, for any r ∈R, (3.29d)

pν(x,r)= 0 ∀r ≤ 0, a.e. x ∈ Γ3, (3.29e)

pτ : Γ3×R−→R+, (3.30a)

∃Lτ > 0 such that
∣
∣pτ

(
x,β1

)− pτ
(
x,β2

)∣∣≤ Lτ
∣
∣β1−β2

∣
∣∀β1,β2 ∈R, a.e. x ∈ Γ3,

(3.30b)

∃Mτ > 0 such that
∣
∣pτ(x,β)

∣
∣≤Mτ ∀β ∈R, a.e. x ∈ Γ3, (3.30c)

the mapping x �−→ pτ(x,β) is measurable on Γ3, for any β ∈R, (3.30d)

the mapping x �−→ pτ(x,0) belongs to L2
(
Γ3
)
. (3.30e)
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We also suppose that the body forces and surface tractions have the regularity

f0 ∈ C
(
[0,T];L2(Ω)d

)
, f2 ∈ C

(
[0,T];L2

(
Γ2
)d)

. (3.31)

The adhesion coefficients satisfy

γν,γτ ∈ L∞
(
Γ3
)
, εa ∈ L2

(
Γ3
)
, γν,γτ ,εa ≥ 0, a.e. on Γ3 (3.32)

and, finally, the initial bonding field satisfies

β0 ∈ L2
(
Γ3
)
, 0≤ β0 ≤ 1, a.e. on Γ3. (3.33)

Next, we denote by f : [0,T]→V the function defined by

(
f(t),v

)
V =

∫

Ω
f0(t) · vdx+

∫

Γ2
f2(t) · vda ∀v ∈V , a.e. t ∈ (0,T), (3.34)

and we note that conditions (3.31) imply

f ∈ C
(
[0,T];V

)
. (3.35)

For the Signorini problem we use the convex subset of admissible displacements given
by

U = {v ∈V : vν ≤ 0 on Γ3
}

(3.36)

as well as the adhesion functional jad : L∞(Γ3)×V ×V →R defined by

jad(β,u,v)=
∫

Γ3

(− γνβ
2Rν
(
uν
)
vν + pτ(β)Rτ

(
uτ
) · vτ

)
da. (3.37)

For the problemwith normal compliance, in addition to the functional (3.37), we need
the normal compliance functional jnc :V ×V →R given by

jnc(u,v)=
∫

Γ3
pν
(
uν
)
vνda. (3.38)

By a standard procedure based on Green’s formula (2.7) we can derive the following
variational formulation of the Signorini contact problem (3.1)–(3.8).
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Problem 3.3. Find a displacement field u : [0,T]→ V and a bonding field β : [0,T]→
L∞(Γ3) such that

u(t)∈U ,
(
�ε
(
u(t)

)
, ε
(
v−u(t)

))
Q +

(∫ t

0
�(t− s)ε

(
u(s)

)
ds, ε

(
v−u(t)

)
)

Q

+ jad
(
β(t),u(t),v−u(t)

)≥ (f(t),v−u(t)
)
V ∀v ∈U , t ∈ [0,T],

(3.39)

β̇(t)=−
(
β(t)

(
γνRν

(
uν(t)

)2
+ γτ

∥
∥Rτ

(
uτ(t)

)∥∥2
)
− εa

)

+
on Γ3, a.e. t ∈ (0,T),

(3.40)

β(0)= β0. (3.41)

The variational formulation of the problem with normal compliance (3.13)–(3.20) is
as follows.

Problem 3.4. Find a displacement field u : [0,T]→V and a bonding field β : [0,T]→
L∞(Γ3) such that

(
�ε
(
u(t)

)
, ε(v)

)
Q +

(∫ t

0
�(t− s)ε

(
u(s)

)
ds,ε(v)

)

Q
+ jad

(
β(t),u(t),v

)

+ jnc
(
u(t),v)= (f(t),v)V ∀v ∈V , t ∈ [0,T],

(3.42)

β̇(t)=−
(
β(t)

(
γνRν

(
uν(t)

)2
+ γτ

∥
∥Rτ

(
uτ(t)

)∥∥2
)
− εa

)

+
on Γ3, a.e. t ∈ (0,T), (3.43)

β(0)= β0. (3.44)

Note that the variational Problems 3.3 and 3.4 are formulated in terms of displacement
and bonding fields, since the stress field was eliminated. However, if the solution (u,β) of
these variational problems is known, then the corresponding stress field σ can be easily
obtained by using the linear viscoelastic constitutive law (3.1) or (3.13).

Remark 3.5. We also note that, unlike in Problems 3.1 and 3.2, in the variational Problems
3.3 and 3.4 we do not need to impose explicitly the restriction 0 ≤ β ≤ 1. Indeed, (3.40)
and (3.43) guarantee that β(x, t) ≤ β0(x) and, therefore, assumption (3.33) shows that
β(x, t)≤ 1 for t ≥ 0, a.e. x ∈ Γ3. On the other hand, if β(x, t0)= 0 at time t0, then it follows
from (3.40) and (3.43) that β̇(x, t)= 0 for all t ≥ t0 and, therefore, β(x, t)= 0 for all t ≥ t0,
a.e. x ∈ Γ3. We conclude that 0≤ β(x, t)≤ 1 for all t ∈ [0,T], a.e. x ∈ Γ3.

The well-posedness of Problems 3.3 and 3.4 will be provided in Sections 4 and 5, re-
spectively. In the proofs we use a number of inequalities involving the functionals jad and
jnc that we present in what follows. Below in this section β, β1, β2 denote elements of
L2(Γ3) such that 0 ≤ β, β1, β2 ≤ 1 a.e. on Γ3, u1, u2, and v represent elements of V and
c > 0 represent generic constants which may depend on Ω, Γ1, Γ3, pν, pτ , γν, γτ , and L.
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First, we notice that jad and jnc are linear with respect to the last argument and there-
fore

jad
(
β,u,−v)=− jad(β,u,v), jnc(u,−v)=− jnc(u,v). (3.45)

Next, using (3.37), the properties of the truncation operators Rν and Rτ as well as
assumption (3.30) on the function pτ , after some calculus we find

jad
(
β1,u1,u2−u1

)
+ jad

(
β2,u2,u1−u2

)≤ c
∫

Γ3

∣
∣β1−β2

∣
∣
∥
∥u1−u2

∥
∥da (3.46)

and, by (3.24), we obtain

jad
(
β1,u1,u2−u1

)
+ jad

(
β2,u2,u1−u2

)≤ c
∥
∥β1−β2

∥
∥
L2(Γ3)

∥
∥u1−u2

∥
∥
V . (3.47)

Similar computations, based on the Lipschitz continuity of Rν, Rτ , and pτ , show that the
following inequality also holds:

∣
∣ jad

(
β,u1,v

)− jad
(
β,u2,v

)∣∣≤ c
∥
∥u1−u2

∥
∥
V‖v‖V . (3.48)

We now take β1 = β2 = β in (3.47) to deduce

jad
(
β,u1,u2−u1

)
+ jad

(
β,u2,u1−u2

)≤ 0. (3.49)

Also, we take u1 = v and u2 = 0 in (3.49), then we use the equalities Rν(0)= 0, Rτ(0)= 0,
and (3.45) to obtain

jad(β,v,v)≥ 0. (3.50)

Now, we use (3.38) and find

∣
∣ jnc

(
u1,v

)− jnc
(
u2,v

)∣∣≤
∫

Γ3

∣
∣pν

(
u1ν
)− pν

(
u2ν
)∣∣
∣
∣vν

∣
∣da (3.51)

and therefore (3.29b) and (3.24) imply

∣
∣ jnc

(
u1,v

)− jnc
(
u2,v

)∣∣≤ c
∥
∥u1−u2

∥
∥
V ‖v‖V . (3.52)

We use again (3.38) and get

jnc
(
u1,u2−u1

)
+ jnc

(
u2,u1−u2

)=
∫

Γ3

(
pν
(
u1ν
)− pν

(
u2ν
))(

u2ν−u1ν
)
da (3.53)

and therefore (3.29c) implies

jnc
(
u1,u2−u1

)
+ jnc

(
u2,u1−u2

)≤ 0. (3.54)
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Take u1 = v and u2 = 0 in the previous inequality and use (3.29e), (3.45) to obtain

jnc(v,v)≥ 0. (3.55)

The inequalities (3.47)–(3.55) combined with equalities (3.45) will be used in various
places in the rest of the paper.

4. Analysis of the Signorini contact problem

The main result in this section is the following existence and uniqueness result.

Theorem 4.1. Assume that (3.28a)–(3.28b) and (3.30)–(3.33) hold. Then Problem 3.3 has
a unique solution (u,β) which satisfies

u∈ C
(
[0,T];V

)
, (4.1)

β ∈W1,∞(0,T ;L2
(
Γ3
))∩�. (4.2)

A triple (u,σ ,β) which satisfies (3.1), (3.39)–(3.41) is called a weak solution of the Sig-
norini contact problem (Problem 3.1). We conclude that under the stated assumptions,
problem (3.1)–(3.8) has a unique weak solution. The regularity of the weak solution is
given by (4.1), (4.2) and, in terms of stress,

σ ∈ C
(
[0,T];Q1

)
. (4.3)

Indeed, it follows from (3.39) that Divσ(t) + f0(t)= 0 for all t ∈ [0,T] and, therefore, the
regularity (4.1) of u, combined with (3.28a), (3.28b), and the regularity of f2 in (3.31),
implies (4.3).

We turn now to the proof of Theorem 4.1 which will be carried out in several steps. To
this end, we assume in the following that (3.28a), (3.28b), and (3.30)–(3.33) hold; below,
c denotes a generic positive constant which may depend on Ω, Γ1, Γ3, �, �, γν, γτ , pτ , L,
and T but does not depend on t nor on the rest of the input data, and whose value may
change from place to place. Moreover, for the sake of simplicity, we suppress, in what
follows, the explicit dependence of various functions on x ∈Ω∪Γ3.

Let � denote the closed subset of the space C([0,T];L2(Γ3)) defined by

�= {β ∈ C
(
[0,T];L2

(
Γ3
))∩� : β(0)= β0

}
(4.4)

and let β ∈� be given. In the first step, we consider the following variational problem.

Problem 4.2. Find a displacement field uβ : [0,T]→V such that

uβ(t)∈U ,
(
�ε
(
uβ(t)

)
,ε
(
v−uβ(t)

))
Q +

(∫ t

0
�(t− s)ε

(
u(s)

)
ds,ε(v−u(t)

)
)

Q

+ jad
(
β(t),uβ(t),v−uβ(t)

)≥ (f(t),v−uβ(t)
)
V ∀v ∈U , t ∈[0,T].

(4.5)

We have the following result.
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Lemma 4.3. There exists a unique solution to Problem 4.2 and it satisfies uβ ∈ C([0,T];V).

Proof. For a given η ∈ C([0,T];Q) and t ∈ [0,T] we consider the operator Aβ(t) :V →V
and the element fη(t)∈V defined by

(
Aβ(t)u,v

)
V =

(
�ε(u),ε(v)

)
Q + jad

(
β(t),u,v

) ∀u,v ∈V ,

(
fη(t),v

)
V =

(
f (t),u

)
V −

(
η(t),ε(v)

)
Q ∀v ∈V.

(4.6)

We use (3.28), (3.49), and (3.48) to see that Aβ(t) is a strongly monotone Lipschitz con-
tinuous operator; therefore, since U is a nonempty closed convex subset of V , it follows
from standard results on elliptic variational inequalities that there exists a unique element
uβη(t) such that

uβη(t)∈U ,
(
Aβ(t)uβη(t),v−uβη(t)

)
V ≥

(
fη(t),v−uβη(t)

)
V ∀v ∈U (4.7)

and, using (4.6), we find that

uβη(t)∈U ,
(
�ε
(
uβη(t)

)
,ε
(
v−uβη(t)

))
Q +

(
η(t),ε

(
v−uβη(t)

))
Q

+ jad
(
β(t),u,v−uβη(t)

)≥ (f(t),v−uβη(t)
)
V ∀v ∈U.

(4.8)

Moreover, (3.28), (3.47), and (4.8), combined with the regularities f ∈ C([0,T];V), η ∈
C([0,T];Q), and β ∈ C([0,T];L2(Γ3)), imply that the mapping t �→ uβη is continuous
from [0,T] with values in V . We conclude that there exists a unique function uβη ∈
C([0,T];V) which solves (4.8) for all t ∈ [0,T].

We now define the operator Λβ : C([0,T];Q)→ C([0,T];Q) by

Λβη(t)=
∫ t

0
�(t− s)ε

(
uβη(s)

)
ds ∀η ∈ C

(
[0,T];Q

)
, t ∈ [0,T]. (4.9)

Let η1,η2 ∈ C([0,T];Q). A standard computation based on (3.28b) and (4.8) shows that

∥
∥Λβη1(t)−Λβη2(t)

∥
∥
Q ≤ c

∫ t

0

∥
∥η1(s)−η2(s)

∥
∥
Q ds ∀t ∈ [0,T], (4.10)

which implies that a powerΛm ofΛ is a contraction on the space C([0,T];Q). Thus, there
exists a unique element ηβ ∈ C([0,T];Q) such that

Λβηβ(t)= ηβ(t) ∀t ∈ [0,T]. (4.11)

Denote uβ = uβηβ . It follows from (4.8)–(4.11) that uβ is a solution of Problem 4.2,
which concludes the existence part in the lemma. The uniqueness part follows from the
uniqueness of the fixed point of the operator Λβ combined with the unique solvability of
the variational inequality (4.8) at any t ∈ [0,T]. �

In the second step, we use the displacement field uβ obtained in Lemma 4.3, denote by
uβν, uβτ its normal and tangential components on Γ3, and consider the following initial-
value problem.



M. Selmani and M. Sofonea 13

Problem 4.4. Find a bonding field θβ : [0,T]→ L2(Γ3) such that

θ̇β(t)=−
(
θβ(t)

(
γνRν

(
uβν(t)

)2
+ γτ

∥
∥Rτ

(
uβτ(t)

)∥∥2
)
− εa

)

+
a.e. t ∈ (0,T),

θβ(0)= β0.
(4.12)

We obtain the following result.

Lemma 4.5. There exists a unique solution to Problem 4.4 and it satisfies θβ ∈W1,∞(0,T ,
L2(Γ3))∩�.

Proof. Consider the mapping Fβ : [0,T]×L2(Γ3)→ L2(Γ3) defined by

Fβ(t,θ)=−
(
γνθ
(
Rν
(
uβν(t)

)2
+ γτ

∥
∥Rτ

(
uβτ(t)

)∥∥2
)
− εa

)

+
, (4.13)

for all t ∈ [0,T] and θ ∈ L2(Γ3). It follows from the properties of the truncation oper-
ators Rν and Rτ that Fβ is Lipschitz continuous with respect to the second argument,
uniformly in time. Moreover, for any θ ∈ L2(Γ3), the mapping t �→ Fβ(t,θ) belongs to
L∞(0,T ;L2(Γ3)). Using now a version of Cauchy-Lipschitz theorem (see, e.g., [16, page
48]), we obtain the existence of a unique function θβ ∈W1,∞(0,T ,L2(Γ3)) which solves
(4.12). Also, the arguments used in Remark 3.5 show that 0≤ θβ(t)≤ 1 for all t ∈ [0,T],
a.e. on Γ3. Therefore, from the definition of the set �, we find that θβ ∈ �, which con-
cludes the proof of the lemma. �

It follows from Lemma 4.5 that for all β ∈� the solution θβ of Problem 4.4 belongs to
�, see (4.4). Therefore, we may consider the operator Λ : �→� given by

Λβ = θβ. (4.14)

The third step consists of the following result.

Lemma 4.6. There exists a unique element β∗ ∈� such that Λβ∗ = β∗.

Proof. We show that, for a positive integer m, the mapping Λm is a contraction on �.
To this end, suppose that βi are two functions in � and denote by ui, θi the functions
obtained in Lemmas 4.3 and 4.5, respectively, for β = βi, i= 1,2.

Let t ∈ [0,T]. We use (4.5), the properties of the operators � and �, and (3.47) to
deduce that

∥
∥u1(t)−u2(t)

∥
∥
V ≤ c

(∥
∥β1(t)−β2(t)

∥
∥
L2(Γ3)

+
∫ t

0

∥
∥u1(s)−u2(s)

∥
∥
V ds

)
(4.15)

and, using Gronwall’s inequality, it yields

∥
∥u1(t)−u2(t)

∥
∥
V ≤ c

∫ t

0

∥
∥β1(s)−β2(s)

∥
∥
L2(Γ3)

ds. (4.16)

On the other hand, it follows from (4.12) that

θi(t)= β0−
∫ t

0

(
θi(s)

(
γνRν

(
uiν(s)

)2
+ γτ

∥
∥Rτ

(
uiτ(s)

)∥∥2
)
− εa

)

+
ds (4.17)
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and then
∥
∥θ1(t)− θ2(t)

∥
∥
L2(Γ3)

≤ c
∫ t

0

∥
∥
∥θ1(s)Rν

(
u1ν(s)

)2− θ2(s)Rν
(
u2ν(s)

)2∥∥
∥
L2(Γ3)

ds

+ c
∫ t

0

∥
∥
∥θ1(s)

∥
∥Rτ

(
u1τ(s)

)∥∥2− θ2(s)
∥
∥Rτ

(
u2τ(s)

)∥∥2
∥
∥
∥
L2(Γ3)

ds.

(4.18)

Using the definitions of Rν and Rτ and writing θ1 = θ1− θ2 + θ2 we get

∥
∥θ1(t)− θ2(t)

∥
∥
L2(Γ3)

≤ c
∫ t

0

∥
∥θ1(s)− θ2(s)

∥
∥
L2(Γ3)

ds+ c
∫ t

0

∥
∥u1(s)−u2(s)

∥
∥
L2(Γ3)d

ds.

(4.19)

By Gronwall’s inequality, it follows that

∥
∥θ1(t)− θ2(t)

∥
∥
L2(Γ3)

≤ c
∫ t

0

∥
∥u1(s)−u2(s)

∥
∥
L2(Γ3)d

ds (4.20)

and, using (3.24) we obtain

∥
∥θ1(t)− θ2(t)

∥
∥
L2(Γ3) ≤ c

∫ t

0

∥
∥u1(s)−u2(s)

∥
∥
V ds. (4.21)

We use (4.14) and the estimate (4.21) to find

∥
∥Λβ1(t)−Λβ2(t)

∥
∥
L2(Γ3) ≤ c

∫ t

0

∥
∥u1(s)−u2(s)

∥
∥
V ds. (4.22)

We now combine (4.16) and (4.22) to see that

∥
∥Λβ1(t)−Λβ2(t)

∥
∥
L2(Γ3)

≤ c
∫ t

0

∥
∥β1(s)−β2(s)

∥
∥
L2(Γ3)

ds (4.23)

and, reiterating this inequalitym times, it yields

∥
∥Λmβ1−Λmβ2

∥
∥
C([0,T];L2(Γ3))

≤ cmTm

m!

∥
∥β1−β2

∥
∥
C([0,T];L2(Γ3))

. (4.24)

Recall that � is a nonempty closed set in the Banach space C([0,T];L2(Γ3)) and note
that inequality (4.24) shows that for m sufficiently large Λm : � → � is a contraction.
Then, by using the Banach fixed point theorem, it follows that Λ has a unique fixed point
β∗ ∈�. �

Now, we have all the ingredients to provide the proof of Theorem 4.1.

Proof. Existence. Let β∗ ∈� be the fixed point of Λ and let u∗ be the solution of Problem
4.2 for β = β∗, that is, u∗ = uβ∗ . Since θβ∗ = β∗, we conclude by Lemmas 4.3 and 4.5 that
(u∗,β∗) is a solution of Problem 3.3 and it satisfies (4.1), (4.2).
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Uniqueness. The uniqueness of the solution is a consequence of the uniqueness of the
fixed point of operatorΛ defined by (4.14). Indeed, let (u,β) be a solution of Problem 3.3
which satisfies (4.1), (4.2). It follows from (3.39) that u is a solution to Problem 4.2 and,
since by Lemma 4.3 this problem has a unique solution denoted by uβ, we obtain

u= uβ. (4.25)

We replace u= uβ in (3.40) and use the initial condition (3.41) to see that β is a solution
to Problem 4.4. Since by Lemma 4.5 this last problem has a unique solution denoted by
θβ, we find

β = θβ. (4.26)

We use now (4.14) and (4.26) to see that Λβ = β, that is, β is a fixed point of the operator
Λ. It follows now from Lemma 4.6 that

β = β∗. (4.27)

The uniqueness part of the theorem is now a consequence of (4.25) and (4.27). �

5. Analysis of the problem with normal compliance

The main result of this section is the following existence and uniqueness result.

Theorem 5.1. Assume that (3.28)–(3.33) hold. Then there exists a unique solution to
Problem 3.4 with regularity (4.1), (4.2).

A triple (u,σ ,β) which satisfies (3.13), (3.42)–(3.44) is called a weak solution of the
normal compliance contact problem (Problem 3.2). We conclude that, under the stated
assumptions, problem (3.13)–(3.20) has a unique weak solution. Moreover, the weak so-
lution satisfies (4.1)–(4.3), the regularity (4.3) being obtained by using arguments similar
to those presented in Section 4.

Proof. The proof of Theorem 5.1 is similar to the proof of Theorem 4.1 and it is carried
out in several steps. Since the modifications are straightforward, we omit the details. Be-
low we use the set � defined in (4.4). The steps are the following.

(i) For each β ∈� we prove that there exists a unique function uβ ∈ C([0,T];V) such
that

(
�ε
(
uβ(t)

)
,ε(v)

)
Q +

(∫ t

0
�(t− s)ε

(
uβ(s)

)
ds,ε

(
v
)
)

Q

+ jad
(
β(t),uβ(t),v

)
+ jnc

(
uβ(t),v

)= (f(t),v)V ∀v ∈U , t ∈ [0,T].

(5.1)

To prove this step we use arguments similar to those used in the proof of Lemma 4.3. The
main difference arises from the fact that now (4.7) is replaced by the equality

uβη(t)∈V ,
(
Aβ(t)uβη(t),v

)
V =

(
fη(t)

)
V ∀v ∈V , (5.2)



16 Viscoelastic frictionless contact problems with adhesion

where, for β ∈� and t ∈ [0,T], Aβ(t) :V →V is the operator defined by

(
Aβ(t)u,v

)
V =

(
�ε(u),ε(v)

)
Q + jad

(
β(t),u,v

)
+ jnc(u,v) ∀u,v ∈V. (5.3)

We use (3.28) and the properties (3.45)–(3.55) of the functionals jad and jnc to see that
Aβ(t) is again a strongly monotone Lipschitz continuous operator.

(ii) For a given β ∈� we prove that there exists a unique element θ such that

θβ ∈W1,∞(0,T ;L2
(
Γ3
))∩�,

θ̇β(t)=−
(
γνθβ(t)

(
Rν
(
uβν(t)

)2
+ γτ

∥
∥Rτ

(
uβτ(t)

)∥∥2
)
− εa

)

+
a.e. t ∈ (0,T),

θβ(0)= β0.

(5.4)

The proof of this step is based on Lemma 4.5.
(iii) The operator Λ : �→� given by

Λβ = θβ (5.5)

has unique element β∗ ∈�. The proof is based on estimates similar to those presented in
Lemma 4.6 and the Banach fixed point theorem.

(iv) Let β∗ ∈� be the fixed point of Λ and denote u∗ = uβ∗ , where uβ∗ is the function
obtained in step (i) for β = β∗. Then, we use (5.1)–(5.5) to see that (u∗,β∗) is the unique
solution of Problem 3.4 and it satisfies (4.1), (4.2). �

6. A convergence result

We consider in this section the contact problem with normal compliance and adhesion
when the contact condition (3.17) is replaced with

−σν = 1
μ
pν
(
uν
)− γνβ

2Rν
(
uν
)

on Γ3× (0,T). (6.1)

Here μ > 0 is a penalization parameter which may be interpreted as a deformability coeffi-
cient of the foundation, and then 1/μ is the surface stiffness coefficient. Indeed, when μ is
smaller the reaction force of the foundation to penetration is larger and so the same force
will result in a smaller penetration, which means that the foundation is less deformable.
When μ is larger the reaction force of the foundation to penetration is smaller, and so the
foundation is less stiff and more deformable.

Our aim is to study the behavior of the solution when μ→ 0 and to prove that in the
limit we recover the solution of the Signorini problem with adhesion.

We assume that (3.28)–(3.33) hold and we use the notation U , f , jad, and jnc intro-
duced in Section 3. Moreover, we reinforce assumption (3.29e) with the condition

pν(x,r)= 0 iff r ≤ 0, (6.2)

a.e. x ∈ Γ3. It follows from the results in Section 4 that the Signorini contact problem
(3.1)–(3.8) has a unique weak solution (u,σ ,β), such that (4.1)–(4.3) hold. Moreover, the
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weak solution satisfies

u(t)∈U ,
(
�ε
(
u(t)

)
,ε
(
v−u(t)

))
Q +

(
η(t),ε

(
v−u(t)

))
Q

+ jad
(
β(t),u(t),v−u(t)

)≥ (f(t),v−u(t)
)
V ∀v ∈U , t ∈ [0,T],

(6.3)

β̇(t)=−
(
β(t)

(
γνRν(uν(t)

)2
+ γτ

∥
∥Rτ

(
uτ(t)

)∥∥2
)
− εa

)

+
on Γ3, a.e. t ∈ (0,T), (6.4)

β(0)= β0, (6.5)

where η ∈ C([0,T];Q) is the function given by

η(t)=
∫ t

0
�(t− s)ε

(
u(s)

)
ds ∀t ∈ [0,T]. (6.6)

It also follows from the discussion in Section 5 that, for each positive μ, the contact
problem (3.13)–(3.16), (3.18)–(3.20), (6.1) has a unique weak solution (uμ,σμ,βμ) with
the regularity expressed in (4.1)–(4.3). Moreover, the solution satisfies

(
�ε
(
uμ(t)

)
,ε(v)

)
Q +

(
ημ(t),ε(v)

)
Q + jad

(
βμ(t),uμ(t),v

)

+
1
μ
jnc
(
uμ(t),v

)= (f(t),v)V ∀v ∈V , t ∈ [0,T],
(6.7)

β̇μ(t)=−
(
βμ(t)

(
γνRν

(
uμν(t)

)2
+ γτ

∥
∥Rτ

(
uμτ(t)

)∥∥2
)
− εa

)

+
on Γ3, a.e. t ∈ (0,T),

(6.8)

βμ(0)= β0, (6.9)

where ημ ∈ C([0,T];Q) is the function given by

ημ(t)=
∫ t

0
�(t− s)ε

(
uμ(s)

)
ds ∀t ∈ [0,T], (6.10)

and uμν, uμτ denote the normal and tangential components of uμ, respectively.
The behavior of the solution (uμ,βμ) as μ→ 0 is given in the following theorem.

Theorem 6.1. Assume (3.28)–(3.33) and (6.2). Then the solution (uμ,βμ) of problem (6.7)–
(6.10) converges to the solution (u,β) of problem (6.3)–(6.5), that is,

∥
∥uμ(t)−u(t)

∥
∥
V +

∥
∥βμ(t)−β(t)

∥
∥
L2(Γ3) −→ 0 (6.11)

as μ→ 0, for all t ∈ [0,T].

In addition to the mathematical interest in the result above, it is important from the
mechanical point of view, since it shows that the weak solution of the adhesive contact
problem with a rigid obstacle may be approached as closely as one wishes by the solution
of the adhesive contact problem with a deformable foundation, with a sufficiently small
deformability coefficient.
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The proof of theorem is carried out in several steps. In the rest of the section we sup-
pose that assumptions of Theorem 6.1 hold and we denote by c a positive generic constant
which does not depend on time or on μ, and whose value may change from place to place.

In the first step we consider the following auxiliary problem of finding a displacement
field ũμ : [0,T]→V such that

(
�ε
(
ũμ(t)

)
,ε(v)

)
Q +

(
η(t),ε(v)

)
Q + jad

(
β(t), ũμ(t),v

)

+
1
μ
jnc
(
ũμ(t),v

)= (f(t),v)V ∀v ∈V , t ∈ [0,T].
(6.12)

This problem is an intermediate problem between the two above, since here η= η(t) and
β = β(t) are known, taken from the Signorini problem. Using arguments similar to those
in the proof of Theorem 5.1 we deduce that for each positive μ, problem (6.12) has a
unique solution which satisfies ũμ ∈ C([0,T];V).

We have the following convergence result.

Lemma 6.2. As μ→ 0,

∥
∥ũμ(t)−u(t)

∥
∥
V −→ 0 (6.13)

for all t ∈ [0,T].

Proof. Let t ∈ [0,T]. We choose v = ũμ(t) in (6.12) and find

(
�ε
(
ũμ(t)

)
,ε
(
ũμ(t)

))
Q +

(
η(t),ε

(
ũμ(t)

))
Q + jad

(
β(t), ũμ(t), ũμ(t)

)

+
1
μ
jnc
(
ũμ(t), ũμ(t)

)= (f(t), ũμ(t)
)
V .

(6.14)

We use now (3.50) and (3.55) in (6.14) to obtain

(
�ε
(
ũμ(t)

)
,ε
(
ũμ(t)

))
Q +

(
η(t),ε

(
ũμ(t)

))
Q ≤

(
f(t), ũμ(t)

)
V (6.15)

and, keeping in mind (3.28), we deduce that

∥
∥ũμ(t)

∥
∥
V ≤ c

(∥
∥η(t)

∥
∥
Q +

∥
∥f(t)

∥
∥
V

)
. (6.16)

Then, there exists ũ(t)∈V and a subsequence of {ũμ(t)}μ, still denoted by {ũμ(t)}μ, such
that

ũμ(t)⇀ ũ(t) weakly in V , as μ−→ 0. (6.17)

Using (6.14) and (3.50) again we obtain

jnc
(
ũμ(t), ũμ(t)

)≤ cμ. (6.18)

It follows now from (6.17) that

ũμ(t)−→ ũ(t) in L2
(
Γ3
)d

as μ−→ 0 (6.19)
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and, recalling (3.38) for jnc and using (6.18) and (6.19), we find that in the limit

∫

Γ3
pν
(
ũν(t)

)
ũν(t)da= 0. (6.20)

Since the integrand is nonnegative, (3.29c), we obtain

pν
(
ũν(t)

)
ũν(t)= 0 a.e. on Γ3. (6.21)

It follows now from (6.2) that ũν(t)≤ 0 a.e. on Γ3 which shows that ũ(t)∈U .
By choosing the test functions v− ũμ(t) in (6.12) and keeping in mind the properties

(3.29c) and (3.29e) of the normal compliance function pν, we obtain

(
�ε
(
ũμ(t)

)
,ε
(
v− ũμ(t)

))
Q +

(
η(t),ε

(
v− ũμ(t)

))
Q

+ jad
(
β(t), ũμ(t),v− ũμ(t)

)≥ (f(t),v− ũμ(t)
)
V ∀v ∈U.

(6.22)

Next, we use (3.37), (6.19), and the properties of Rν, Rτ , and pτ to deduce that

jad
(
β(t), ũμ(t),v− ũμ(t)

)−→ jad
(
β(t), ũ(t),v− ũ(t)

)
as μ−→ 0, (6.23)

for any v ∈ V . Therefore, by (6.22), (6.17), (6.23) and a lower-semicontinuity argument
we find that

ũ(t)∈U ,
(
�ε
(
ũ(t)

)
,ε
(
v− ũ(t)

))
Q +

(
η(t),ε(v)− ε

(
ũ(t)

))
Q

+ jad
(
β(t), ũ(t),v− ũ(t)

)≥ (f(t),v− ũ(t)
)
V ∀v ∈U.

(6.24)

We choose now v = u(t) in (6.24) and v = ũ(t) in (6.3), add the two inequalities, and
use the properties (3.28) of the elasticity operator � to obtain

c
∥
∥ũ(t)−u(t)

∥
∥2
V ≤ jad

(
β(t), ũ(t),u(t)− ũ(t)

)
+ jad

(
β(t),u(t), ũ(t)−u(t)

)
. (6.25)

By (3.49) the right-hand side of this inequality is nonpositive and, thus,

ũ(t)= u(t). (6.26)

We conclude that u(t) is the unique weak limit in V of any subsequence of the sequence
{ũμ(t)}μ and, therefore, we find that the whole sequence of functions {ũμ(t)}μ converges
weakly to the element u(t)∈U .

Using (6.22) with v = u(t) and assumption (3.28) on � we deduce that

c
∥
∥ũμ(t)−u(t)

∥
∥2
V ≤

(
η(t),ε

(
u(t)− ũμ(t)

))
Q +

(
f(t), ũμ(t)−u(t)

)
V

+ jad
(
β(t), ũμ(t),u(t)− ũμ(t)

)

+
(
�ε
(
u(t)

)
,ε
(
u(t)− ũμ(t)

))
Q.

(6.27)
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Taking into account (6.17), (6.23), and (6.26) we obtain from the previous inequality that
∥
∥ũμ(t)−u(t)

∥
∥
V −→ 0 as μ−→ 0, (6.28)

which concludes the proof. �

The next step in the proof of the theorem is the following.

Lemma 6.3. There exists a positive constant c, independent of μ, such that

∥
∥ũμ(t)−uμ(t)

∥
∥
V ≤ c

(∥
∥ημ(t)−η(t)

∥
∥
Q +

∥
∥βμ(t)−β(t)

∥
∥
L2(Γ3)

)
(6.29)

for all t ∈ [0,T].

Proof. Let t ∈ [0,T]. We find from (6.7) and (6.12) that
(
�ε
(
uμ(t)− ũμ(t)

)
,ε(ũμ(t)−uμ(t)

))
Q +

(
ημ(t)−η(t),ε

(
ũμ(t)−uμ(t)

))
Q

+ jad
(
βμ(t),uμ(t), ũμ(t)−uμ(t)

)− jad
(
β(t), ũμ(t), ũμ(t)−uμ(t)

)

+
1
μ
jnc
(
uμ(t), ũμ(t)−uμ(t)

)− 1
μ
jnc
(
ũμ(t), ũμ(t)−uμ(t)

)= 0.

(6.30)

We use (3.45), (3.47), and (3.54) to deduce that

jad
(
βμ(t),uμ(t), ũμ(t)−uμ(t)

)− jad
(
β(t), ũμ(t), ũμ(t)−uμ(t)

)

≤ c
∥
∥βμ(t)−β(t)

∥
∥
L2(Γ3)

∥
∥ũμ(t)−uμ(t)

∥
∥
V ,

jnc
(
uμ(t), ũμ(t)−uμ(t)

)− jnc
(
ũμ(t), ũμ(t)−uμ(t)

)≤ 0.

(6.31)

We use the last two inequalities in (6.30) and combine the resulting inequality with (3.28)
to obtain (6.29). �

We are now in a position to prove Theorem 6.1.

Proof of Theorem 6.1. Let t ∈ [0,T]. Using the triangle inequality and (6.29) we obtain
∥
∥uμ(t)−u(t)

∥
∥
V +

∥
∥βμ(t)−β(t)

∥
∥
L2(Γ3)

≤ ∥∥ũμ(t)−u(t)
∥
∥
V + c

(∥
∥ημ(t)−η(t)

∥
∥
Q +

∥
∥βμ(t)−β(t)

∥
∥
L2(Γ3)

)
.

(6.32)

The definitions (6.6) and (6.10) of η and ημ combined with the properties (3.29) of �
yield

∥
∥ημ(t)−η(t)

∥
∥
Q ≤ c

∫ t

0

∥
∥uμ(s)−u(s)

∥
∥
V ds. (6.33)

Next, we use (6.4), (6.5), (6.8), (6.9), and arguments similar to those used in the proof of
(4.21) to find that

∥
∥βμ(t)−β(t)

∥
∥
L2(Γ3)

≤ c
∫ t

0

∥
∥uμ(s)−u(s)

∥
∥
V ds. (6.34)
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Inserting (6.33) and (6.34) in (6.32) and applying Gronwall’s lemma to the resulting in-
equality we obtain

∥
∥uμ(t)−u(t)

∥
∥
V +

∥
∥βμ(t)−β(t)

∥
∥
L2(Γ3)

≤ ∥∥ũμ(t)−u(t)
∥
∥
V + c

∫ t

0

∥
∥ũμ(s)−u(s)

∥
∥
Vds.

(6.35)

On the other hand, we note that (6.16) implies that

∥
∥ũμ(t)−u(t)

∥
∥
V ≤ c

(∥
∥f(t)

∥
∥
V +

∥
∥u(t)

∥
∥
V +

∥
∥η(t)

∥
∥
Q

)
. (6.36)

Since (6.13) and (6.36) hold for all t ∈ [0,T], it follows from the Lebesgue convergence
theorem that, as μ→ 0,

∫ t

0

∥
∥ũμ(s)−u(s)

∥
∥
V ds−→ 0. (6.37)

The convergence result (6.11) is now a consequence of (6.13), (6.35), and (6.37). �

We end this section with the remark that Theorem 6.1 implies the following conver-
gence result, in terms of stress:

∥
∥σμ(t)−σ(t)

∥
∥
Q1
−→ 0 (6.38)

as μ→ 0, for all t ∈ [0,T]. Indeed, let t ∈ [0,T] and μ > 0; equalities

σμ(t)=�ε
(
uμ(t)

)
+
∫ t

0
�(t− s)ε

(
uμ(s))ds, σ(t)=�ε

(
u(t)

)
+
∫ t

0
�(t− s)ε

(
u(s)

)
ds

(6.39)

combined with the properties of the operators � and � yield

∥
∥σμ(t)−σ(t)

∥
∥
Q ≤ c

∥
∥uμ(t)−u(t)

∥
∥
V . (6.40)

Also, since (6.3) and (6.7) imply Divσμ(t)=Divσ(t)=−f0(t) in Ω, we deduce that

∥
∥σμ(t)−σ(t)

∥
∥
Q1
= ∥∥σμ(t)−σ(t)

∥
∥
Q. (6.41)

The convergence (6.38) is now a consequence of (6.11), (6.40), and (6.41).
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