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LetK be a closed convex subset of a real Banach space E, T : K → K is continuous pseudo-
contractive mapping, and f : K → K is a fixed L-Lipschitzian strongly pseudocontractive
mapping. For any t ∈ (0,1), let xt be the unique fixed point of t f + (1− t)T . We prove that
if T has a fixed point and E has uniformly Gâteaux differentiable norm, such that every
nonempty closed bounded convex subset of K has the fixed point property for nonex-
pansive self-mappings, then {xt} converges to a fixed point of T as t approaches to 0.
The results presented extend and improve the corresponding results of Morales and Jung
(2000) and Hong-Kun Xu (2004).

Copyright © 2006 Y. Song and R. Chen. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction and preliminaries

Let E be a real Banach space and let J denote the normalized duality mapping from E
into 2E

∗
given by J(x) = { f ∈ E∗,〈x, f 〉 = ‖x‖‖ f ‖,‖x‖ = ‖ f ‖}, for all x ∈ E, where E∗

denotes the dual space of E and 〈·,·〉 denotes the generalized duality pairing. If E∗ is
strictly convex, then J is single-valued. In the sequel, we will denote the single-valued
duality mapping by j, and denote F(T) = {x ∈ E; Tx = x}. In Banach space E, the fol-
lowing result (the subdifferential inequality) is well known [1, 5]. For all x, y ∈ E, for all
j(x+ y)∈ J(x+ y), and for all j(x)∈ J(x),

‖x‖2 + 2
〈
y, j(x)

〉≤ ‖x+ y‖2 ≤ ‖x‖2 + 2
〈
y, j(x+ y)

〉
. (1.1)

Recall that the norm of E is said to be Gâteaux differentiable (and E is said to be smooth),
if the limit

lim
t→0

‖x+ ty‖−‖x‖
t

(*)
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2 Continuous pseudocontractive mappings

exists for each x, y on the unit sphere S(E) of E. Moreover, if for each y in S(E) the
limit defined by (*) is uniformly attained for x in S(E), we say that the norm of E is
uniformly Gâteaux differentiable. The norm of E is said to be Fréchet differentiable, if for
each x ∈ S(E) the limit (*) is attained uniformly for y ∈ S(E). The norm of E is said to
be uniformly Fréchet differentiable (and E is said to be uniformly smooth), the limit (*) is
attained uniformly for (x, y)∈ S(E)× S(E).

The following results which are found in [1, 4, 5] are well known.
(i) The duality mapping J in smooth Banach space E is single-valued and strong-

weak∗ continuous [5, Lemma 4.3.3].
(ii) If E is a Banach space with a uniformly Gâteaux differentiable norm, then the

mapping J : E→ E∗ is single-valued and norm-to-weak star uniformly continu-
ous on bounded sets of E [5, Theorem 4.3.6].

(iii) In uniformly smooth Banach space E, the mapping J : E→ E∗ is single-valued
and norm-to-norm uniformly continuous on bounded sets of E [5, Theorem
4.3.6].

(iv) A uniformly convex Banach space E is reflexive and strictly convex [5, Theorems
4.1.6 and 4.1.2].

(v) If K is a nonempty convex subset of a strictly convex Banach space E and T : K →
K is a nonexpansive mapping, then fixed point set F(T) of T is a closed convex
subset of K [5, Theorem 4.5.3].

Let E be a real Banach space and let T be a mapping with domain D(T) and range
R(T) in E. T is called pseudocontractive (resp., strongly) if for any x, y ∈D(T), there exists
j(x− y)∈ J(x− y) such that

〈
Tx−Ty, j(x− y)

〉≤ ‖x− y‖2
(
resp.,

〈
Tx−Ty, j(x− y)

〉≤ β‖x− y‖2 for some 0 < β < 1
)
.

(1.2)

If I denotes the identity operator, then (1.2) implies that

〈
(I −T)x− (I −T)y, j(x− y)

〉≥ 0, (1.3)
〈
(I −T)x− (I −T)y, j(x− y)

〉≥ (1−β)‖x− y‖2. (1.4)

Let K be a closed convex subset of a uniformly smooth Banach space E, T : K → K a
nonexpansive mapping with F(T) 
= ∅, f : K → K a contraction. Then for any t ∈ (0,1),
the mapping

T
f
t : x �−→ t f (x) + (1− t)Tx (1.5)

is also contraction. Let xt denote the unique fixed point of T
f
t . In [7], Xu proved that as

t ↓ 0, {xt} converges to a fixed point p of T that is the unique solution of the variational
inequality

〈
(I − f )u, j(u− p)

〉≤ 0 ∀p ∈ F(T). (1.6)
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Let K be a nonempty closed convex subset of a Banach space E, T : K → K a continuous
pseudocontractive map such that F(T) 
= ∅, and f : K → K a fixed Lipschitzian strongly

pseudocontractive map. Then for any t ∈ (0,1), T
f
t = t f + (1− t)T : K → K is also a con-

tinuous strongly pseudocontractive map. Let xt be the unique fixed point of T
f
t (see [1]),

that is,

xt = t f
(
xt
)
+ (1− t)Txt. (1.7)

In this paper, our purpose is to prove that {xt} defined by (1.7) strongly converges to
a fixed point of T , which generalizes and improves several recent results. Particularly, it
extends and improves [7, Theorems 3.1 and 4.1]. Let μ be a continuous linear functional
on l∞ satisfying ‖μ‖ = 1= μ(1). Then we know that μ is a mean on N if and only if

inf
{
an; n∈N

}≤ μ(a)≤ sup
{
an;n∈N

}
(1.8)

for every a= (a1,a2, . . .)∈ l∞. According to time and circumstances, we use μn(an) instead
of μ(a). A mean μ on N is called a Banach limit if

μn
(
an
)= μn

(
an+1

)
(1.9)

for every a = (a1,a2, . . .) ∈ l∞. Furthermore, we know the following result [6, Lemma 1]
and [5, Lemma 4.5.4].

Lemma 1.1 (see [6, Lemma 1]). Let C be a nonempty closed convex subset of a Banach space
E with a uniformly Gâteaux differentiable norm. Let {xn} be a bounded sequence of E and
let μ be a mean on N. let z ∈ C. Then

μn
∥
∥xn− z

∥
∥2 =min

y∈C
μn
∥
∥xn− y

∥
∥2 (1.10)

if and only if

μn
〈
y− z, j

(
xn− z

)〉≤ 0 ∀y ∈ C, (1.11)

where j is the duality mapping of E.

2. Main results

Lemma 2.1. Let E be a Banach space and let K be a nonempty closed convex subset of E.
Suppose that T : K → K is a pseudocontractive mapping such that for each fixed strongly
pseudocontractive map f : K → K , the equation

x = t f (x) + (1− t)Tx (2.1)

has a solution xt for each t ∈ (0,1). Suppose that u∈ K is a fixed point of T . Then
(i) {xt} is bounded;
(ii) 〈xt − f (xt), j(xt −u)〉 ≤ 0.
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Proof. (i) As u is a fixed point of T , we have

∥
∥xt −u

∥
∥2 =

〈
t
(
f
(
xt
)−u

)
+ (1− t)

(
Txt −u

)
, j
(
xt −u

)〉

= t
〈
f
(
xt
)−u, j

(
xt −u

)〉
+ (1− t)

〈
Txt −u, j

(
xt −u

)〉

= t
〈
f
(
xt
)− f (u), j

(
xt −u

)〉
+ t
〈
f (u)−u, j

(
xt −u

)〉

+ (1− t)
〈
Txt −Tu, j

(
xt −u

)〉

≤ t
〈
f
(
xt
)− f (u), j

(
xt −u

)〉
+ t
〈
f (u)−u, j

(
xt −u

)〉
+ (1− t)

∥
∥xt −u

∥
∥2

≤ βt
∥
∥xt −u

∥
∥2 + t

〈
f (u)−u, j

(
xt −u

)〉
+ (1− t)

∥
∥xt −u

∥
∥2.

(2.2)

Hence

(1−β)
∥
∥xt −u

∥
∥2 ≤

〈
f (u)−u, j

(
xt −u

)〉≤ ∥∥ f (u)−u
∥
∥ ·∥∥xt −u

∥
∥. (2.3)

By (2.3), we get

∥
∥xt −u

∥
∥≤ 1

1−β

∥
∥ f (u)−u

∥
∥, (2.4)

so that {xt : 0 < t < 1} is bounded.
(ii) As u is a fixed point of T , from xt = t f (xt) + (1− t)Txt, we get

〈
xt − f

(
xt
)
, j
(
xt −u

)〉= (1− t)
〈
Txt − f

(
xt
)
, j
(
xt −u

)〉

=−(1− t)
〈
(I −T)xt − (I −T)u, j

(
xt −u

)〉

+ (1− t)
〈
xt − f

(
xt
)
, j
(
xt −u

)〉
(using (1.3))

≤ (1− t)
〈
xt − f

(
xt
)
, j
(
xt −u

)〉
.

(2.5)

Therefore 〈xt − f (xt), j(xt −u)〉 ≤ 0. The proof is complete. �

Theorem 2.2. Let E be a reflexive Banach space with a uniformly Gâteaux differentiable
norm. Suppose K is a nonempty closed convex subset of E and T : K → K is a continuous
pseudocontractive mapping. Let f : K → K be a fixed Lipschitzian strongly pseudocontracitve
map from K to K . Every nonempty closed bounded convex subset of K has the fixed point
property for nonexpansive self-mappings. {xt} (for all t ∈ (0,1)) is defined by (1.7). Then
{xt : 0 < t < 1} is bounded if and only if, as t→ 0, xt converges strongly to a fixed point p of
T such that p is the unique solution in F(T) to the following variational inequality:

〈
(I − f )p, j(p−u)

〉≤ 0 ∀u∈ F(T). (2.6)
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Proof. At first, by Lemma 2.1(i), the sufficiency is obvious.
Secondly, we show the necessity. Since {xt : 0 < t < 1} is bounded, f are Lipschitzian

mappings, the sets { f (xt) : t ∈ (0,1)} are bounded. By xt = t f (xt) + (1− t)Txt, we have

Txt = 1
1− t

xt − t

1− t
f
(
xt
)
,

∥
∥Txt

∥
∥≤ 1

1− t

∥
∥xt
∥
∥+

t

1− t

∥
∥
∥ f
(
xt
)∥∥
∥.

(2.7)

Therefore, the sets {Txt} are also bounded (using t→ 0). This implies that

lim
t→0

∥
∥xt −Txt

∥
∥= lim

t→0
t
∥
∥Txt − f

(
xt
)∥∥= 0. (2.8)

We first observe that the mapping 2I − T has a nonexpansive inverse, denoted by A =
(2I −T)−1, where I denotes the identity operator, then F(T) = F(A) (see [1, 5]). By [3,
Theorem 6], we get that A is a nonexpansive self-mapping on K . Using A = (2I −T)−1,
we obtain

xt −Txt = (2I −T)xt − xt = A−1xt − xt, xt =AA−1xt,
∥
∥xt −Axt

∥
∥= ∥∥AA−1xt −Axt

∥
∥≤ ∥∥A−1xt − xt

∥
∥= ∥∥xt −Txt

∥
∥.

(2.9)

Since limt→0‖xt −Txt‖ = 0, we have

lim
t→0

∥
∥xt −Axt

∥
∥= 0. (2.10)

We claim that the set {xt : t ∈ (0,1)} is relatively compact. In fact, let {tn} be a sequence
in (0,1) that converges to 0 (n→∞), put xn := xtn ,

g(x)= μn
∥
∥xn− x

∥
∥2 ∀x ∈ K , (2.11)

where μ is a Banach limit. Define the set

K1 =
{
x ∈ K : g(x)= inf

y∈K
g(y)

}
. (2.12)

Since E is a reflexive Banach space, K1 is a nonempty bounded closed convex subset of E
(for more details, see [5]), and since

lim
n→∞

∥
∥xn−Axn

∥
∥= 0, (2.13)

for all x ∈ K1, we get

g(Ax)= μn
∥
∥xn−Ax

∥
∥2 = μn

∥
∥Axn−Ax

∥
∥2 ≤ μn

∥
∥xn− x

∥
∥2 = g(x). (2.14)

Hence, Ax ∈ K1, that is, K1 is invariant under A. Since every nonempty closed bounded
convex subset of K has the fixed point property for nonexpansive self-mappings, there is
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a fixed point p ∈ K1 of A. By F(T)= F(A), p is also a fixed point of T . Using Lemma 1.1,
we get

μn
〈
x− p, j

(
xn− p

)〉≤ 0 ∀x ∈ K. (2.15)

By (2.3), and taking x = f (p), we have

μn
∥
∥xn− p

∥
∥2 ≤ 1

1−β
μn
〈
f (p)− p, j

(
xn− p

)〉≤ 0, (2.16)

that is,

μn
∥
∥xn− p

∥
∥2 = 0. (2.17)

We have proved that for any sequence {xtn} in {xt : t ∈ (0,1)}, there exists a subsequence
which is still denoted by {xtn} that converges to some fixed point p of T . To prove that the
entire net {xt} converges to p, supposed that there exists another sequence {xsk} ⊂ {xt}
such that xsk → q, as sk → 0, then we also have q ∈ F(T) (using limt→0‖xt −Txt‖ = 0).
Next we show that p = q and p is the unique solution in F(T) to the following variational
inequality:

〈
(I − f )p, j(p−u)

〉≤ 0 ∀u∈ F(T). (2.18)

Since the sets {xt − u} and {xt − f (xt)} are bounded and the duality map J is single-
valued and norm to weak∗ uniformly continuous on bounded sets of a Banach space E
with uniformly Gâteaux differentiable norm, for any u ∈ F(T), by xsk → q(sk → 0), we
have

∥
∥(I − f )xsk − (I − f )q

∥
∥−→ 0

(
sk −→ 0

)
,

∣
∣
∣
〈
xsk − f

(
xsk
)
, j
(
xsk −u

)〉− 〈(I − f )q, j(q−u)
〉∣∣
∣

=
∣
∣
∣
〈
(I − f )xsk − (I − f )q, j

(
xsk −u

)〉
+
〈
(I − f )q, j

(
xsk −u

)− j(q−u)
〉∣∣
∣

≤ ∥∥(I − f )xsk − (I − f )q
∥
∥
∥
∥xsk −u

∥
∥

+
∣
∣
∣
〈
(I − f )q, j

(
xsk −u

)− j(q−u)
〉∣∣
∣−→ 0 as sk −→ 0.

(2.19)

Therefore, noting Lemma 2.1(ii), for any u∈ F(T), we get

〈
(I − f )q, j(q−u)

〉= lim
sk→0

〈
xsk − f

(
xsk
)
, j
(
xsk −u

)〉≤ 0. (2.20)

Similarly, we also can show that

〈
(I − f )p, j(p−u)

〉= lim
n→∞

〈
xtn − f

(
xtn
)
, j
(
xtn −u

)〉≤ 0. (2.21)



Y. Song and R. Chen 7

Interchange p and u to obtain

〈
(I − f )q, j(q− p)

〉≤ 0. (2.22)

Interchange q and u to obtain

〈
(I − f )p, j(p− q)

〉≤ 0. (2.23)

This implies that (using (1.4))

(1−β)‖p− q‖2 ≤ 〈(I − f )p− (I − f )q, j(p− q)
〉≤ 0. (2.24)

We must have p = q. The proof is complete. �

Since every bounded nonempty closed convex subset with normal structure of the
reflexive Banach space has the fixed point property for nonexpansive self-mappings [1, 5],
and if F(T) 
= ∅, by Lemma 2.1(i), we have {xt : 0 < t < 1} is bounded, so that we can
obtain the following corollary.

Corollary 2.3. Let E be a reflexive Banach space with a uniformly Gâteaux differentiable
norm. SupposeK is a nonempty closed convex subset of E with normal structure and T : K →
K is a continuous pseudocontractive mapping such that F(T) 
= ∅. Let f : K → K be a fixed
Lipschitzian strongly pseudocontracitve map from K to K . Then, as t→ 0, {xt} (t ∈ (0,1))
defined by (1.7) converges strongly to a fixed point p of T such that p is the unique solution
in F(T) to the following variational inequality:

〈
(I − f )p, j(p−u)

〉≤ 0 ∀u∈ F(T). (2.25)

Since every nonempty closed convex subset of a uniformly convex Banach space has
normal structure [1, 5], we can also obtain the following corollary.

Corollary 2.4. Let E be a uniformly convex Banach space with a uniformly Gâteaux dif-
ferentiable norm. Suppose K is a nonempty closed convex subset of E and T : K → K is a
continuous pseudocontractive mapping such that F(T) 
= ∅. Let f : K → K be a fixed Lip-
schitzian strongly pseudocontracitve map from K to K . Then, as t → 0, {xt} (t ∈ (0,1))
defined by (1.7) converges strongly to a fixed point p of T such that p is the unique solution
in F(T) to the following variational inequality:

〈
(I − f )p, j(p−u)

〉≤ 0 ∀u∈ F(T). (2.26)

Every bounded nonempty closed convex subset of uniformly smooth Banach space has
normal structure [2, Lemma 8], and every uniformly smooth Banach space is a reflexive
Banach space with uniformly Gâteaux differentiable norm. So that we can also obtain the
following corollary.

Corollary 2.5. Let E be a uniformly smooth Banach space. Suppose K is a nonempty
closed convex subset of E and T : K → K is a continuous pseudocontractive mapping such
that F(T) 
= ∅. Let f : K → K be a fixed Lipschitzian strongly pseudocontracitve map from
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K to K . Then, as t→ 0, {xt} (t ∈ (0,1)) defined by (1.7) converges strongly to a fixed point
p of T such that p is the unique solution in F(T) to the following variational inequality:

〈
(I − f )p, j(p−u)

〉≤ 0 ∀u∈ F(T). (2.27)

Recall the set A of M is a Chebyshev set, if for all x ∈M, there exactly exists unique
element y ∈ A such that d(x, y) = d(x,A), where (M,d) is a metric space and d(x,A) =
inf y∈A d(x, y). Every nonempty closed convex subsets of a strictly convex and reflexive
Banach space E is a Chebyshev set [4, Corollary 5.1.19].

Theorem 2.6. Let E be a reflexive and strictly convex Banach space with a uniformly
Gâteaux differentiable norm. SupposeK is a nonempty closed convex subset of E and T : K →
K is a continuous pseudocontractive mapping such that F(T) 
= ∅. Let f : K → K be a fixed
Lipschitzian strongly pseudocontracitve map from K to K . Then, as t→ 0, {xt} (t ∈ (0,1))
defined by (1.7) converges strongly to a fixed point p of T such that p is the unique solution
in F(T) to the following variational inequality:

〈
(I − f )p, j(p−u)

〉≤ 0 ∀u∈ F(T). (2.28)

Proof. By F(T) 
= ∅ and Lemma 2.1(i), we have that {xt : 0 < t < 1} is bounded. Using
the same proof for the necessity of Theorem 2.2, we can find

K1 =
{
x ∈ K : g(x)= inf

y∈K
g(y)

}
, (2.29)

K1 is a nonempty bounded closed convex subset of E, and K1 is invariant under A. Now
we just need to show that the set K1 contains a fixed point of A. Since F(T)= F(A) 
= ∅,
let u be one of those. Since every nonempty closed convex subsets of a strictly convex and
reflexive Banach space E is a Chebyshev set, there exists a unique p ∈ K1 such that

‖u− p‖ = inf
x∈K1

‖u− x‖. (2.30)

Next we show that p = Ap = Tp. By u=Au and Ap ∈ K1,

‖u−Ap‖ = ‖Au−Ap‖ ≤ ‖u− p‖. (2.31)

Hence p = Ap. The rest of the proof follows from Theorem 2.2. The proof is complete.
�

Remark 2.7. We remark that Theorem 2.6 appears to be independent of Theorem 2.2. On
the one hand, it is easy to find examples of spaces which satisfy the fixed point property for
nonexpansive self-mappings, which are not strictly convex. On the other hand, it appears
to be unknown whether a reflexive and strictly convex Banach space satisfies the fixed
point property for nonexpansive self-mappings.
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