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The purpose of this paper is to introduce the concept of fuzzy variational-like inequalities
and to study the existence problem and the iterative approximation problem for solutions
of certain kinds of fuzzy variational-like inequalities in Hilbert spaces. By using the gen-
eral auxiliary principle technique, Ky Fan’s KKM theorem, Nadler’s fixed point theorem,
and some new analytic techniques, some existence theorems and some iterative approxi-
mation schemes for solving this kind of fuzzy variational-like inequalities are established.
The results presented in this paper are new and they generalize, improve, and unify a
number of recent results.

1. Introduction

In recent years, the fuzzy set theory introduced by Zadeh [18] in 1965 has emerged as an
interesting and fascinating branch of pure and applied sciences. The applications of fuzzy
set theory can be found in many branches of physical, mathematical and engineering sci-
ences, see [2, 6, 20]. Equally important is variational inequality theory, which constitutes
a significant and important extension of the variational principle. A useful and important
generalization of variational inequalities is generalized mixed variational-like inequality.
These kinds of variational inequalities have potential and significant applications in op-
timization theory [16, 17], structural analysis [14] and economics [5, 16]. Some special
cases of mixed variational-like inequalities have been studied by Tian [16] and Parida and
Sen [15] by using Berge maximum theorem in finite and infinite dimensional spaces. It
is useful to remark that these methods are not constructive. Thus, the development of an
efficient and implementable technique for solving variational-like inequalities is one of
the most interesting and important problems in variational inequality theory. Although
there exist many numerical methods (e.g., the projection method and its variant forms,
linear approximation, descent and Newton’s methods) for variational inequalities, there
are very few methods for general variational-like inequalities. One method used in the
literature is to develop an auxiliary technique for solving various mixed variational-like
inequalities.
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The auxiliary principle technique was suggested by Glowinski et al. [9] in 1981. These
days it is a useful and powerful tool for solving various mixed variational-like inequali-
ties. Recently, Noor [12] extended the auxiliary principle technique to study the existence
and uniqueness of a solution for a class of generalized mixed variational-like inequalities
for set-valued mappings with compact values. However, the proof of the uniqueness part
in [12, Theorem 3.1] is not quite right. Also the proof of the existence part is based on
the assumption that the auxiliary problem has a solution. Unfortunately he did not show
the existence of the solution for this auxiliary problem. Subsequently, Huang and Deng
[10] introduced and studied a class of generalized set-valued strongly nonlinear mixed
variational-like inequalities which includes the known class of mixed variational-like in-
equalities introduced by Noor [12] as a special case. On the other hand, in 2001, Ansari
and Yao [1] considered and studied a class of mixed variational-like inequality problems
for single-valued mappings by using the auxiliary principle technique.

Inspired and motivated by recent research in this interesting field, the purpose of this
paper is to introduce the concept of fuzzy generalized set-valued mixed variational-like
inequalities and to study the existence problem and the iterative approximation problem
for solutions of certain kinds of fuzzy generalized set-valued mixed variational-like in-
equalities in Hilbert spaces. By using the general auxiliary principle technique, Ky Fan’s
KKM theorem, Nadler’s fixed point theorem and some new analytic techniques, some ex-
istence theorems and some iterative approximation schemes for solving this kind of fuzzy
variational-like inequalities are established. The results presented in this paper are new
and they generalize, improve and unify a number of recent results in [1, 10, 19].

2. Preliminaries

Throughout this paper, we assume thatH is a real Hilbert space whose inner product and
norm are denoted by 〈·,·〉, ‖ · ‖, respectively. Let K be a nonempty convex subset of H
and CB(H) be the family of all nonempty bounded and closed subsets ofH , D(·,·) is the
Hausdorff metric on CB(H) defined by

D(A,B)=max

{
sup
x∈A

d(x,B), sup
y∈B

d(A, y)

}
, A,B ∈ CB(H). (2.1)

D(T) and R(T)denote the domain and range of T , respectively.
In what follows, we denote the collection of all fuzzy sets on H by �(H) = {A :H →

[0,1]}. A mapping T from H to �(H) is called a fuzzy mapping. If T : H →�(H) is a
fuzzy mapping, then the set T(x), for x ∈ H , is a fuzzy set in �(H) (in the sequel we
denote T(x) by Tx) and Tx(y) , y ∈H is the degree of membership of y in Tx.

Definition 2.1. (1) A fuzzy mapping T :H →�(H) is said to be closed, if for each x ∈H ,
the function y �→ Tx(y) is upper semicontinuous, that is, for any given net {yα} ⊂ H
satisfying yα → y0 ∈H , we have limsupα Tx(yα) ≤ Tx(y0). For A ∈�(H) and λ ∈ [0,1],
the set

(A)λ =
{
x ∈H :A(x)≥ λ

}
(2.2)

is called a λ-cut set of A.
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(2) A closed fuzzy mapping T :H →�(H) is said to satisfy the condition (∗), if there
exists a function a :H → [0,1] such that for each x ∈H the set

(
Tx
)
a(x) :=

{
y ∈H : Tx(y)≥ a(x)

}
(2.3)

is a nonempty bounded subset of H .

Remark 2.2. It should be pointed out that if T is a closed fuzzy mapping satisfying condi-
tion (∗), then for each x ∈H , the set (Tx)a(x) ∈ CB(H). To see this let {yα}α∈Γ ⊂ (Tx)a(x)
be a net and yα→ y0 ∈H . Then (Tx)(yα)≥ a(x) for each α∈ Γ and since T is closed, we
have

Tx
(
y0
)≥ limsup

α∈Γ
Tx
(
yα
)≥ a(x). (2.4)

This implies that y0 ∈ (Tx)a(x) and so (Tx)a(x) ∈ CB(H).

Problem 2.3. Let H be a real Hilbert space, K be a nonempty closed convex subset of H .
Let T ,V : K →�(H) be two closed fuzzy mappings satisfying condition (∗) with func-
tions a,c : H → [0,1], respectively. For given nonlinear mappings N ,η : H ×H → H we
consider the problem of finding u∈ K , w, y ∈H such that

Tu(w)≥ a(u), Vu(y)≥ c(u), i.e., w ∈ (Tu
)
a(u), y ∈

(
Vu
)
c(u),〈

N(w, y),η(v,u)
〉
+ b(u,v)− b(u,u)≥ 0, ∀v ∈ K ;

(2.5)

here b(·,·) :H ×H → R is a nondifferentiable function satisfying Assumption 2.4.

Assumption 2.4. (i) b(·,·) is linear in the first argument.
(ii) For any u,v,w ∈H there exists a constant γ > 0 such that

(a) |b(u,v)| ≤ γ‖u‖‖v‖;
(b) |b(u,v)− b(u,w)| ≤ γ‖u‖‖v−w‖.

(iii) For any given u∈H , the function v �→ b(u,v) :H → R is convex.
Problem (2.5) is called the fuzzy variational-like inequality in Hilbert spaces.

Remark 2.5. It follows from property (i) that for any u,v ∈H , −b(u,v)= b(−u,v).
Now we consider some special cases of problem (2.5).
(1) Let T ,V : K → CB(H) be two ordinary multivalued mappings and η, N , b be the

mappings as in Problem 2.3. Now we define two fuzzy mappings T̃(·),Ṽ(·) : K →�(H)
as follows:

T̃x = χT(x), Ṽx = χV(x), (2.6)

where χT(x) and χV(x) are the characteristic functions of the sets T(x) andV(x), respective-
ly. It is easy to see that T̃ and Ṽ both are closed fuzzy mappings satisfying condition (∗)
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with constant functions a(x)= 1 and c(x)= 1, for all x ∈H , respectively. Also

(
T̃x
)
a(x) =

(
χT(x)

)
1 =

{
y ∈H : χT(x)(y)= 1

}= T(x),(
Ṽx
)
c(x) =

(
χV(x)

)
1 =

{
y ∈H : χV(x)(y)= 1

}=V(x).
(2.7)

Then problem (2.5) is equivalent to finding u∈ K , w, y ∈H such that

(
T̃u
)
(w)= 1,

(
Ṽu
)
(y)= 1, i.e., w ∈ T(u), y ∈V(u),〈

N(w, y),η(v,u)
〉
+ b(u,v)− b(u,u)≥ 0, ∀v ∈ K.

(2.8)

This kind of problem is called the set-valued strongly nonlinear mixed variational-like
inequality and was introduced and studied by Noor [12] under the additional condition
that T ,V :H → CB(H) is compact-valued. It is also considered by Zeng [19].

(2) If N(w, y) = w − y, w, y ∈ H and b(u,v) = f (v) and T ,V : K → H are single-
valued, then problem (2.8) is equivalent to finding a u∈ K such that〈

T(u)−V(u),η(v,u)
〉
+ f (v)− f (u)≥ 0, ∀v ∈ K. (2.9)

This is called the mixed variational-like inequality problem and was studied by Ansari
and Yao [1].

(3) If K =H and b(u,v) = 0, then problem (2.5) is equivalent to finding u,w, y ∈H
such that

Tu(w)≥ a(u), Vu(y)≥ c(u), i.e., w ∈ (Tu
)
a(u), y ∈

(
Vu
)
c(u),〈

N(w, y),η(v,u)
〉≥ 0, ∀v ∈H.

(2.10)

This is also a class of special fuzzy variational-like inequalities. The case of ordinary set-
valued mappings (i.e., in the nonfuzzy case) was considered by Noor [13].

As a result for a suitable choice of the fuzzy mappings T ,V and mappings η, N , b, we
can obtain a number of old and new classes of (fuzzy) variational inequalities, (fuzzy)
variational inclusions and we can obtain corresponding (fuzzy) optimization problems
from the fuzzy variational-like inequality (2.5).

Now we recall some definitions and notions which will be needed to prove our main
results.

Definition 2.6. Let T ,V :H →�(H) be two closed fuzzy mappings satisfying condition
(∗) with functions a,c :H → [0,1], respectively and let N(·,·) :H ×H →H be a nonlin-
ear mapping.

(1) The mapping x �→ N(x, y) is said to be β-Lipschitzian continuous with respect to
the fuzzy mapping T if, for any x1,x2 ∈H and w1 ∈ (Tx1 )a(x1), w2 ∈ (Tx2 )a(x2),∥∥N(w1, y

)−N
(
w2, y

)∥∥≤ β
∥∥x1− x2

∥∥, y ∈H , (2.11)

where β > 0 is a constant.
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(2) The mapping y �→ N(x, y) is said to be γ-Lipschitzian continuous with respect to
the fuzzy mapping V if, for any u1,u2 ∈H and v1 ∈ (Vu1 )c(u1), v2 ∈ (Vu2 )c(u2),∥∥N(x,v1)−N

(
x,v2

)∥∥≤ γ
∥∥u1−u2

∥∥, x ∈H , (2.12)

where γ > 0 is a constant.
(3) N is said to be α-strongly mixed monotone with respect to the fuzzy mappings T

and V , if for any u1,u2 ∈H〈
N
(
w1, y1

)−N
(
w2, y2

)
,u1−u2

〉≥ α
∥∥u1−u2

∥∥2,
∀w1 ∈

(
Tu1

)
a(u1)

, y1 ∈
(
Vu1

)
c(u1)

; w2 ∈
(
Tu2

)
a(u2)

, y2 ∈
(
Vu2

)
c(u1)

,
(2.13)

where α > 0 is a constant.
(4) T is said to be ξ-Lipschitz continuous , if for any x, y ∈H

D
((
Tx
)
a(x),

(
Ty)a(y)

)≤ ξ‖x− y‖, (2.14)

where ξ > 0 is a constant.

Definition 2.7. Let η :H ×H →H be a mapping.
(1) η is strongly monotone, if there exists constant σ > 0 such that〈

η(u,v),u− v
〉≥ σ‖u− v‖, ∀u,v ∈H ; (2.15)

(2) η is Lipschitz continuous, if there exists a constant δ > 0 such that∥∥η(u,v)∥∥≤ δ‖u− v‖, ∀u,v ∈H. (2.16)

Definition 2.8. Let D be a nonempty subset of H and f : D→ (−∞,+∞) be a function.
f is said to be lower semicontinuous in D, if for any a ∈ (−∞,+∞), the set {u ∈ D :
f (u)≤ a} is a closed set in D. f is said to be upper semicontinuous in D, if − f is lower
semicontinuous in D.

Definition 2.9. LetK be a nonempty subset ofH andG : K → 2H be a mapping.G is called
a KKMmapping, if for any finite subset {x1,x2, . . . ,xn} ⊂ K we have

co
({
x1,x2, . . . ,xn

})⊂ n⋃
i=1

G
(
xi
)
, (2.17)

where co{A} is the convex hull of the set A⊂ K .

In the sequel, we assume that N and η satisfy the following assumption.

Assumption 2.10. Let N ,η :H ×H →H be two mappings satisfying the following condi-
tions:

(i) η(v,u)=−η(u,v),∀u,v ∈H ;
(ii) for any given x, y,u∈H the mapping v �→ 〈N(x, y),η(u,v)〉 is concave and upper

semicontinuous.
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The following lemma due to K. Fan will be needed in proving our main result.

Lemma 2.11 (Fan [7]). Let E be a topological vector space and K be a nonempty subset of
E. Let G : K → 2E be a KKM mapping with closed values and suppose there exists at least a
point x ∈ K such that G(x) is compact. Then

⋂
x∈K G(x) = ∅.

In Section 3 the following result will be needed.

Theorem 2.12 [3, Theorem 1.4.7]. Let E be a locally convex Hausdorff topological vector
space and f : E→ R∪{+∞} be a proper convex functional. Then f is lower semicontinuous
on E, if and only if f is weakly lower semicontinuous on E.

Remark 2.13. A functional f : E→ R∪ {+∞} is said to be proper, if f (x) > −∞ for all
x ∈ E and f ≡ +∞.

3. Auxiliary principle and algorithm

In this section, we extend the auxilary principle technique of Glowinski et al. [9] and
then use it to study the fuzzy variational-like inequality (2.5) in Hilbert spaces. We first
establish an existence theorem for the auxiliary problem for the fuzzy variational-like
inequality (2.5). Based on this existence theorem, we construct the iterative algorithm for
this kind of fuzzy variational-like inequality.

For given u∈ K , w ∈ (Tu)a(u), y ∈ (Vu)c(u) the “so called” auxiliary problem P(u,w, y)
for the fuzzy variational-like inequality (2.5) in Hilbert space H , is to find z ∈ K such that

〈z,v− z〉 ≥ 〈u,v− z〉− ρ
〈
N(w, y),η(v,z)

〉
+ ρb(u,z)− ρb(u,v), ∀v ∈ K , (3.1)

where ρ > 0 is a constant.

Theorem 3.1. LetH be a real Hilbert space, K be a nonempty bounded closed convex subset
of H and b(·,·) be a function satisfying Assumption 2.4. Let η : K ×K →H be a Lipschitz
mapping with a Lipschitz constant δ. If Assumption 2.10 is satisfied, then the auxiliary prob-
lem P(u,w, y) has a unique solution in K .

Proof. For given u∈ K , w ∈ (Tu)a(u), y ∈ (Vu)c(u) we define the mapping G : K → 2H by

G(v)= {x ∈ K : 〈x−u,v− x〉+ ρ
[〈
N(w, y),η(v,x)

〉
+ b(u,v)− b(u,x)

]≥ 0
}
, v ∈ K.

(3.2)

Note that for each v ∈ K , G(v) is nonempty, since v ∈G(v).
Next we prove that G : K → 2H is a KKM mapping. Suppose the contrary, that is, sup-

pose G is not a KKM mapping. Then there exist a finite subset {v1,v2, . . . ,vk} of K and
constants αi ≥ 0, i= 1,2, . . . ,k with

∑n
i=1αi = 1 such that

x∗ =
k∑
i=1

αivi ∈
k⋃
i=1

G(vi), (3.3)
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that is, x∗ ∈G(vi), for all i= 1,2, . . . ,k. Hence we have〈
x∗ −u,vi− x∗

〉
+ ρ
[〈
N(w, y),η

(
vi,x∗

)〉
+ b
(
u,vi

)− b
(
u,x∗

)]
< 0. (3.4)

From Assumption 2.10 we know η(v,u) = −η(u,v) (and so η(u,u) = 0, ∀u ∈ H) and
v �→ 〈N(x, y),η(u,v)〉 is concave and also from Assumption 2.4 we know v �→ b(u,v) is
convex, so the above inequality yields

0 >
k∑
i=1

αi
〈
x∗ −u,vi− x∗

〉
+ ρ

k∑
i=1

αi
[〈
N(w, y),η

(
vi,x∗

)〉
+ b
(
u,vi

)− b
(
u,x∗

)]

≥ 〈x∗ −u,x∗ − x∗
〉− ρ

[〈
N(w, y),η

(
x∗,x∗

)〉]
+ ρ

k∑
i=1

αi
[
b
(
u,vi

)− b
(
u,x∗

)]

= ρ
k∑
i=1

αi
[
b
(
u,vi

)− b
(
u,x∗

)]≥ ρ
[
b
(
u,x∗

)− b
(
u,x∗

)]= 0,

(3.5)

a contradiction. This implies that G is a KKMmapping.
Now G(v)

w
(the weak closure of G(v)) is a weakly closed subset of a bounded set K in

H , so it is weakly compact. Hence by Lemma 2.11⋂
v∈K

G(v)
w = ∅. (3.6)

Let z ∈⋂v∈K G(v)
w
. Fix v ∈ K , then there exists a sequence {zm} inG(v) such that zm→ z

weakly. Therefore we have〈
zm−u,v− zm

〉
+ ρ
[〈
N(w, y),η

(
v,zm

)〉
+ b(u,v)− b

(
u,zm

)]≥ 0. (3.7)

Since the norm is weakly lower semicontinuous, we have

limsup
m→∞

〈
zm−u,v− zm

〉= limsup
m→∞

[〈
zm−u,v

〉
+
〈
u,zm

〉−∥∥zm∥∥2]
= lim

m→∞
〈
zm−u,v

〉
+ lim

m→∞
〈
u,zm

〉− liminf
m→∞

∥∥zm∥∥2
≤ 〈z−u,v− z〉.

(3.8)

Note from Assumption 2.4 that b is Lipschitz continuous and convex in the second ar-
gument and from Assumption 2.10 the mapping v �→ 〈N(x, y),η(u,v)〉 is upper semicon-
tinuous and concave so (3.7) and (3.8) and Theorem 2.12 imply

0≤ limsup
m→∞

{〈
zm−u,v− zm

〉
+ ρ
[〈
N(w, y),η

(
v,zm

)〉
+ b(u,v)− b

(
u,zm

)]}
≤ limsup

m→∞

〈
zm−u,v− z

〉
+ limsup

m→∞

{
ρ〈N(w, y),η

(
v,zm

)〉
+ b(u,v)− b

(
u,zm

)}
≤ 〈z−u,v− z

〉
+ ρ
[〈
N(w, y),η(v,z)

〉
+ b(u,v)− b(u,z)

]
.

(3.9)
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This implies that

〈z,v− z〉 ≥ 〈u,v− z〉− ρ
〈
N(w, y),η(v,z)

〉
+ ρb(u,z)− ρb(u,v), ∀v ∈ K , (3.10)

that is, z is a solution of the auxiliary problem P(u,w, y) in K .
Finally we prove the uniqueness of solutions of P(u,w, y).
In fact, if z1 ∈ K is also a solution of the auxiliary problem P(u,w, y), then we have〈
z1,v− z1

〉≥ 〈u,v− z1
〉− ρ

〈
N(w, y),η

(
v,z1

)〉
+ ρb

(
u,z1

)− ρb(u,v), ∀v ∈ K.
(3.11)

Taking v = z1 in (3.10) and v = z in (3.11), and adding the resultant inequalities gives〈
z− z1,z1− z

〉≥ 0, (3.12)

hence z = z1.
This completes the proof of Theorem 3.1. �

Notice that Theorem 3.1 suggests the following algorithms for solving the fuzzy varia-
tional-like inequality (2.5).

Algorithm 3.2. For any given u0 ∈ K , w0 ∈ (Tu0 )a(u0), y0 ∈ (Vu0 )c(u0), from Theorem 3.1
the auxiliary problem P(u0,w0, y0) has a unique solution u1 ∈ K , that is,〈
u1,v−u1

〉≥ 〈u0,v−u1
〉− ρ

〈
N
(
w0, y0

)
,η
(
v,u1

)〉
+ ρb

(
u0,u1

)− ρb
(
u0,v

)
, ∀v ∈ K.

(3.13)

Now since w0 ∈ (Tu0 )a(u0) ∈ CB(H), y0 ∈ (Vu0 )c(u0) ∈ CB(H), by Nadler’s theorem [11],
there exist w1 ∈ (Tu1 )a(u1), y1 ∈ (Vu1 )c(u1) such that

∥∥w0−w1
∥∥≤ (1+1)D

((
Tu0

)
a(u0)

,
(
Tu1

)
a(u1)

)
,

∥∥y0− y1
∥∥≤ (1+1)D

((
Vu0

)
c(u0)

,
(
Vu1

)
c(u1)

)
,

(3.14)

whereD is the Hausdorff metric on CB(H). Again by Theorem 3.1, the auxiliary problem
P(u1,w1, y1) has a unique solution u2 ∈ K , that is,〈

u2,v−u2
〉≥ 〈u1,v−u2

〉− ρ
〈
N
(
w1, y1

)
,η
(
v,u2

)〉
+ ρb

(
u1,u2

)− ρb
(
u1,v

) ∀v ∈ K.
(3.15)

Sincew1 ∈ (Tu1 )a(u1) ∈ CB(H), y1 ∈ (Vu1 )c(u1) ∈ CB(H), again by Nadler’s theorem, there
exist w2 ∈ (Tu2 )a(u2), y2 ∈ (Vu2 )c(u2), such that

∥∥w1−w2
∥∥≤ (1+ 1

2

)
D
((
Tu1

)
a(u1)

,
(
Tu2

)
a(u2)

)
,

∥∥y1− y2
∥∥≤ (1+ 1

2

)
D
((
Vu1

)
c(u1)

,
(
Vu2

)
c(u2)

)
.

(3.16)
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Continuing in this way, we can obtain sequences {un} ⊂ K , {wn},{yn} ⊂H such that
(i) wn ∈ (Tun)a(un),

∥∥wn−wn+1
∥∥≤ (1+ 1

n+1

)
D
((
Tun

)
a(un),

(
Tun+1

)
a(un+1)

)
, (3.17)

(ii) yn ∈ (Vun)c(un),

∥∥yn− yn+1
∥∥≤ (1+ 1

n+1

)
D
((
Vun

)
c(un)

,
(
Vun+1

)
c(un+1)

)
, (3.18)

(iii)

〈
un+1,v−un+1

〉≥ 〈un,v−un+1
〉− ρ

〈
N
(
wn, yn

)
,η
(
v,un+1

)〉
+ ρb

(
un,un+1

)− ρb
(
un,v

) ∀v ∈ K , ∀n≥ 0,
(3.19)

where ρ > 0 is a constant.

4. Main results

Theorem 4.1. LetH be a real Hilbert space, K be a nonempty bounded closed convex subset
ofH , T ,V : K →�(H) be two closed fuzzy mappings satisfying condition (∗) with functions
a,c :H → [0,1], respectively, N(·,·) :H ×H →H be a nonlinear single-valued continuous
mappings and b(·,·) :H ×H →H be a nondifferentiable function satisfying the following
conditions:

(i) T ,V : K →�(H) are two Lipschitzian continuous fuzzy mappings with Lipschitzian
constants ν and µ, respectively,

(ii) the mapping x �→N(x, y) is β-Lipschitzian continuous with respect to the fuzzy map-
ping T for any given y ∈H ,

(iii) the mapping y �→N(x, y) is ξ-Lipschitzian continuous with respect to the fuzzy map-
ping V for any given x ∈H ,

(iv) N is α-strongly mixed monotone with respect to the fuzzy mappings T and V ,
(v) η : K ×K →H is σ-strongly monotone and δ-Lipschitz continuous,

here µ, ν, β, ξ, σ , δ all are positive constants.
If Assumptions 2.4 and 2.10 are satisfied and if there exists a constant ρ > 0 satisfies the

following condition:

k =
√
1− 2σ + δ2 + δ− 1

δ
,

ργ

δ
+ k < 1,

α >
γ

δ
+

√(
(β+ ξ)2− γ2

δ2

)
2k(1− k),

∣∣∣∣ρ− α− γ/δ

(β+ ξ)2− γ2/δ2

∣∣∣∣≤
√
(α− γ/δ)2− ((β+ ξ)2− γ2/δ2

)
2k(1− k)

(β+ ξ)2− γ2/δ2
,

(4.1)
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then there exist u∈ K ,w ∈ (Tu)a(u), y ∈ (Vu)c(u) which is a solution of the fuzzy variational-
like inequality (2.5) and the iterative sequences {un}, {wn}, and {yn} generated by (3.18)
converge strongly to u, w, y in H , respectively.

Proof. It follows from (3.18) that for each v ∈ K and each n≥ 1 we have〈
un,v−un

〉≥ 〈un−1,v−un
〉− ρ

〈
N
(
wn−1, yn−1

)
,η
(
v,un

)〉
+ ρb

(
un−1,un

)− ρb
(
un−1,v

)
, ∀v ∈ K ,

(4.2)

〈
un+1,v−un+1

〉≥ 〈un,v−un+1
〉− ρ

〈
N
(
wn, yn

)
,η
(
v,un+1

)〉
+ ρb

(
un,un+1

)− ρb
(
un,v), ∀v ∈ K.

(4.3)

Taking v = un+1 in (4.2) and v = un in (4.3) and then adding the resultant inequalities
gives 〈

un+1−un,un−un+1
〉≥ 〈un−un−1,un−un+1

〉
− ρ
〈
N
(
wn, yn

)−N
(
wn−1, yn−1

)
,η
(
un,un+1

)〉
+ ρb

(
un−1−un,un

)
+ ρb

(
un−un−1,un+1

)
.

(4.4)

Therefore we have〈
un−un+1,un−un+1

〉≤ 〈un−1−un,un−un+1
〉

− ρ
〈(
N
(
wn−1, yn−1

)−N
(
wn, yn

))
,η
(
un,un+1

)〉
+ ρb

(
un−un−1,un

)− ρb
(
un−un−1,un+1

)
= 〈un−1−un,un−un+1−η

(
un,un+1

)〉
+
〈
un−1−un− ρ

(
N
(
wn−1, yn−1

)−N
(
wn, yn

))
,η
(
un,un+1

)〉
+ ρ
{
b
(
un−un−1,un

)− b
(
un−un−1,un+1

)}
≤ ∥∥un−1−un

∥∥∥∥un−un+1−η
(
un,un+1

)∥∥
+
∥∥un−1−un− ρ

(
N
(
wn−1, yn−1

)−N
(
wn, yn

))∥∥∥∥η(un,un+1)∥∥
+ ργ

∥∥un−un−1
∥∥∥∥un−un+1

∥∥.
(4.5)

Now we consider the first term on the right-hand side of (4.5). Since η(·,·) is σ-
strongly monotone and δ-Lipschitzian continuous, we have∥∥un−un+1−η

(
un,un+1

)∥∥2 = ∥∥un−un+1
∥∥2− 2

〈
un−un+1,η

(
un,un+1

)〉
+
∥∥η(un,un+1)∥∥2

≤ (1− 2σ + δ2
)∥∥un−un+1

∥∥2.
(4.6)
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This implies that∥∥un−1−un
∥∥∥∥un−un+1−η

(
un,un+1

)∥∥≤ √(1− 2σ + δ2
)∥∥un−1−un

∥∥∥∥un−un+1
∥∥.

(4.7)

Now we consider the second term on the right-hand side of (4.5). By condition (iv),N
is α-strongly mixed monotone with respect to the fuzzy mappings T and V , so we have∥∥un−1−un− ρ

(
N
(
wn−1, yn−1

)−N
(
wn, yn

))∥∥2
= ∥∥un−1−un

∥∥2− 2ρ
〈
N
(
wn−1, yn−1

)−N
(
wn, yn

)
,un−1−un

〉
+ ρ2

∥∥N(wn−1, yn−1
)−N

(
wn, yn

)∥∥2
≤ ∥∥un−1−un

∥∥2− 2ρα
∥∥un−1−un

∥∥2
+ ρ2

∥∥N(wn−1, yn−1
)−N

(
wn, yn−1

)
+N

(
wn, yn−1

)−N
(
wn, yn

)∥∥2
≤ (1− 2ρα

)∥∥un−1−un
∥∥2 + ρ2

[
β
∥∥un−1−un

∥∥+ ξ
∥∥un−1−un

∥∥]2
(
by conditions (ii) and (iii)

)
= [1− 2ρα+ ρ2(β+ ξ)2

]∥∥un−1−un
∥∥2.

(4.8)

Again since η : K ×K →H is δ-Lipschitz continuous, from (4.8) we have∥∥un−1−un− ρ
(
N
(
wn−1, yn−1

)−N
(
wn, yn

))∥∥∥∥η(un,un+1)∥∥
≤ δ

√
1− 2ρα+ ρ2(β+ ξ)2

∥∥un−1−un
∥∥∥∥un−un+1

∥∥. (4.9)

Hence from (4.5), (4.8), and (4.9) we have∥∥un−un+1
∥∥2 ≤ √1− 2σ + δ2

∥∥un−1−un
∥∥∥∥un−un+1

∥∥
+
{
δ
√
1− 2ρα+ ρ2(β+ ξ)2 + ργ

}∥∥un−1−un
∥∥∥∥un−un+1

∥∥, (4.10)

that is, ∥∥un−un+1
∥∥≤ θ

∥∥un−1−un
∥∥, (4.11)

where

θ = δ

{
t(ρ) + ρ · γ

δ
+

√
1− 2σ + δ2

δ

}
, t(ρ)=

√
1− 2ρα+ ρ2(β+ ξ)2. (4.12)

Next we prove that θ < 1. Letting

k =
√
1− 2σ + δ2 + δ− 1

δ
(4.13)
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it is easy to see that

θ < 1 iff t(ρ) +
ργ

δ
+ k < 1. (4.14)

Therefore

ργ

δ
+ k < 1, t(ρ)2 <

(
1− ργ

δ
− k
)2
. (4.15)

Simplify it to obtain

ρ2
[
(β+ ξ)2−

(
γ

δ

)2]
− 2ρ

(
α− γ

δ

)
+2k(1− k) < 2kρ

γ

δ
. (4.16)

It follows from (4.16) and condition (4.1) that θ < 1. Hence from (4.11) we know that
{un} is a Cauchy sequence in K . By the closedness of K , without loss of generality, we can
assume that un→ u∈ K .

On the other hand, by condition (i) we know T ,V : K →�(H) are two Lipschitzian
continuous fuzzy mappings with Lipschitzian constants ν and µ respectively, so from
(3.18) we have

∥∥wn−wn+1
∥∥≤ (1+ 1

n+1

)
D
((
Tun

)
a(un)

,
(
Tun+1

)
a(un+1)

)
≤
(
1+

1
n+1

)
ν
∥∥un−un+1

∥∥,
∥∥yn− yn+1

∥∥≤ (1+ 1
n+1

)
D
((
Vun

)
c(un)

,
(
Vun+1

)
c(un+1)

)
≤
(
1+

1
n+1

)
µ
∥∥un−un+1

∥∥.

(4.17)

This implies that {wn}, {yn} are both Cauchy sequences inH . We can assume thatwn→w
and yn→ y (as n→∞ ). Note wn ∈ (Tun)a(un) and yn ∈ (Vun)c(un), so we have

d
(
w,
(
Tu
)
a(u)

)
≤ ∥∥w−wn

∥∥+d
(
wn,

(
Tun

)
a(un)

)
+D

((
Tun

)
a(un)

,
(
Tu
)
a(u)

)
≤ ∥∥w−wn

∥∥+0+ ν
∥∥un−u

∥∥−→ 0 (n−→∞),
(4.18)

that is, w ∈ (Tu)a(u).
Essentially the same reasoning yields y ∈ (Vu)c(u).
Now we rewrite (3.18)(iii) as follows:〈
un+1−un,v−un+1

〉
+ ρ
〈
N
(
wn, yn

)
,η
(
v,un+1

)〉
+ ρ
[
b
(
un,v

)− b
(
un,un+1

)]≥ 0.
(4.19)

Note un→ u (as n→∞), 〈un+1−un,v−un+1〉 → 0 (as n→∞) and Assumption 2.10 guar-
antee the mapping v �→ 〈N(w, y),η(u,v)〉 is upper semicontinuous, so we have〈

N(w, y),η(v,u)
〉≥ limsup

n→∞

〈
N(w, y),η

(
v,un+1

)〉
. (4.20)
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On the other hand, by condition (v) we have∥∥η(v,un+1)∥∥≤ δ
∥∥v−un+1

∥∥. (4.21)

This implies that the sequence {η(v,un+1)} is bounded. Again since N is continuous, we
have

lim
n→∞

〈
N
(
wn, yn

)−N(w, y),η
(
v,un+1

)〉= 0. (4.22)

Therefore from (4.20) and (4.22), we have

0≤ 〈N(w, y),η(v,u)
〉− limsup

n→∞

〈
N(w, y),η

(
v,un+1

)〉
= liminf

n→∞
{〈
N(w, y),η(v,u)

〉− 〈N(w, y),η
(
v,un+1

)〉}
= liminf

n→∞
{〈
N(w, y),η(v,u)

〉− 〈N(wn, yn
)
,η
(
v,un+1

)〉
+
〈
N
(
wn, yn

)−N(w, y),η
(
v,un+1

)〉}
= liminf

n→∞
{〈
N(w, y),η(v,u)

〉− 〈N(wn, yn
)
,η
(
v,un+1

)〉
+ lim

n→∞
〈
N
(
wn, yn

)−N(w, y),η
(
v,un+1

)〉}
= liminf

n→∞
{〈
N(w, y),η(v,u)

〉− 〈N(wn, yn
)
,η
(
v,un+1

)〉}
.

(4.23)

This implies that 〈
N(w, y),η(v,u)

〉≥ limsup
n→∞

〈
N
(
wn, yn

)
,η
(
v,un+1

)〉
. (4.24)

Now using Assumption 2.4, we get∣∣b(un,un+1)− b(u,u)
∣∣≤ ∣∣b(un,un+1)− b

(
un,u

)∣∣+∣∣b(un,u)− b(u,u)
∣∣

≤ γ
∥∥un∥∥∥∥un+1−u

∥∥+ γ
∥∥un−u

∥∥‖u‖ −→ 0 (as n−→∞),
(4.25)

and so

b
(
un,un+1

)−→ b(u,u), b
(
un,v

)−→ b(u,v) (as n−→∞). (4.26)

Therefore, we have

0≤ limsup
n→∞

{〈
un+1−un,v−un+1

〉
+ ρ
〈
N
(
wn, yn

)
,η
(
v,un+1

)〉
+ ρ
[
b
(
un,v

)− b
(
un,un+1

)]}
≤ ρ
〈
N(w, y),η(v,u)

〉
+ ρ
[
b(u,v)− b(u,u)

]
,

(4.27)
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that is,

〈
N(w, y),η(v,u)

〉
+ b(u,v)− b(u,u)≥ 0, ∀v ∈ K. (4.28)

This completes the proof of Theorem 4.1. �

In the case of ordinary set-valuedmappings (i.e., in the nonfuzzy case), from Theorem
4.1 we can obtain the following results.

Theorem 4.2. Let H be a real Hilbert space, K be a nonempty bounded closed convex sub-
set of H , T ,V : K → CB(H) be two mappings, N(·,·) :H ×H →H be a nonlinear single-
valued continuous mappings and b :H ×H → R be a nondifferentiable function satisfying
the following conditions:

(i) T ,V : K → CB(H) are two Lipschitzian continuous mappings with Lipschitzian con-
stants ν and µ, respectively,

(ii) the mapping x �→N(x, y) is β-Lipschitzian continuous with respect to the mapping T
for any given y ∈H ,

(iii) the mapping y �→ N(x, y) is ξ-Lipschitzian continuous with respect to the mapping
V for any given x ∈H ,

(iv) N is α-strongly mixed monotone with respect to mappings T and V ,
(v) η : K ×K →H is σ-strongly monotone and δ-Lipschitz continuous,

here µ, ν, β, ξ, σ , δ all are positive constants.
If Assumptions 2.4 and 2.10 are satisfied and if there exists a constant ρ > 0 satisfies the

following condition:

k =
√
1− 2σ + δ2 + δ− 1

δ
,

ργ

δ
+ k < 1,

α >
γ

δ
+
√(

(β+ ξ)2− γ2/δ2
)
2k(1− k),

∣∣∣∣ρ− α− γ/δ

(β+ ξ)2− γ2/δ2

∣∣∣∣≤
√
(α− γ/δ)2− ((β+ ξ)2− γ2/δ2

)
2k(1− k)

(β+ ξ)2− γ2/δ2
,

(4.29)

then there exist u ∈ K , w ∈ T(u), y ∈ V(u) which is a solution of the set-valued strongly
linear mixed variational-like inequality (2.8) and the iterative sequences {un}, {wn}, and
{yn} generated by (3.18) converge strongly to u, w, y in H , respectively.

Proof. By using the set-valuedmapping T ,V : K → CB(H) we define two fuzzy mappings
T̃(·), Ṽ(·) : K →�(H) as follows:

T̃x = χT(x), Ṽx = χV(x), (4.30)

where χT(x) and χV(x) are the characteristic functions of the sets T(x) andV(x), respective-
ly. It is easy to see that T̃ and Ṽ both are closed fuzzy mappings satisfying condition (∗)
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with constant functions a(x)= 1 and c(x)= 1,∀x ∈H , respectively. Also

(
T̃x
)
a(x) =

(
χT(x)

)
1 =

{
y ∈H : χT(x)(y)= 1

}= T(x),(
Ṽx
)
c(x) =

(
χV(x)

)
1 =

{
y ∈H : χV(x)(y)= 1

}=V(x).
(4.31)

Then the problem (2.5) is equivalent to finding u∈ K , w, y ∈H such that

(
T̃u
)
(w)= 1, (Ṽu)(y)= 1, i.e., w ∈ T(u), y ∈V(u),〈

N(w, y),η(v,u)
〉
+ b(u,v)− b(u,u)≥ 0, ∀v ∈ K.

(4.32)

Therefore the conclusion of Theorem 4.2 can be obtained from Theorem 4.1 immedi-
ately. �
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