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Global well-posedness result is established for both a 3D density-dependent modified-Leray-α
model and a 3D density-dependent modified-Leray-α-MHD model.

1. Introduction

A density-dependent Leray-α model can be written as

ρt + div
(
ρu

)
= 0,

ρvt + ρu · ∇v +∇π −Δv = 0,

v =
(
1 − α2Δ

)
u, in (0,∞) ×Ω,

divv = divu = 0, in (0,∞) ×Ω,

v = u = 0 on (0,∞) × ∂Ω,

(
ρ, ρv

)∣∣
t=0 =

(
ρ0, ρ0v0

)
in Ω ⊆ R

3,

(1.1)

where ρ is the fluid density, v is the fluid velocity field, u is the “filtered” fluid velocity, and π
is the pressure, which are unknowns. α is the lengthscale parameter that represents the width
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of the filter, and for simplicity, we will take α ≡ 1. Ω ⊆ R
3 is a bounded domain with smooth

boundary ∂Ω.
When ρ ≡ 1, the above system reduces to the well-known Leray-αmodel and has been

studied in [1, 2]. When α → 0, the above system reduces to the classical density-dependent
Navier-Stokes equation, which has receivedmany studies [3–6]. Specifically, it is proved in [3,
4] that the density-dependent Navier-Stokes equations has a unique locally smooth solution
(ρ, v) if the following two hypotheses (H1) and (H2) are satisfied:

(H1) ρ0 ∈ W1,q for some q ∈ (3, 6], v0 ∈ H1
0 ∩H2, and divv0 = 0 in R

3,

(H2) ∃π̃ and g ∈ L2 such that −Δv0 +∇π̃ = ρ1/20 g in Ω.

One of the aims of this paper is to prove a global well-posedness result for the density-
dependent Leray-α model (1.1).

Theorem 1.1. Let (H1) and (H2) be satisfied. Then the problem (1.1) has a unique smooth solution
(ρ, π, v) satisfying

ρ ∈ L∞
(
0, T ;W1,q

)
, ρt ∈ L∞(0, T ;Lq),

π ∈ L∞
(
0, T ;H1

)
∩ L2

(
0, T ;W1,6

)
,

v ∈ L∞
(
0, T ;H2

)
∩ L2

(
0, T ;W2,6

)
,

√
ρvt ∈ L∞

(
0, T ;L2

)
, vt ∈ L2

(
0, T ;H1

0

)
,

(1.2)

for any T > 0.

Next, we consider the following density-dependent modified-Leray-α-MHD model:

ρt + div
(
ρu

)
= 0, (1.3)

ρvt + ρu · ∇v +∇π −Δv = (Bs · ∇)B, (1.4)

∂tBs + u · ∇B − Bs · ∇v = ΔB, (1.5)

v =
(
1 − α2Δ

)
u, B =

(
1 − α2

MΔ
)
Bs, (1.6)

divv = divu = divB = divBs = 0, in (0,∞) ×Ω, (1.7)

v = u = 0, B · n = Bs · n = curlB × n = curlBs × n = 0, on ∂Ω, (1.8)
(
ρ, v, Bs

)∣∣
t=0 =

(
ρ0, v0, Bs0

)
in Ω ⊆ R3, (1.9)

where B and Bs represent the unknown magnetic field and the “filtered” magnetic field,
respectively. αM > 0 is the lengthscale parameter representing the width of the filter and
we will take αM = 1 for simplicity. n is the unit outward vector to ∂Ω. When α → 0 and
αM → 0, the above system (1.3)–(1.9) reduces to the well-known density-dependent MHD
equations, which have been studied by many authors (see [7–9] and referees therein). When
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ρ = 1 and αM = 0, the above system has been studied in [10] recently, and also modified
models were analyzed in [11]. In this paper, we will prove the following theorem.

Theorem 1.2. Let 0 < m ≤ ρ0 ≤ M < ∞, ρ0 ∈ W1,q with q ∈ (3, 6], v0 ∈ H1
0 ∩ H2, B0 ∈ H3,

and divv0 = divu0 = divB0 = divBs0 = 0 in Ω. Then the problem (1.3)–(1.9) has a unique smooth
solution (ρ, π, v, B, Bs) satisfying

0 < m ≤ ρ ≤ M < ∞, ρ ∈ L∞
(
0, T ;W1,q

)
, ρt ∈ L∞(0, T ;Lq),

π ∈ L∞
(
0, T ;H1

)
∩ L2

(
0, T ;W1,6

)
,

v ∈ L∞
(
0, T ;H2

)
∩ L2

(
0, T ;W2,6

)
, vt ∈ L∞

(
0, T ;L2

)
∩ L2

(
0, T ;H1

0

)
,

B ∈ L∞
(
0, T ;H3

)
, ∂tBs ∈ L∞

(
0, T ;H1

)
, ∂tB ∈ L2

(
0, T ;H1

)
,

(1.10)

for any T > 0.

For other related models, we refer to [12–16].
Since the proof of Theorem 1.1 is similar to and simpler than that of Theorem 1.2, we

only prove Theorem 1.2 for concision.

2. Proof of Theorem 1.2

By similar argument as that in [3, 4], it is easy to prove that there are T0 > 0 and a unique
smooth solution (ρ, v, B, Bs) to the problem (1.3)–(1.9) in [0, T0], andwe only need to establish
some a priori estimates for any time. Therefore, in the following estimates, we assume that
the solution (ρ, v, B, Bs) is sufficiently smooth.

First, it follows from (1.3), (1.7), and the maximum principle that

0 < m ≤ ρ(x, t) ≤ M < +∞. (2.1)

Testing (1.4) and (1.5) by v and B, respectively, using (1.3), (1.6), and (1.7), summing
up them, we see that

1
2
d

dt

∫
ρv2 + |Bs|2 + |∇Bs|2dx +

∫
|∇v|2 + |∇B|2dx = 0. (2.2)

Hence

‖u‖L∞(0,T ;H2) + ‖u‖L2(0,T ;H3) ≤ C, (2.3)

‖v‖L∞(0,T ;L2) + ‖v‖L2(0,T ;H1) ≤ C, (2.4)

‖Bs‖L∞(0,T ;H1) + ‖Bs‖L2(0,T ;H3) ≤ C, (2.5)

‖B‖L2(0,T ;H1) ≤ C. (2.6)
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Taking ∂i to (1.3), multiplying it by |∂iρ|q−2∂iρ, summing over i, using (1.7) and (2.3),
we have

d

dt

∫
∣
∣∇ρ

∣
∣qdx ≤ C‖∇u‖L∞

∥
∥∇ρ

∥
∥q

Lq ≤ C‖u‖H3

∥
∥∇ρ

∥
∥q

Lq , (2.7)

which yields

∥
∥ρ

∥
∥
L∞(0,T ;W1,q) ≤ C. (2.8)

Using (1.3), (2.3) and (2.8), we find that

∥
∥ρt

∥
∥
L∞(0,T ;Lq) ≤

∥
∥u∇ρ

∥
∥
L∞(0,T ;Lq) ≤ ‖u‖L∞

∥
∥∇ρ

∥
∥
L∞(0,T ;Lq) ≤ C

∥
∥∇ρ

∥
∥
L∞(0,T ;Lq) ≤ C. (2.9)

Multiplying (1.5) by −ΔB, using (1.6), (1.7), (2.3), and (2.4), we obtain

1
2
d

dt

∫
|∇Bs|2 + |ΔBs|2dx +

∫
|ΔB|2dx

=
∫
[(u · ∇)B − (Bs · ∇)v]ΔB dx

≤ (‖u‖L∞‖∇B‖L2 + ‖Bs‖L∞‖∇v‖L2)‖ΔB‖L2

≤ C(‖∇B‖L2 + ‖Bs‖H2‖∇v‖L2)‖ΔB‖L2

≤ C
(
‖B‖1/2

L2 ‖ΔB‖1/2
L2 + ‖Bs‖H2‖∇v‖L2

)

≤ 1
2
‖ΔB‖2L2 + C‖B‖2L2 + C‖∇v‖2L2‖Bs‖2H2 ,

(2.10)

which yields

‖Bs‖L∞(0,T ;H2) + ‖Bs‖L2(0,T ;H4) ≤ C, (2.11)

‖B‖L∞(0,T ;L2) + ‖B‖L2(0,T ;H2) ≤ C. (2.12)

Multiplying (1.4) by vt, using (1.3), (2.11), (2.12), (2.1), (2.3), and (2.4), we have

1
2
d

dt

∫
|∇v|2dx +

∫
ρv2

t dx =
∫
(Bs · ∇)B · vtdx −

∫
ρu · ∇v · vtdx

≤ ‖Bs‖L∞‖∇B‖L2‖vt‖L2 +
∥∥√ρ

∥∥
L∞ · ‖u‖L∞ · ‖∇v‖L2 ·

∥∥√ρvt

∥∥
L2

≤ C‖∇B‖L2 ·
∥∥√ρvt

∥∥
L2 + C‖∇v‖L2

∥∥√ρvt

∥∥
L2

≤ 1
2
∥∥√ρvt

∥∥2
L2 + C‖∇B‖2L2 + C‖∇v‖2L2 ,

(2.13)
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which implies

‖v‖L∞(0,T ;H1) + ‖u‖L∞(0,T ;H3) ≤ C, (2.14)

‖vt‖L2(0,T ;L2) ≤ C. (2.15)

It follows from (1.4), (2.14), (2.15), (2.11), (2.12), and the H2-theory for Stokes system
that [17]

‖v‖L2(0,T ;H2) + ‖u‖L2(0,T ;H4) ≤ C. (2.16)

Similarly, it follows from (1.5), (2.11), (2.12), and (2.16) that

‖∂tBs‖L2(0,T ;L2) ≤ C. (2.17)

Taking ∂t to (1.5), multiplying it by ∂tB, using (1.7), (1.8), (2.12), (2.11), (2.14), and
(2.15), we get

1
2
d

dt

∫
|∂tBs|2 + |∇∂tBs|2dx +

∫
|∇Bt|2dx

= −
∫
ut · ∇B · Btdx +

∫
∂tBs · ∇v · Btdx +

∫
Bs · ∇vt · Btdx

=
∫
ut∇Bt · Bdx +

∫
∂tBs · ∇v · Btdx −

∫
Bs · ∇Bt · vtdx

≤ ‖ut‖L∞‖∇Bt‖L2‖B‖L2 + ‖∂tBs‖L3 · ‖∇v‖L2 · ‖Bt‖L6 + ‖Bs‖L∞‖∇Bt‖L2‖vt‖L2

≤ C‖vt‖L2‖∇Bt‖L2 + C‖∂tBs‖H1‖∇Bt‖L2

≤ 1
2
‖∇Bt‖2L2 + C‖vt‖2L2 + C‖∂tBs‖2H1 ,

(2.18)

which implies

‖∂tBs‖L∞(0,T ;H1) + ‖∂tBs‖L2(0,T ;H3) ≤ C, (2.19)

‖Bt‖L2(0,T ;H1) ≤ C. (2.20)

Due to (1.5), (2.3), (2.11), (2.12), (2.14), (2.19), (2.16), and the H2-theory of the elliptic
equations, we have

‖B‖L∞(0,T ;H2) + ‖B‖L2(0,T ;H3) ≤ C, (2.21)

‖Bs‖L∞(0,T ;H4) + ‖Bs‖L2(0,T ;H5) ≤ C. (2.22)
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Taking ∂t to (1.4), we see that

ρvtt + ρu · ∇vt +∇πt −Δvt = ∂tBs · ∇B + Bs · ∇∂tB − ρtvt −
(
ρtu + ρut

) · ∇v. (2.23)

Multiplying the above equation by vt, using (1.3), (2.19), (2.21), (2.22), (2.9), and
(2.14), we deduce that

1
2
d

dt

∫
ρv2

t dx +
∫
|∇vt|2dx

≤ ‖∂tBs‖L6 · ‖∇B‖L2 · ‖vt‖L3

+ ‖Bs‖L∞ · ‖∇∂tB‖L2 · ‖vt‖L2 +
∥
∥ρt

∥
∥
Lq · ‖vt‖L2q/(q−2) · ‖vt‖L2

+
∥∥ρt

∥∥
Lq · ‖u‖L∞ · ‖∇v‖L2 · ‖vt‖L2q/(q−2) +

∥∥ρ
∥∥
L∞‖ut‖L∞ · ‖∇v‖L2 · ‖vt‖L2

≤ C‖vt‖L3 + C‖∇∂tB‖L2‖vt‖L2 + C‖vt‖L2q/(q−2)‖vt‖L2 + C‖vt‖L2q/(q−2) + C‖vt‖2L2

≤ 1
2
‖∇vt‖2L2 + C‖vt‖2L2 + C‖∇∂tB‖2L2 + C,

(2.24)

which gives

‖vt‖L∞(0,T ;L2) + ‖vt‖L2(0,T ;H1
0 )
≤ C. (2.25)

Combining (1.4), (2.21), (2.22), (2.25), (2.14), and the regularity theory of the Stokes
system [17], we obtain

‖v‖L∞(0,T ;H2) + ‖v‖L2(0,T ;W2,6) ≤ C,

‖π‖L∞(0,T ;H1) + ‖π‖L2(0,T ;W1,6) ≤ C,

‖u‖L∞(0,T ;H4) + ‖u‖L2(0,T ;W4,6) ≤ C.

(2.26)

Similarly, one can prove that

‖B‖L∞(0,T ;H3) ≤ C. (2.27)

This completes the proof.
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