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We introduce the shrinking hybrid projection method for finding a common element of the set of
fixed points of strictly pseudocontractive mappings, the set of common solutions of the variational
inequalities with inverse-strongly monotone mappings, and the set of common solutions of
generalized mixed equilibrium problems in Hilbert spaces. Furthermore, we prove strong
convergence theorems for a new shrinking hybrid projection method under some mild conditions.
Finally, we apply our results to Convex Feasibility Problems (CFP). The results obtained in this
paper improve and extend the corresponding results announced by Kim et al. (2010) and the
previously known results.

1. Introduction

LetH be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, and let E be a nonempty
closed convex subset of H . Let T :E → E be a mapping. In the sequel, we will use F(T)
to denote the set of fixed points of T , that is, F(T) = {x ∈ E : Tx = x}. We denote weak
convergence and strong convergence by notations ⇀ and → , respectively.

Let S :E → E be a mapping. Then S is called

(1) nonexpansive if

∥
∥Sx − Sy

∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ E, (1.1)
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(2) strictly pseudocontractivewith the coefficient k ∈ [0, 1) if

∥
∥Sx − Sy

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 + k

∥
∥(I − S)x − (I − S)y

∥
∥
2
, ∀x, y ∈ E, (1.2)

(3) pseudocontractive if

∥
∥Sx − Sy

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 +

∥
∥(I − S)x − (I − S)y

∥
∥
2
, ∀x, y ∈ E. (1.3)

The class of strictly pseudocontractive mappings falls into the one between classes of
nonexpansive mappings and pseudocontractive mappings. Within the past several decades,
many authors have been devoted to the studies on the existence and convergence of fixed
points for strictly pseudocontractive mappings. In 2008, Zhou [1] considered a convex
combination method to study strictly pseudocontractive mappings. More precisely, take
k ∈ [0, 1), and define a mapping Sk by

Skx = kx + (1 − k)Sx, ∀x ∈ E, (1.4)

where S is strictly pseudocontractive mappings. Under appropriate restrictions on k, it is
proved that the mapping Sk is nonexpansive. Therefore, the techniques of studying nonex-
pansivemappings can be applied to studymore general strictly pseudocontractivemappings.

Recall that letting A :E → H be a mapping, then A is called

(1) monotone if

〈

Ax −Ay, x − y
〉 ≥ 0, ∀x, y ∈ E, (1.5)

(2) β-inverse-strongly monotone if there exists a constant β > 0 such that

〈

Ax −Ay, x − y
〉 ≥ β

∥
∥Ax −Ay

∥
∥
2
, ∀x, y ∈ E. (1.6)

The domain of the function ϕ :E → � ∪ {+∞} is the set domϕ = {x ∈ E : ϕ(x) < +∞}.
Let ϕ : E → � ∪ {+∞} be a proper extended real-valued function and let F be a bifunction of
E × E into � such that E ∩ domϕ/= ∅, where � is the set of real numbers.

There exists the generalized mixed equilibrium problem for finding x ∈ E such that

F
(

x, y
)

+
〈

Ax, y − x
〉

+ ϕ
(

y
) − ϕ(x) ≥ 0, ∀y ∈ E. (1.7)

The set of solutions of (1.7) is denoted by GMEP(F, ϕ,A), that is,

GMEP
(

F, ϕ,A
)

=
{

x ∈ E :F
(

x, y
)

+
〈

Ax, y − x
〉

+ ϕ
(

y
) − ϕ(x) ≥ 0, ∀y ∈ E

}

. (1.8)
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We see that x is a solution of a problem (1.7) which implies that x ∈ domϕ = {x ∈ E : ϕ(x) <
+∞}.

In particular, if A ≡ 0, then the problem (1.7) is reduced into the mixed equilibrium
problem [2] for finding x ∈ E such that

F
(

x, y
)

+ ϕ
(

y
) − ϕ(x) ≥ 0, ∀y ∈ E. (1.9)

The set of solutions of (1.9) is denoted by MEP(F, ϕ).
If A ≡ 0 and ϕ ≡ 0, then the problem (1.7) is reduced into the equilibrium problem [3]

for finding x ∈ E such that

F
(

x, y
) ≥ 0, ∀y ∈ E. (1.10)

The set of solutions of (1.10) is denoted by EP(F). This problem contains fixed point problems
and includes as special cases numerous problems in physics, optimization, and economics.
Some methods have been proposed to solve the equilibrium problem; please consult [4, 5].

If F ≡ 0 and ϕ ≡ 0, then the problem (1.7) is reduced into the Hartmann-Stampacchia
variational inequality [6] for finding x ∈ E such that

〈

Ax, y − x
〉 ≥ 0, ∀y ∈ E. (1.11)

The set of solutions of (1.11) is denoted by VI(E,A). The variational inequality has been
extensively studied in the literature. See, for example, [7–10] and the references therein.

Many authors solved the problems GMEP(F, ϕ,A), MEP(F, ϕ), and EP(F) based on
iterative methods; see, for instance, [4, 5, 11–25] and reference therein.

In 2007, Tada and Takahashi [26] introduced a hybrid method for finding the common
element of the set of fixed point of nonexpansive mapping and the set of solutions of
equilibrium problems in Hilbert spaces. Let {xn} and {un} be sequences generated by the
following iterative algorithm:

x1 = x ∈ H,

F
(

un, y
)

+
1
rn

〈

y − un, un − xn

〉 ≥ 0, ∀y ∈ E,

wn = (1 − αn)xn + αnSun,

En = {z ∈ H : ‖wn − z‖ ≤ ‖xn − z‖},
Dn = {z ∈ H : 〈xn − z, x − xn〉 ≥ 0},

xn+1 = PEn∩Dnx, ∀n ≥ 1.

(1.12)

Then, they proved that, under certain appropriate conditions imposed on {αn} and {rn}, the
sequence {xn} generated by (1.12) converges strongly to PF(S)∩EP(F)x.

In 2009, Qin and Kang [27] introduced an explicit viscosity approximation method for
finding a common element of the set of fixed point of strictly pseudocontractive mappings
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and the set of solutions of variational inequalities with inverse-strongly monotone mappings
in Hilbert spaces:

x1 ∈ E,

zn = PE

(

xn − μnCxn

)

,

yn = PE(xn − λnBxn),

xn+1 = εnf(xn) + βnxn + γn
[

α
(1)
n Skxn + α

(2)
n yn + α

(3)
n zn

]

, ∀n ≥ 1.

(1.13)

Then, they proved that, under certain appropriate conditions imposed on {εn}, {βn}, {γn},
{α(1)

n }, {α(2)
n }, and {α(3)

n }, the sequence {xn} generated by (1.13) converges strongly to q ∈
F(S) ∩ VI(E, B) ∩VI(E,C), where q = PF(S)∩VI(E,B)∩VI(E,C)f(q).

In 2010, Kumam and Jaiboon [28] introduced a new method for finding a common
element of the set of fixed point of strictly pseudocontractive mappings, the set of common
solutions of variational inequalities with inverse-strongly monotone mappings, and the set of
common solutions of a system of generalized mixed equilibrium problems in Hilbert spaces.
Then, they proved that, under certain appropriate conditions imposed on {εn}, {βn}, and
{α(i)

n }, where i = 1, 2, 3, 4, 5. The sequence {xn} converges strongly to q ∈ Θ := F(S)∩VI(E, B)∩
VI(E,C) ∩GMEP(F1, ϕ,A1) ∩GMEP(F2, ϕ,A2), where q = PΘ(I −A + γf)(q).

In this paper, motivate, by Tada and Takahashi [26], Qin and Kang [27], and Kumam
and Jaiboon [28], we introduce a new shrinking projection method for finding a common
element of the set of fixed points of strictly pseudocontractive mappings, the set of common
solutions of generalizedmixed equilibrium problems, and the set of common solutions of the
variational inequalities for inverse-strongly monotone mappings in Hilbert spaces. Finally,
we apply our results to Convex Feasibility Problems (CFP). The results obtained in this paper
improve and extend the corresponding results announced by the previously known results.

2. Preliminaries

Let H be a real Hilbert space, and let E be a nonempty closed convex subset of H . In a real
Hilbert spaceH , it is well known that

∥
∥λx + (1 − λ)y

∥
∥2 = λ‖x‖2 + (1 − λ)

∥
∥y

∥
∥2 − λ(1 − λ)

∥
∥x − y

∥
∥2
, (2.1)

for all x, y ∈ H and λ ∈ [0, 1].
For any x ∈ H , there exists a unique nearest point in E, denoted by PEx, such that

‖x − PEx‖ ≤ ∥
∥x − y

∥
∥, ∀y ∈ E. (2.2)

The mapping PE is called the metric projection of H onto E.
It is well known that PE is a firmly nonexpansive mapping of H onto E, that is,

〈

x − y, PEx − PEy
〉 ≥ ∥

∥PEx − PEy
∥
∥
2
, ∀x, y ∈ H. (2.3)
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Moreover, PEx is characterized by the following properties: PEx ∈ E and

〈

x − PEx, y − PEx
〉 ≤ 0,

∥
∥x − y

∥
∥
2 ≥ ‖x − PEx‖2 +

∥
∥y − PEx

∥
∥
2 (2.4)

for all x ∈ H, y ∈ E.

Lemma 2.1. Let E be a nonempty closed convex subset of a real Hilbert space H . Given x ∈ H and
z ∈ E, then,

z = PEx ⇐⇒ 〈

x − z, y − z
〉 ≤ 0, ∀y ∈ E. (2.5)

Lemma 2.2. Let H be a Hilbert space, let E be a nonempty closed convex subset of H , and let B be a
mapping of E intoH . Let u ∈ E. Then, for λ > 0,

u ∈ VI(E, B) ⇐⇒ u = PE(u − λBu), (2.6)

where PE is the metric projection of H onto E.

Lemma 2.3 (see [1]). Let E be a nonempty closed convex subset of a real Hilbert space H , and let
S : E → E be a k-strictly pseudocontractive mapping with a fixed point. Then F(S) is closed and
convex. Define Sk : E → E by Sk = kx + (1 − k)Sx for each x ∈ E. Then Sk is nonexpansive such
that F(Sk) = F(S).

Lemma 2.4 (see [29]). Let E be a closed convex subset of a real Hilbert space H , and let S :E → E
be a nonexpansive mapping. Then I − S is demiclosed at zero; that is,

xn ⇀ x, xn − Sxn −→ 0 (2.7)

implies x = Sx.

Lemma 2.5 (see [30]). Each Hilbert spaceH satisfies the Kadec-Klee property, for any sequence {xn}
with xn ⇀ x and ‖xn‖ → ‖x‖ together implying ‖xn − x‖ → 0.

Lemma 2.6 (see [31]). Let E be a closed convex subset of H . Let {xn} be a bounded sequence in H .
Assume that

(1) the weak ω-limit set ωw(xn) ⊂ E,

(2) for each z ∈ E, limn→∞‖xn − z‖ exists.
Then {xn} is weakly convergent to a point in E.

Lemma 2.7 (see [32]). Let E be a closed convex subset ofH . Let {xn} be a sequence inH and u ∈ H .
Let q = PEu. If {xn} is ωw(xn) ⊂ E and satisfies the condition

‖xn − u‖ ≤ ∥
∥u − q

∥
∥ (2.8)

for all n, then xn → q.
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Lemma 2.8 (see [33]). Let E be a nonempty closed convex subset of a strictly convex Banach space
X. Let {Tn : n ∈ �} be a sequence of nonexpansive mappings on E. Suppose

⋂∞
n=1 F(Tn) is nonempty.

Let δn be a sequence of positive number with
∑∞

n=1 δn = 1. Then a mapping S on E defined by

Sx =
∞∑

n=1

δnTnx (2.9)

for x ∈ E is well defined, nonexpansive, and F(S) =
⋂∞

n=1 F(Tn) holds.

For solving the mixed equilibrium problem, let us give the following assumptions for
the bifunction F, the function A, and the set E:

(A1) F(x, x) = 0 for all x ∈ E

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for all x, y ∈ E

(A3) for each x, y, z ∈ E, limt→ 0F(tz + (1 − t)x, y) ≤ F(x, y)

(A4) for each x ∈ E, y �→ F(x, y) is convex and lower semicontinuous

(A5) for each y ∈ E, x �→ F(x, y) is weakly upper semicontinuous

(B1) for each x ∈ H and r > 0, there exists a bounded subset Dx ⊆ E and yx ∈ E such
that, for any z ∈ E \Dx,

F
(

z, yx

)

+ ϕ
(

yx

) − ϕ(z) +
1
r

〈

yx − z, z − x
〉

< 0, (2.10)

(B2) E is a bounded set.

By similar argument as in the proof of Lemma 2.9 in [34], we have the following lemma
appearing.

Lemma 2.9. Let E be a nonempty closed convex subset of H . Let F : E × E → � be a bifunction
that satisfies (A1)–(A5), and let ϕ :E → � ∪ {+∞} be a proper lower semicontinuous and convex
function. Assume that either (B1) or (B2) holds. For r > 0 and x ∈ H , define a mapping TF

r : H → E
as follows:

TF
r (x) =

{

z ∈ E :F
(

z, y
)

+ ϕ
(

y
) − ϕ(z) +

1
r

〈

y − z, z − x
〉 ≥ 0, ∀y ∈ E

}

, (2.11)

for all z ∈ H . Then, the following hold:

(1) for each x ∈ H , TF
r (x)/= ∅,

(2) TF
r is single valued,

(3) TF
r is firmly nonexpansive, that is, for any x, y ∈ H ,

∥
∥
∥TF

r x − TF
r y

∥
∥
∥

2 ≤
〈

TF
r x − TF

r y, x − y
〉

, (2.12)

(4) F(TF
r ) = MEP(F, ϕ),

(5) MEP(F, ϕ) is closed and convex.
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Lemma 2.10. Let H be a Hilbert space, let E be a nonempty closed convex subset of H , and let
A : E → H be ρ-inverse-strongly monotone. If 0 < r ≤ 2ρ, then I − ρA is a nonexpansive mapping
in H .

Proof. For all x, y ∈ E and 0 < r ≤ 2ρ, we have

∥
∥(I − rA)x − (I − rA)y

∥
∥
2 =

∥
∥
(

x − y
) − r

(

Ax −Ay
)∥
∥
2

=
∥
∥x − y

∥
∥
2 − 2r

〈

x − y,Ax −Ay
〉

+ r2
∥
∥Ax −Ay

∥
∥
2

≤ ∥
∥x − y

∥
∥
2 − 2rρ

∥
∥Ax −Ay

∥
∥ + r2

∥
∥Ax −Ay

∥
∥
2

=
∥
∥x − y

∥
∥
2 + r

(

r − 2ρ
)∥
∥Ax −Ay

∥
∥
2

≤ ∥
∥x − y

∥
∥
2
.

(2.13)

So, I − ρA is a nonexpansive mapping of E into H .

3. Main Results

In this section, we prove a strong convergence theorem of the new shrinking projection
method for finding a common element of the set of fixed points of strictly pseudocontractive
mappings, the set of common solutions of generalized mixed equilibrium problems and
the set of common solutions of the variational inequalities with inverse-strongly monotone
mappings in Hilbert spaces.

Theorem 3.1. Let E be a nonempty closed convex subset of a real Hilbert space H . Let F1 and F2

be two bifunctions from E × E to � satisfying (A1)–(A5), and let ϕ : E → � ∪ {+∞} be a proper
lower semicontinuous and convex function with either (B1) or (B2). Let A1, A2, B, C be four ρ, ω,
β, ξ-inverse-strongly monotone mappings of E into H , respectively. Let S : E → E be a k-strictly
pseudocontractive mappingwith a fixed point. Define a mappingSk : E → E by Skx = kx+(1−k)Sx,
for all x ∈ E. Suppose that

Θ := F(S) ∩GMEP
(

F1, ϕ,A1
) ∩GMEP

(

F2, ϕ,A2
) ∩ VI(E, B) ∩VI(E,C)/= ∅. (3.1)

Let {xn} be a sequence generated by the following iterative algorithm:

x0 ∈ H, E1 = E, x1 = PE1x0, un ∈ E, vn ∈ E,

F1(un, u) + ϕ(u) − ϕ(un) + 〈A1xn, u − un〉 + 1
rn
〈u − un, un − xn〉 ≥ 0, ∀u ∈ E,

F2(vn, v) + ϕ(v) − ϕ(vn) + 〈A2xn, v − vn〉 + 1
sn

〈v − vn, vn − xn〉 ≥ 0, ∀v ∈ E,

yn = PE(xn − λnBxn), zn = PE

(

xn − μnCxn

)

,
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tn = α
(1)
n Skxn + α

(2)
n yn + α

(3)
n zn + α

(4)
n un + α

(5)
n vn,

En+1 = {w ∈ En : ‖tn −w‖ ≤ ‖xn −w‖},

xn+1 = PEn+1x0, ∀n ≥ 0,

(3.2)

where {α(i)
n } are sequences in (0, 1), where i = 1, 2, 3, 4, 5, rn ∈ (0, 2ρ), sn ∈ (0, 2ω), and {λn}, {μn}

are positive sequences. Assume that the control sequences satisfy the following restrictions:

(C1)
∑5

i=1 α
(i)
n = 1,

(C2) limn→∞α
(i)
n = α(i) ∈ (0, 1), where i = 1, 2, 3, 4, 5,

(C3) a ≤ rn ≤ 2ρ and b ≤ sn ≤ 2ω, where a, b are two positive constants,

(C4) c ≤ λn ≤ 2β and d ≤ μn ≤ 2ξ, where c, d are two positive constants,

(C5) limn→∞|λn+1 − λn| = limn→∞|μn+1 − μn| = 0.

Then, {xn} converges strongly to PΘx0.

Proof. Letting p ∈ Θ and by Lemma 2.9, we obtain

p = PE

(

p − λnBp
)

= PE

(

p − μnCp
)

= TF1
rn (I − rnA1)p = TF2

sn (I − snA2)p. (3.3)

Note that un = TF1
rn (I − rnA1)xn ∈ domϕ and vn = TF2

sn (I − snA2)xn ∈ domϕ, then we have

∥
∥un − p

∥
∥ = ‖TF1

rn (I − rnA1)xn − TF1
rn (I − rnA1)p‖ ≤ ‖xn − p‖,

∥
∥vn − p

∥
∥ =

∥
∥
∥TF2

sn (I − snA2)xn − TF2
sn (I − snA2)p

∥
∥
∥ ≤ ∥

∥xn − p
∥
∥.

(3.4)

Next, we will divide the proof into six steps.

Step 1. We show that {xn} is well defined and En is closed and convex for any n ≥ 1.
From the assumption, we see that E1 = E is closed and convex. Suppose that Ek is

closed and convex for some k ≥ 1. Next, we show that Ek+1 is closed and convex for some k.
For any p ∈ Ek , we obtain

∥
∥tk − p

∥
∥ ≤ ∥

∥xk − p
∥
∥ (3.5)

is equivalent to

∥
∥tk − p

∥
∥
2 + 2

〈

tk − xk, xk − p
〉 ≤ 0. (3.6)

Thus, Ek+1 is closed and convex. Then, En is closed and convex for any n ≥ 1. This implies
that {xn} is well defined.
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Step 2. We show that Θ ⊂ En for each n ≥ 1. From the assumption, we see that Θ ⊂ E = E1.
Suppose Θ ⊂ Ek for some k ≥ 1. For any p ∈ Θ ⊂ Ek, since yn = PE(xn − λnBxn) and
zn = PE(xn − μnCxn), for each λn ≤ 2β and μn ≤ 2ξ by Lemma 2.10, we have I − λnB and
I − μnC are nonexpansive. Thus, we obtain

∥
∥yn − p

∥
∥ =

∥
∥PE(xn − λnBxn) − PE

(

p − λnBp
)∥
∥

≤ ∥
∥(xn − λnBxn) −

(

p − λnBp
)∥
∥

=
∥
∥(I − λnB)xn − (I − λnB)p

∥
∥

≤ ∥
∥xn − p

∥
∥,

∥
∥zn − p

∥
∥ =

∥
∥PE

(

xn − μnCxn

) − PE

(

p − μnCp
)∥
∥

≤ ∥
∥
(

xn − μnCxn

) − (

p − μnCp
)∥
∥

=
∥
∥
(

I − μnC
)

xn −
(

I − μnC
)

p
∥
∥

≤ ∥
∥xn − p

∥
∥.

(3.7)

From Lemma 2.3, we have Sk is nonexpansive with F(Sk) = F(S). It follows that

∥
∥tn − p

∥
∥ =

∥
∥
∥α

(1)
n Skxn + α

(2)
n yn + α

(3)
n zn + α

(4)
n un + α

(5)
n vn − p

∥
∥
∥

≤ α
(1)
n

∥
∥Skxn − p

∥
∥ + α

(2)
n

∥
∥yn − p

∥
∥ + α

(3)
n

∥
∥zn − p

∥
∥ + α

(4)
n

∥
∥un − p

∥
∥ + α

(5)
n

∥
∥vn − p

∥
∥

≤ α
(1)
n

∥
∥xn − p

∥
∥ + α

(2)
n

∥
∥xn − p

∥
∥ + α

(3)
n

∥
∥xn − p

∥
∥ + α

(4)
n

∥
∥xn − p

∥
∥ + α

(5)
n

∥
∥xn − p

∥
∥

=
∥
∥xn − p

∥
∥.

(3.8)

It follows that p ∈ Ek+1. This implies that Θ ⊂ En for each n ≥ 1.

Step 3. We claim that limn→∞‖xn+1 − xn‖ = 0 and limn→∞‖xn − tn‖ = 0.
From xn = PEnx0, we get

〈

x0 − xn, xn − y
〉 ≥ 0 (3.9)

for each y ∈ En. Using Θ ⊂ En, we have

〈

x0 − xn, xn − p
〉 ≥ 0 for each p ∈ Θ, n ∈ �. (3.10)
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Hence, for p ∈ Θ, we obtain

0 ≤ 〈

x0 − xn, xn − p
〉

=
〈

x0 − xn, xn − x0 + x0 − p
〉

= −〈x0 − xn, x0 − xn〉 +
〈

x0 − xn, x0 − p
〉

≤ −‖x0 − xn‖2 + ‖x0 − xn‖
∥
∥x0 − p

∥
∥.

(3.11)

It follows that

‖x0 − xn‖ ≤ ∥
∥x0 − p

∥
∥, ∀p ∈ Θ, n ∈ �. (3.12)

From xn = PEnx0 and xn+1 = PEn+1x0 ∈ En+1 ⊂ En, we have

〈x0 − xn, xn − xn+1〉 ≥ 0. (3.13)

For n ∈ �, we compute

0 ≤ 〈x0 − xn, xn − xn+1〉

= 〈x0 − xn, xn − x0 + x0 − xn+1〉

= −〈x0 − xn, x0 − xn〉 + 〈x0 − xn, x0 − xn+1〉

≤ −‖x0 − xn‖2 + 〈x0 − xn, x0 − xn+1〉

≤ −‖x0 − xn‖2 + ‖x0 − xn‖‖x0 − xn+1‖,

(3.14)

and then

‖x0 − xn‖ ≤ ‖x0 − xn+1‖, ∀n ∈ �. (3.15)

Thus, the sequence {‖xn−x0‖} is a bounded and nondecreasing sequence, so limn→∞‖xn−x0‖
exists; that is, there exists m such that

m = lim
n→∞

‖xn − x0‖. (3.16)
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From (3.13), we get

‖xn − xn+1‖2 = ‖xn − x0 + x0 − xn+1‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − xn+1〉 + ‖x0 − xn+1‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − xn + xn − xn+1〉 + ‖x0 − xn+1‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − xn〉 + 2〈xn − x0, xn − xn+1〉 + ‖x0 − xn+1‖2

= −‖xn − x0‖2 + 2〈xn − x0, xn − xn+1〉 + ‖x0 − xn+1‖2

≤ −‖xn − x0‖2 + ‖x0 − xn+1‖2.

(3.17)

By (3.16), we obtain

lim
n→∞

‖xn − xn+1‖ = 0. (3.18)

Since xn+1 = PEn+1x0 ∈ En+1 ⊂ En, we have

‖xn − tn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − tn‖ ≤ 2‖xn − xn+1‖. (3.19)

By (3.18), we obtain

lim
n→∞

‖xn − tn‖ = 0. (3.20)

Step 4. We claim that the following statements hold:

(S1) limn→∞‖xn − un‖ = 0,

(S2) limn→∞‖xn − yn‖ = 0,

(S3) limn→∞‖xn − zn‖ = 0,

(S4) limn→∞‖xn − vn‖ = 0.

For p ∈ Θ, we note that

∥
∥zn − p

∥
∥
2 =

∥
∥PE

(

xn − μnCxn

) − PE

(

p − μnCp
)∥
∥
2

≤ ∥
∥
(

xn − μnCxn

) − (

p − μnCp
)∥
∥
2

=
∥
∥
(

xn − p
) − μn

(

Cxn − Cp
)∥
∥
2

≤ ∥
∥xn − p

∥
∥
2 − 2μn

〈

xn − p, Cxn − Cp
〉

+ μ2
n

∥
∥Cxn − Cp

∥
∥
2

≤ ∥
∥xn − p

∥
∥2 + μn

(

μn − 2ξ
)∥
∥Cxn − Cp

∥
∥2

=
∥
∥xn − p

∥
∥
2 − μn

(

2ξ − μn

)∥
∥Cxn − Cp

∥
∥
2
.

(3.21)
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Similarly, we also have

∥
∥yn − p

∥
∥
2 ≤ ∥

∥xn − p
∥
∥
2 − λn

(

2β − λn

)∥
∥Bxn − Bp

∥
∥
2
. (3.22)

We note that

∥
∥un − p

∥
∥
2 =

∥
∥
∥TF1

rn (I − rnA1)xn − TF1
rn (I − rnA1)p

∥
∥
∥

2

≤ ∥
∥(I − rnA1)xn − (I − rnA1)p

∥
∥
2

=
∥
∥
(

xn − p
) − rn

(

A1xn −A1p
)∥
∥
2

=
∥
∥xn − p

∥
∥2 − 2rn

〈

xn − p,A1xn −A1p
〉

+ r2n
∥
∥A1xn −A1p

∥
∥2

≤ ∥
∥xn − p

∥
∥
2 − 2rnρ

∥
∥A1xn −A1p

∥
∥
2 + r2n

∥
∥A1xn −A1p

∥
∥
2

=
∥
∥xn − p

∥
∥
2 + rn

(

rn − 2ρ
)∥
∥A1xn −A1p

∥
∥
2

=
∥
∥xn − p

∥
∥
2 − rn

(

2ρ − rn
)∥
∥A1xn −A1p

∥
∥
2
.

(3.23)

Similarly, we also have

∥
∥vn − p

∥
∥2 ≤ ∥

∥xn − p
∥
∥2 − sn(2ω − sn)

∥
∥A2xn −A2p

∥
∥2
. (3.24)

Observing that

∥
∥tn − p

∥
∥
2 ≤ α

(1)
n

∥
∥Skxn − p

∥
∥
2 + α

(2)
n

∥
∥yn − p

∥
∥
2 + α

(3)
n

∥
∥zn − p

∥
∥
2 + α

(4)
n

∥
∥un − p

∥
∥
2 + α

(5)
n

∥
∥vn − p

∥
∥
2

≤ α
(1)
n

∥
∥xn − p

∥
∥
2 + α

(2)
n

∥
∥yn − p

∥
∥
2 + α

(3)
n

∥
∥zn − p

∥
∥
2 + α

(4)
n

∥
∥un − p

∥
∥
2 + α

(5)
n

∥
∥vn − p

∥
∥
2
.

(3.25)

Substituting (3.21), (3.22), (3.23), and (3.24) into (3.25), we obtain

∥
∥tn − p

∥
∥
2 ≤ α

(1)
n

∥
∥xn − p

∥
∥
2 + α

(2)
n

{∥
∥xn − p

∥
∥
2 − λn

(

2β − λn

)∥
∥Bxn − Bp

∥
∥
2
}

+ α
(3)
n

{∥
∥xn − p

∥
∥
2 − μn

(

2ξ − μn

)∥
∥Cxn − Cp

∥
∥
2
}

+ α
(4)
n

{∥
∥xn − p

∥
∥
2 − rn

(

2ρ − rn
)∥
∥A1xn −A1p

∥
∥
2
}

+ α
(5)
n

{∥
∥xn − p

∥
∥
2 − sn(2ω − sn)

∥
∥A2xn −A2p

∥
∥
2
}

=
∥
∥xn − p

∥
∥
2 − α

(2)
n λn

(

2β − λn

)∥
∥Bxn − Bp

∥
∥
2 − α

(3)
n μn

(

2ξ − μn

)∥
∥Cxn − Cp

∥
∥
2

− α
(4)
n rn

(

2ρ − rn
)∥
∥A1xn −A1p

∥
∥
2 − α

(5)
n sn(2ω − sn)

∥
∥A2xn −A2p

∥
∥
2
.

(3.26)
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It follows that

α
(3)
n μn

(

2ξ − μn

)∥
∥Cxn − Cp

∥
∥
2

≤ ∥
∥xn − p

∥
∥
2 − ∥

∥tn − p
∥
∥
2 − α

(2)
n λn

(

2β − λn

)∥
∥Bxn − Bp

∥
∥
2

− α
(4)
n rn

(

2ρ − rn
)∥
∥A1xn −A1p

∥
∥
2 − α

(5)
n sn(2ω − sn)

∥
∥A2xn −A2p

∥
∥
2

≤ (∥
∥xn − p

∥
∥ +

∥
∥tn − p

∥
∥
)‖xn − tn‖.

(3.27)

From (C2), (C4), and (3.20), we have

lim
n→∞

∥
∥Cxn − Cp

∥
∥ = 0. (3.28)

Since sn ∈ (0, 2ω), we also have

α
(5)
n sn(2ω − sn)

∥
∥A2xn −A2p

∥
∥
2

≤ ∥
∥xn − p

∥
∥
2 − ∥

∥tn − p
∥
∥
2 − α

(2)
n λn

(

2β − λn

)∥
∥Bxn − Bp

∥
∥
2

− α
(3)
n μn

(

2ξ − μn

)∥
∥Cxn −Cp

∥
∥
2 − α

(4)
n rn

(

2ρ − rn
)∥
∥A1xn −A1p

∥
∥
2

≤ (∥
∥xn − p

∥
∥ +

∥
∥tn − p

∥
∥
)‖xn − tn‖.

(3.29)

From (C2), (C3), and (3.20), we obtain

lim
n→∞

∥
∥A2xn −A2p

∥
∥ = 0. (3.30)

Similarly, by (3.28) and (3.30), we can prove that

lim
n→∞

∥
∥Bxn − Bp

∥
∥ = lim

n→∞
∥
∥A1xn −A1p

∥
∥ = 0. (3.31)
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On the other hand, letting p ∈ Θ for each n ≥ 1, we get p = TF1
rn (I − rnA1)p. Since T

F1
rn is firmly

nonexpansive, we have

∥
∥un − p

∥
∥
2 =

∥
∥
∥TF1

rn (I − rnA1)xn − TF1
rn (I − rnA1)p

∥
∥
∥

2

≤ 〈

(I − rnA1)xn − (I − rnA1)p, un − p
〉

=
1
2

{∥
∥(I − rnA1)xn − (I − rnA1)p

∥
∥2 +

∥
∥un − p

∥
∥2

−∥∥(I − rnA1)xn − (I − rnA1)p − (

un − p
)∥
∥
2
}

≤ 1
2

{∥
∥xn − p

∥
∥
2 +

∥
∥un − p

∥
∥
2 − ∥

∥(xn − un) − rn
(

A1xn −A1p
)∥
∥
2
}

≤ 1
2

{∥
∥xn − p

∥
∥
2 +

∥
∥un − p

∥
∥
2 − ‖xn − un‖2

+2rn‖xn − un‖
∥
∥A1xn −A1p

∥
∥ − r2n

∥
∥A1xn −A1p

∥
∥
2
}

.

(3.32)

So, we obtain

∥
∥un − p

∥
∥
2 ≤ ∥

∥xn − p
∥
∥
2 − ‖xn − un‖2 + 2rn‖xn − un‖

∥
∥A1xn −A1p

∥
∥. (3.33)

Observe that

∥
∥yn − p

∥
∥
2 =

∥
∥PE(xn − λnBxn) − PE

(

p − λnBp
)∥
∥
2

≤ 〈

(I − λnB)xn − (I − λnB)p, yn − p
〉

=
1
2

{∥
∥(I − λnB)xn − (I − λnB)p

∥
∥
2 +

∥
∥yn − p

∥
∥
2

−∥∥(I − λnB)xn − (I − λnB)p − (

yn − p
)∥
∥
2
}

≤ 1
2

{∥
∥xn − p

∥
∥
2 +

∥
∥yn − p

∥
∥
2 − ∥

∥
(

xn − yn

) − λn

(

Bxn − Bp
)∥
∥
2
}

≤ 1
2

{∥
∥xn − p

∥
∥
2 +

∥
∥yn − p

∥
∥
2 − ∥

∥xn − yn

∥
∥
2 − λ2

n

∥
∥Bxn − Bp

∥
∥
2

+2λn

〈

xn − yn, Bxn − Bp
〉}

,

(3.34)

and hence

∥
∥yn − p

∥
∥
2 ≤ ∥

∥xn − p
∥
∥
2 − ∥

∥xn − yn

∥
∥
2 + 2λn

∥
∥xn − yn

∥
∥
∥
∥Bxn − Bp

∥
∥. (3.35)
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By using the same argument in (3.33) and (3.35), we can get

∥
∥vn − p

∥
∥
2 ≤ ∥

∥xn − p
∥
∥
2 − ‖xn − vn‖2 + 2sn‖xn − vn‖

∥
∥A2xn −A2p

∥
∥,

∥
∥zn − p

∥
∥
2 ≤ ∥

∥xn − p
∥
∥
2 − ‖xn − zn‖2 + 2μn‖xn − zn‖

∥
∥Cxn −Cp

∥
∥.

(3.36)

Substituting (3.33), (3.35), and (3.36) into (3.25), we obtain

∥
∥tn − p

∥
∥
2 ≤ α

(1)
n

∥
∥xn − p

∥
∥
2 + α

(2)
n

∥
∥yn − p

∥
∥
2 + α

(3)
n

∥
∥zn − p

∥
∥
2

+ α
(4)
n

∥
∥un − p

∥
∥
2 + α

(5)
n ‖vn − p‖2

≤ α
(1)
n

∥
∥xn − p

∥
∥
2 + α

(2)
n

{∥
∥xn − p

∥
∥
2 − ∥

∥xn − yn

∥
∥
2 + 2λn

∥
∥xn − yn

∥
∥
∥
∥Bxn − Bp

∥
∥

}

+ α
(3)
n

{∥
∥xn − p

∥
∥
2 − ‖xn − zn‖2 + 2μn‖xn − zn‖

∥
∥Cxn − Cp

∥
∥

}

+ α
(4)
n

{∥
∥xn − p

∥
∥
2 − ‖xn − un‖2 + 2rn‖xn − un‖

∥
∥A1xn −A1p

∥
∥

}

+ α
(5)
n

{∥
∥xn − p

∥
∥
2 − ‖xn − vn‖2 + 2sn‖xn − vn‖

∥
∥A2xn −A2p

∥
∥

}

=
∥
∥xn − p

∥
∥
2 − α

(2)
n

∥
∥xn − yn

∥
∥
2 + 2λnα

(2)
n

∥
∥xn − yn

∥
∥
∥
∥Bxn − Bp

∥
∥

− α
(3)
n ‖xn − zn‖2 + 2μnα

(3)
n ‖xn − zn‖

∥
∥Cxn −Cp

∥
∥

− α
(4)
n ‖xn − un‖2 + 2rnα

(4)
n ‖xn − un‖

∥
∥A1xn −A1p

∥
∥

− α
(5)
n ‖xn − vn‖2 + 2snα

(5)
n ‖xn − vn‖

∥
∥A2xn −A2p

∥
∥.

(3.37)

It follows that

α
(4)
n ‖xn − un‖2 ≤

∥
∥xn − p

∥
∥
2 − ∥

∥tn − p
∥
∥
2 − α

(2)
n

∥
∥xn − yn

∥
∥
2 + 2λnα

(2)
n

∥
∥xn − yn

∥
∥
∥
∥Bxn − Bp

∥
∥

− α
(3)
n ‖xn − zn‖2 + 2μnα

(3)
n ‖xn − zn‖

∥
∥Cxn − Cp

∥
∥

+ 2rnα
(4)
n ‖xn − un‖

∥
∥A1xn −A1p

∥
∥ − α

(5)
n ‖xn − vn‖2

+ 2snα
(5)
n ‖xn − vn‖

∥
∥A2xn −A2p

∥
∥

≤ (∥
∥xn − p

∥
∥ +

∥
∥tn − p

∥
∥
)‖xn − tn‖ + 2λnα

(2)
n

∥
∥xn − yn

∥
∥
∥
∥Bxn − Bp

∥
∥

+ 2μnα
(3)
n ‖xn − zn‖

∥
∥Cxn − Cp

∥
∥ + 2rnα

(4)
n ‖xn − un‖

∥
∥A1xn −A1p

∥
∥

+ 2snα
(5)
n ‖xn − vn‖

∥
∥A2xn −A2p

∥
∥.

(3.38)
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From (C2), (3.20), (3.28), (3.30), and (3.31), we have

lim
n→∞

‖xn − un‖ = 0. (3.39)

By using the same argument, we can prove that

lim
n→∞

∥
∥xn − yn

∥
∥ = lim

n→∞
‖xn − zn‖ = lim

n→∞
‖xn − vn‖ = 0. (3.40)

Applying (3.20), (3.39), and (3.40), we can obtain

lim
n→∞

‖tn − un‖ = lim
n→∞

∥
∥tn − yn

∥
∥ = lim

n→∞
‖tn − zn‖ = lim

n→∞
‖tn − vn‖ = 0. (3.41)

Step 5. We show that

z ∈ F(S) ∩GMEP
(

F1, ϕ,A1
) ∩GMEP

(

F2, ϕ,A2
) ∩VI(E, B) ∩ VI(E,C). (3.42)

Assume that λn → λ ∈ [c, 2β] and μn → μ ∈ [d, 2ξ].
Define a mapping P :E → E by

Px = α(1)Skx + α(2)PE(1 − λB)x + α(3)PE

(

1 − μC
)

x + α(4)TF1
r (I − rA1)x

+ α(5)TF2
s (I − sA2)x, ∀x ∈ E,

(3.43)

where limn→∞α
(i)
n = α(i) ∈ (0, 1), when i = 1, 2, 3, 4, 5. By (C1), then we have

∑5
i=1 α

(i)
n = 1.

From Lemma 2.8, we have P is nonexpansive and

F(P) = F(Sk) ∩ F(PE(1 − λB)) ∩ F
(

PE

(

1 − μC
)) ∩ F

(

TF1
r (I − rA1)

)

∩ F
(

TF2
s (I − sA2)

)

= F(Sk) ∩GMEP
(

F1, ϕ,A1
) ∩GMEP

(

F2, ϕ,A2
) ∩ VI(E, B) ∩ VI(E,C).

(3.44)
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We note that

‖Pxn − xn‖ ≤ ‖Pxn − tn‖ + ‖tn − xn‖

=
∥
∥
∥

[

α(1)Skxn + α(2)PE(1 − λB)xn + α(3)PE

(

1 − μC
)

xn

+α(4)TF1
r (I − rA1)xn + α(5)TF2

s (I − sA2)xn

]

−
[

α
(1)
n Skxn + α

(2)
n PE(1 − λnB)xn + α

(3)
n PE

(

1 − μnC
)

xn

+α(4)
n TF1

r (I − rA1)xn + α
(5)
n TF2

s (I − sA2)xn

]∥
∥
∥ + ‖tn − xn‖

≤
∣
∣
∣α(1) − α

(1)
n

∣
∣
∣‖Skxn‖ + α(2)‖PE(I − λB)xn − PE(I − λnB)xn‖

+
∣
∣
∣α(2) − α

(2)
n

∣
∣
∣‖PE(I − λnB)xn‖

+ α(3)∥∥PE

(

I − μC
)

xn − PE

(

I − μnC
)

xn

∥
∥ +

∣
∣
∣α(3) − α

(3)
n

∣
∣
∣

∥
∥PE

(

I − μnC
)

xn

∥
∥

+
∣
∣
∣α(4) − α

(4)
n

∣
∣
∣

∥
∥
∥TF1

r (I − rA1)xn

∥
∥
∥+

∣
∣
∣α(5) − α

(5)
n

∣
∣
∣

∥
∥
∥TF2

s (I − sA2)xn

∥
∥
∥+‖tn − xn‖

≤
∣
∣
∣α(1) − α

(1)
n

∣
∣
∣‖Skxn‖ + α(2)|λn − λ|‖Bxn‖ +

∣
∣
∣α(2) − α

(2)
n

∣
∣
∣‖PE(I − λnB)xn‖

+ α(3)∣∣μn − μ
∣
∣‖Cxn‖ +

∣
∣
∣α(3) − α

(3)
n

∣
∣
∣

∥
∥PE

(

I − μnC
)

xn

∥
∥

+
∣
∣
∣α(4) − α

(4)
n

∣
∣
∣

∥
∥
∥TF1

r (I − rA1)xn

∥
∥
∥+

∣
∣
∣α(5) − α

(5)
n

∣
∣
∣

∥
∥
∥TF2

s (I − sA2)xn

∥
∥
∥+‖tn − xn‖

≤ K1

(
5∑

i=1

∣
∣
∣α(i) − α

(i)
n

∣
∣
∣ + |λn − λ| + ∣

∣μn − μ
∣
∣

)

+ ‖tn − xn‖,

(3.45)

where K1 is an appropriate constant such that

K1 = max

{

sup
n≥1

∥
∥
∥TF1

r (I − rA1)xn

∥
∥
∥, sup

n≥1

∥
∥
∥TF2

s (I − sA2)xn

∥
∥
∥, sup

n≥1
‖PE(I − λnB)xn‖,

sup
n≥1

∥
∥PE

(

I − μnC
)

xn

∥
∥, sup

n≥1
‖Bxn‖, sup

n≥1
‖Cxn‖, sup

n≥1
‖Skxn‖

}

.

(3.46)

From (C2), (C5), and (3.20), we obtain

lim
n→∞

‖xn − Pxn‖ = 0. (3.47)
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Since {xni} is bounded, there exists a subsequence {xni} of {xn} which converges weakly to
z. Without loss of generality, we may assume that {xni} ⇀ z. It follows from (3.47), that

lim
n→∞

‖xni − Pxni‖ = 0. (3.48)

It follows from Lemma 2.4 that z ∈ F(P). By (3.44), we have z ∈ Θ.

Step 6. Finally, we show that xn → z, where z = PΘx0.
Since Θ is nonempty closed convex subset of H , there exists a unique z′ ∈ Θ such that

z′ = PΘx0. Since z′ ∈ Θ ⊂ En and xn = PEnx0, we have

‖x0 − xn‖ = ‖x0 − PEnx0‖ ≤ ∥
∥x0 − z′

∥
∥ (3.49)

for all n ≥ 1. From (3.49), {xn} is bounded, so ωw(xn)/= ∅. By the weak lower semicontinuity
of the norm, we have

‖x0 − z‖ ≤ lim inf
i→∞

‖x0 − xni‖ ≤ ∥
∥x0 − z′

∥
∥. (3.50)

Since z ∈ ωw(xn) ⊂ Θ, we obtain

∥
∥x0 − z′

∥
∥ = ‖x0 − PΘx0‖ ≤ ‖x0 − z‖. (3.51)

Using (3.49) and (3.50), we obtain z′ = z. Thus, ωw(xn) = {z} and xn ⇀ z. So we have

∥
∥x0 − z′

∥
∥ ≤ ‖x0 − z‖ ≤ lim inf

i→∞
‖x0 − xn‖ ≤ lim sup

i→∞
‖x0 − xn‖ ≤ ∥

∥x0 − z′
∥
∥. (3.52)

Thus,

‖x0 − z‖ = lim
i→∞

‖x0 − xn‖ =
∥
∥x0 − z′

∥
∥. (3.53)

From xn ⇀ z, we obtain (x0 − xn) ⇀ (x0 − z). Using Lemma 2.5, we obtain that

‖xn − z‖ = ‖(xn − x0) − (z − x0)‖ −→ 0 (3.54)

as n → ∞ and hence xn → z in norm. This completes the proof.

If the mapping S is nonexpansive, then Sk = S0 = S. We can obtain the following result
from Theorem 3.1 immediately.

Corollary 3.2. Let E be a nonempty closed convex subset of a real Hilbert space H . Let F1 and F2

be two bifunctions from E × E to � satisfying (A1)–(A5), and let ϕ :E → � ∪ {+∞} be a proper
lower semicontinuous and convex function with either (B1) or (B2). Let A1, A2, B, C be four ρ, ω, β,
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ξ-inverse-strongly monotone mappings of E into H , respectively. Let S : E → E be a nonexpansive
mapping with a fixed point. Suppose that

Θ := F(S) ∩GMEP
(

F1, ϕ,A1
) ∩GMEP

(

F2, ϕ,A2
) ∩ VI(E, B) ∩ VI(E,C)/= ∅. (3.55)

Let {xn} be a sequence generated by the following iterative algorithm (3.1), where {α(i)
n } are sequences

in (0, 1), where i = 1, 2, 3, 4, 5, rn ∈ (0, 2ρ), sn ∈ (0, 2ω), and {λn}, {μn} are positive sequences.
Assume that the control sequences satisfy (C1)–(C5) in Theorem 3.1. Then, {xn} converges strongly
to PΘx0.

If ϕ = 0 and A1 = A2 = 0 in Theorem 3.1, then we can obtain the following result
immediately.

Corollary 3.3. Let E be a nonempty closed convex subset of a real Hilbert space H . Let F1 and F2 be
two bifunctions from E × E to � satisfying (A1)–(A5), and let ϕ :E → � ∪ {+∞} be a proper lower
semicontinuous and convex function with either (B1) or (B2). Let B,C be two β, ξ-inverse-strongly
monotone mappings of E intoH , respectively. Let S :E → E be a nonexpansive mapping with a fixed
point. Suppose that

Θ := F(S) ∩ EP(F1) ∩ EP(F2) ∩ VI(E, B) ∩ VI(E,C)/= ∅. (3.56)

Let {xn} be a sequence generated by the following iterative algorithm:

x0 ∈ H, E1 = E, x1 = PE1x0, un ∈ E, vn ∈ E,

F1(un, u) +
1
rn
〈u − un, un − xn〉 ≥ 0, ∀u ∈ E,

F2(vn, v) +
1
sn

〈v − vn, vn − xn〉 ≥ 0, ∀v ∈ E,

zn = PE

(

xn − μnCxn

)

,

yn = PE(xn − λnBxn),

tn = α
(1)
n Sxn + α

(2)
n yn + α

(3)
n zn + α

(4)
n un + α

(5)
n vn,

En+1 = {w ∈ En : ‖tn −w‖ ≤ ‖xn −w‖},
xn+1 = PEn+1x0, ∀n ≥ 1,

(3.57)

where {α(i)
n } are sequences in (0,1), where i = 1, 2, 3, 4, 5, rn ∈ (0,∞), sn ∈ (0,∞) and {λn}, {μn} are

positive sequences. Assume that the control sequences satisfy the condition (C1)–(C5) in Theorem 3.1.
Then, {xn} converges strongly to PΘx0.

If B = 0, C = 0, and F1(un, u) = F1(vn, v) = 0 in Corollary 3.3, then PE = I and we get
un = yn = xn and vn = zn = xn; hence, we can obtain the following result immediately.

Corollary 3.4. Let E be a nonempty closed convex subset of a real Hilbert spaceH . Let S :E → E be
a k-strictly pseudocontractive mapping with a fixed point. Define a mapping Sk :E → E by Skx =
kx+(1−k)Sx, for all x ∈ E. Suppose that F(S)/= ∅. Let {xn} be a sequence generated by the following
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iterative algorithm:

x0 ∈ H, E1 = E, x1 = PE1x0,

tn = αnSkxn + (1 − αn)xn,

En+1 = {w ∈ En : ‖tn −w‖ ≤ ‖xn −w‖},

xn+1 = PEn+1x0, ∀n ≥ 1,

(3.58)

where {αn} are sequences in (0, 1). Assume that the control sequences satisfy the condition
limn→∞αn = α ∈ (0, 1) in Theorem 3.1. Then, {xn} converges strongly to a point PF(S)x0.

4. Convex Feasibility Problem

Finally, we consider the following Convex Feasibility Problem (CFP): finding an x ∈ ⋂M
j=1 Cj ,

whereM ≥ 1 is an integer and each Ci is assumed to be the solutions of equilibrium problem
with the bifunction Fj , j = 1, 2, 3, . . . ,M and the solution set of the variational inequality
problem. There is a considerable investigation on CFP in the setting of Hilbert spaces which
captures applications in various disciplines such as image restoration [35, 36], computer
tomography [37], and radiation therapy treatment planning [38].

The following result can be obtained from Theorem 3.1. We, therefore, omit the proof.

Theorem 4.1. Let E be a nonempty closed convex subset of a real Hilbert space H . Let {Fj}Mj=1 be a
family of bifunction from E × E to � satisfying (A1)–(A5), and let ϕ : E → � ∪ {+∞} be a proper
lower semicontinuous and convex function with either (B1) or (B2). Let Aj : E → H be ρj -inverse-
strongly monotone mapping for each j ∈ {1, 2, 3, . . . ,M}. Let Bi : E → H be βi-inverse-strongly
monotone mapping for each i ∈ {1, 2, 3, . . . ,N}. Let S : E → E be a k-strictly pseudocontractive
mapping with a fixed point. Define a mapping Sk : E → E by Skx = kx + (1 − k)Sx, for all x ∈ E.
Suppose that

Θ := F(S) ∩
⎛

⎝

M⋂

j=1

GMEP
(

Fj, ϕ,Aj

)

⎞

⎠ ∩
(

N⋂

i=1

VI(E, Bi)

)

/= ∅. (4.1)

Let {xn} be a sequence generated by the following iterative algorithm:

x0 ∈ H, E1 = E, x1 = PE1x0, v1, v2, . . . , vM ∈ E,

F1(vn,1, v1) + ϕ(v1) − ϕ(vn,1) + 〈A1xn, v1 − vn,1〉 + 1
r1
〈v1 − vn,1, vn,1 − xn〉 ≥ 0, ∀v1 ∈ E,
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F2(vn,2, v2) + ϕ(v2) − ϕ(vn,2) + 〈A2xn, v2 − vn,2〉 + 1
r2
〈v2 − vn,2, vn,2 − xn〉 ≥ 0, ∀v2 ∈ E,

...

FM(vn,M, vM) + ϕ(vM) − ϕ(vn,M) + 〈AMxn, vM − vn,M〉

+
1
rM

〈vM − vn,M, vn,M − xn〉 ≥ 0, ∀vM ∈ E,

yn,1 = PE(xn − λn,1B1xn),

yn,2 = PE(xn − λn,2B2xn),

...

yn,N = PE(xn − λn,NBNxn),

tn = αn,0Skxn +
N∑

i=1

αn,iyn,i +
M∑

j=1

α′
n,jvn,j ,

En+1 = {w ∈ En : ‖tn −w‖ ≤ ‖xn −w‖},
xn+1 = PEn+1x0, ∀n ≥ 1,

(4.2)

where αn,0, αn,1, αn,2, . . . , αn,N and α′
n,1, α

′
n,2, . . . , α

′
n,M ∈ (0, 1) such that

∑N
i=0 αn,i +

∑M
j=1 α

′
n,j = 1,

{λn,i} are positive sequences in (0, 1). Assume that the control sequences satisfy the following
restrictions:

(C1) limn→∞α
(i)
n = α(i) ∈ (0, 1), for each 0 ≤ i ≤ N,

(C2) limn→∞α
′(j)
n = α′(j) ∈ (0, 1), for each 1 ≤ j ≤ M,

(C3) aj ≤ rj ≤ 2ρj , where aj is some positive constants for each 1 ≤ j ≤ M,

(C4) ci ≤ λn,i ≤ 2βi, where ci is some positive constants for each 1 ≤ i ≤ N,

(C5) limn→∞|λn+1,i − λn,i| = 0, for each 1 ≤ i ≤ N.

Then, {xn} converges strongly to PΘx0.

If Aj = 0, for each 1 ≤ j ≤ M and Fi(vn,i, vi) = 0, for each 1 ≤ i ≤ N in Theorem 4.1,
then vn,i = xn; hence, we can obtain the following result immediately.

Theorem 4.2. Let E be a nonempty closed convex subset of a real Hilbert space H . Let ϕ : E → � ∪
{+∞} be a proper lower semicontinuous and convex function with either (B1) or (B2). Let Bi :E → H
be βi-inverse-strongly monotone mapping for each i ∈ {1, 2, 3, . . . ,N}. Let S :E → E be a k-strictly
pseudocontractive mapping with a fixed point. Define a mappingSk :E → E by Skx = kx+(1−k)Sx,
for all x ∈ E. Suppose that

Θ := F(S) ∩
(

N⋂

i=1

VI(E, Bi)

)

/= ∅. (4.3)
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Let {xn} be a sequence generated by the following iterative algorithm:

x0 ∈ H, E1 = E, x1 = PE1x0,

yn,1 = PE(xn − λn,1B1xn),

yn,2 = PE(xn − λn,2B2xn),

...

yn,N = PE(xn − λn,NBNxn),

tn = αn,0Skxn +
N∑

i=1

αn,iyn,i,

En+1 = {w ∈ En : ‖tn −w‖ ≤ ‖xn −w‖},

xn+1 = PEn+1x0, ∀n ≥ 1,

(4.4)

where αn,0, αn,1, αn,2, . . . , αn,N ∈ (0, 1) such that
∑N

i=0 αn,i = 1, {λn,i} are positive sequences in (0, 1).
Assume that the control sequences satisfy the following restrictions:

(C1) limn→∞α
(i)
n = α(i) ∈ (0, 1), for each 0 ≤ i ≤ N,

(C2) ci ≤ λn,i ≤ 2βi, where ci is some positive constants for each 1 ≤ i ≤ N,

(C3) limn→∞|λn+1,i − λn,i| = 0, for each 1 ≤ i ≤ N.

Then, {xn} converges strongly to PΘx0.

If Bi = 0, for each 1 ≤ i ≤ N in Theorem 4.1, then we get yn,i = xn. Hence, we can obtain
the following result immediately.

Theorem 4.3. Let E be a nonempty closed convex subset of a real Hilbert spaceH . Let be a {Fj}Mj=1 be a
family of bifunction from E×E to � satisfying (A1)–(A5), and let ϕ :E → �∪{+∞} be a proper lower
semicontinuous and convex function with either (B1) or (B2). Let Aj :E → H be ρj-inverse-strongly
monotone mapping for each j ∈ {1, 2, 3, . . . ,M}. Let S :E → E be a k-strictly pseudocontractive
mapping with a fixed point. Define a mapping Sk :E → E by Skx = kx + (1 − k)Sx, for all x ∈ E.
Suppose that

Θ := F(S) ∩
⎛

⎝

M⋂

j=1

GMEP
(

Fj, ϕ,Aj

)

⎞

⎠/= ∅. (4.5)
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Let {xn} be a sequence generated by the following iterative algorithm:

x0 ∈ H, E1 = E, x1 = PE1x0, v1, v2, . . . , vM ∈ E,

F1(vn,1, v1) + ϕ(v1) − ϕ(vn,1) + 〈A1xn, v1 − vn,1〉 + 1
r1
〈v1 − vn,1, vn,1 − xn〉 ≥ 0, ∀v1 ∈ E,

F2(vn,2, v2) + ϕ(v2) − ϕ(vn,2) + 〈A2xn, v2 − vn,2〉 + 1
r2
〈v2 − vn,2, vn,2 − xn〉 ≥ 0, ∀v2 ∈ E,

...

FM(vn,M, vM) + ϕ(vM) − ϕ(vn,M) + 〈AMxn, vM − vn,M〉

+
1
rM

〈vM − vn,M, vn,M − xn〉 ≥ 0, ∀vM ∈ E,

tn = αn,0Skxn +
M∑

j=1

α′
n,jvn,j ,

En+1 = {w ∈ En : ‖tn −w‖ ≤ ‖xn −w‖},
xn+1 = PEn+1x0, ∀n ≥ 1,

(4.6)

where αn,0 and α′
n,1, α

′
n,2, . . . , α

′
n,M ∈ (0, 1) such that αn,0 +

∑M
j=1 α

′
n,j = 1. Assume that the control

sequences satisfy the following restrictions:

(C1) limn→∞α
(0)
n = α(0) ∈ (0, 1),

(C2) limn→∞α
′(j)
n = α′(j) ∈ (0, 1), for each 1 ≤ j ≤ M,

(C3) aj ≤ rj ≤ 2ρj , where aj is some positive constants for each 1 ≤ j ≤ M.

Then, {xn} converges strongly to PΘx0.
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