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We investigate some interesting properties of the weighted q-Bernstein polynomials related to the
weighted q-Bernoulli numbers and polynomials by using p-adic q-integral on �p.

1. Introduction and Preliminaries

Let p be a fixed prime number. Throughout this paper, �p, �p , and � p will denote the ring
of p-adic integers, the field of p-adic rational numbers, and the completion of the algebraic
closure of �p , respectively. Let � be the set of natural numbers, and let �+ = � ∪ {0}. Let νp
be the normalized exponential valuation of � p with |p|p = p−νp(p) = 1/p. Let q be regarded
as either a complex number q ∈ � or a p-adic number q ∈ � p . If q ∈ � , then we always
assume |q| < 1. If q ∈ � p , we assume that |1 − q|p < 1. In this paper, we define the q-number
as [x]q = (1 − qx)/(1 − q) (see [1–13]).

Let C[0, 1] be the set of continuous functions on [0, 1]. For α ∈ � and n, k ∈ �+, the
weighted q-Bernstein operator of order n for f ∈ C[0, 1] is defined by

�
(α)
n,q

(
f | x) =

n∑

k=0

f

(
k

n

)(n

k

)

[x]kqα[1 − x]n−kq−α =
n∑

k=0

f

(
k

n

)
B
(α)
k,n

(
x, q

)
. (1.1)

Here B(α)
k,n

(x, q) is called the weighted q-Bernstein polynomials of degree n (see [2, 5, 6]).
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Let UD(�p) be the space of uniformly differentiable functions on �p. For f ∈ UD(�p),
the p-adic q-integral on �p, which is called the bosonic q-integral on �p, is defined by

Iq
(
f
)
=
∫

�p

f(x)dμq(x) = lim
N→∞

1
[
pN

]
q

pN−1∑

x=0

f(x)qx, (1.2)

(see [10]).
The Carlitz’s q-Bernoulli numbers are defined by

β0,q = 1, q
(
qβ + 1

)k − βk,q =

{
1, if k = 1,
0, if k > 1,

(1.3)

with the usual convention about replacing βk by βk,q (see [3, 9, 10]). In [3], Carlitz also defined
the expansion of Carlitz’s q-Bernoulli numbers as follows:

βh0,q =
h

[h]q
, qh

(
qβh + 1

)n − βhn,q =

{
1, if n = 1,
0, if n > 1,

(1.4)

with the usual convention about replacing (βh)n by βhn,q.
The weighted q-Bernoulli numbers are constructed in previous paper [6] as follows:

for α ∈ �,

β̃
(α)
0,q = 1, q

(
qαβ̃(α) + 1

)n
− β̃

(α)
n,q =

⎧
⎨

⎩

α

[α]q
, if n = 1,

0, if n > 1,
(1.5)

with the usual convention about replacing (β̃(α))
n
by β̃

(α)
n,q . Let fn(x) = f(x + n). By the

definition (1.2) of p-adic q-integral on �p, we easily get

qIq
(
f1
)
= q lim

N→∞
1

[
pN

]
q

pN−1∑

x=0

f(x + 1)qx,

= lim
N→∞

1
[
pN

]
q

pN−1∑

x=0

f(x)qx + lim
N→∞

f
(
pN

)
qp

N − f(0)
[
pN

]
q

=
∫

�p

f(x)dμq(x) +
(
q − 1

)
f(0) +

q − 1
log q

f ′(0),

(1.6)

Continuing this process, we obtain easily the relation

qn
∫

�p

fn(x)dμq(x) −
∫

�p

f(x)dμq(x) =
(
q − 1

)n−1∑

l=0

qlf(l) +
q − 1
log q

n−1∑

l=0

qlf ′(l), (1.7)

where n ∈ � and f ′(l) = df(l)/dx (see [6]).
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Then by (1.2), applying to the function x → [x]nqα , we can see that

β̃
(α)
n,q =

∫

�p

[x]nqαdμq(x) = − nα

[α]q

∞∑

m=0

qmα+m[m]n−1qα +
(
1 − q

) ∞∑

m=0

qm[m]nqα . (1.8)

The weighted q-Bernoulli polynomials are also defined by the generating function as
follows:

F
(α)
q (t, x) = −t α

[α]q

∞∑

m=0
qmα+me[m+x]qα t +

(
1 − q

) ∞∑

m=0
qme[m+x]qα t =

∞∑

n=0

β̃
(α)
n,q(x)

tn

n!
, (1.9)

(see[6]). Thus, we note that

β̃
(α)
n,q(x) =

n∑

l=0

(
n

l

)

[x]n−lqα qαlxβ̃
(α)
l,q

= − nα

[α]q

∞∑

m=0

qmα+m[m + x]n−1qα +
(
1 − q

) ∞∑

m=0

qm[m + x]nqα .

(1.10)

From (1.2) and the previous equalities, we obtain the Witt’s formula for the weighted
q-Bernoulli polynomials as follows:

β̃
(α)
n,q(x) =

∫

�p

[
x + y

]n
qαdμq

(
y
)
=

n∑

l=0

(
n

l

)

qαlx[x]n−lqα

∫

�p

[
y
]l
qαdμq

(
y
)
. (1.11)

By using (1.2) and the weighted q-Bernoulli polynomials, we easily get

qnβ̃
(α)
m,q(n) − β̃

(α)
m,q =

(
q − 1

)n−1∑

l=0

ql[l]mqα +
mα

[α]q

n−1∑

l=0

qαl+l[l]m−1
qα , (1.12)

where n, α ∈ � andm ∈ �+ (see [6]).
In this paper, we consider the weighted q-Bernstein polynomials to express the bosonic

q-integral on �p and investigate some properties of the weighted q-Bernstein polynomials
associated with the weighted q-Bernoulli polynomials by using the expression of p-adic q-
integral on �p of those polynomials.

2. Weighted q-Bernstein Polynomials and q-Bernoulli Polynomials

In this section, we assume that α ∈ � and q ∈ � p with |1 − q|p < 1.
Now we consider the p-adic weighted q-Bernstein operator as follows:

�
(α)
n,q

(
f | x)(fx) =

n∑

k=0

f

(
k

n

)(
n

k

)

[x]kqα[1 − x]n−kq−α =
n∑

k=0

f

(
k

n

)
B
(α)
k,n

(
x, q

)
. (2.1)
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The p-adic q-Bernstein polynomials with weight α of degree n are given by

B
(α)
k,n

(
x, q

)
=

(
n

k

)

[x]kqα[1 − x]n−kq−α , (2.2)

where x ∈ �p, α ∈ �, and n, k ∈ �+ (see [6, 7]). Note that B(α)
k,n

(x, q) = B
(α)
n−k,n(1 − x, 1/q). That

is, the weighted q-Bernstein polynomials are symmetric.
From the definition of the weighted q-Bernoulli polynomials, we have

β̃
(α)
n,q−1(1 − x) = (−1)nqαnβ̃(α)n,q(x). (2.3)

By the definition of p-adic q-integral on �p, we get

∫

�p

[1 − x]nq−αdμq(x) = qαn(−1)n
∫

�p

[−1 + x]nqαdμq(x)

=
∫

�p

(
1 − [x]qα

)n
dμq(x).

(2.4)

From (2.3) and (2.4), we have

∫

�p

[1 − x]nq−αdμq(x) =
n∑

l=0

(
n

l

)

(−1)lβ̃(α)l,q
= qαn(−1)nβ̃(α)n,q(−1) = β̃

(α)
n,q(2). (2.5)

Therefore, we obtain the following lemma.

Lemma 2.1. For n ∈ �+, one has

∫

�p

[1 − x]nq−αdμq(x) =
n∑

l=0

(
n

l

)

(−1)lβ̃(α)l,q
= qαn(−1)nβ̃(α)n,q(−1) = β̃

(α)
n,q(2),

β̃
(α)
n,q−1(1 − x) = (−1)nqαnβ̃(α)n,q(x).

(2.6)

By (2.2), (2.3), and (2.4), we get

q2β̃
(α)
n,q(2) = n

α

[α]q
q1+α + q2 − q + β̃

(α)
n,q , if n > 1. (2.7)

Thus, we have

β̃
(α)
n,q(2) =

1
q2

β̃
(α)
n,q +

nα

[α]q
qα−1 + 1 − 1

q
, if n > 1. (2.8)

Therefore, by (2.8), we obtain the following proposition.
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Proposition 2.2. For n ∈ � with n > 1, one has

β̃
(α)
n,q(2) =

1
q2

β̃
(α)
n,q +

nα

[α]q
qα−1 + 1 − 1

q
. (2.9)

By using Proposition 2.2 and Lemma 2.1, we obtain the following corollary.

Corollary 2.3. For n ∈ � with n > 1, one has

∫

�p

[1 − x]nq−αdμq(x) = q2β̃
(α)
n,q−1 +

nα

[α]q
+ 1 − q, (2.10)

∫

�p

[1 − x]nq−αdμq(x) =
nα

[α]q
+ 1 − q + q2

∫

�p

[x]nq−αdμq−1(x) =
∫

�p

(
1 − [x]qα

) n
dμq(x).

(2.11)

Taking the bosonic q-integral on �p for one weighted q-Bernstein polynomials in (2.1),
we have

∫

�p

B
(α)
k,n

(
x, q

)
dμq(x) =

(
n

k

)∫

�p

[x]kqα[1 − x]n−kq−α dμq(x)

=

(
n

k

)
n−k∑

l=0

(
n − k

l

)

(−1)l
∫

�p

[x]k+lqα dμq(x)

=

(
n

k

)
n−k∑

l=0

(
n − k

l

)

(−1)lβ̃(α)k+l,q.

(2.12)

By the symmetry of q-Bernstein polynomials, we get

∫

�p

B
(α)
k,n

(
x, q

)
dμq(x) =

∫

�p

B
(α)
n−k,n

(
1 − x,

1
q

)
dμq(x)

=

(
n

k

)
k∑

l=0

(
k

l

)

(−1)k+l
∫

�p

[1 − x]n−lq−α dμq(x).

(2.13)
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For n > k + 1, by (2.11) and (2.13), we have

∫

�p

B
(α)
k,n

(
x, q

)
dμq(x) =

(
n

k

)
k∑

l=0

(
k

l

)

(−1)k+l
(

nα

[α]q
+ 1 − q + q2

∫

�p

[x]n−lq−α dμq−1(x)

)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

nα

[α]q
+ 1 − q + q2β̃

(α)
n,q−1 , if k = 0,

⎛

⎝
n

k

⎞

⎠q2
k∑

l=0

⎛

⎝
k

l

⎞

⎠(−1)k+lβ̃(α)
n−l,q−1, if k > 0.

(2.14)

By comparing the coefficients on the both sides of (2.12) and (2.14), we obtain the
following theorem.

Theorem 2.4. For n, k ∈ �+ with n > k + 1, one has

n−k∑

l=0

(
n − k

l

)

(−1)lβ̃(α)k+l,q = q2
k∑

l=0

(
k

l

)

(−1)k+lβ̃(α)
n−l,q−1 , if k /= 0. (2.15)

In particular, when k = 0, one has

nα

[α]q
+ 1 − q + q2β̃

(α)
n,q−1 =

n∑

l=0

(
n

l

)

(−1)lβ̃(α)l,q
. (2.16)

Letm,n, k ∈ �+ withm + n > 2k + 1. Then we see that

∫

�p

B
(α)
k,n

(
x, q

)
B
(α)
k,m

(
x, q

)
dμq(x)

=

(
n

k

)(
m

k

)∫

�p

[x]2kqα [1 − x]n+m−2k
q−α dμq(x)

=

(
n

k

)(
m

k

)
2k∑

l=0

(
2k

l

)

(−1)l+2k
∫

�p

[1 − x]n+m−l
q−α dμq(x).

=

(
n

k

)(
m

k

)
2k∑

l=0

(
2k

l

)

(−1)l+2k
(

nα

[α]q
+ 1 − q + q2

∫

�p

[x]n+m−l
q−α dμq−1 (x)

)

=

(
n

k

)(
m

k

)
2k∑

l=0

(
2k

l

)

(−1)l+2k
(

nα

[α]q
+ 1 − q + q2β̃

(α)
n+m−l,q−1

)

.

(2.17)

Therefore, by (2.17), we obtain the following theorem.
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Theorem 2.5. Form,n, k ∈ �+ withm + n > 2k + 1, one has

∫

�p

B
(α)
k,n

(
x, q

)
B
(α)
k,m

(
x, q

)
dμq(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

nα

[α]q
+ 1 − q + q2β̃

(α)
n+m,q−1 , if k = 0,

⎛

⎝
n

k

⎞

⎠

⎛

⎝
m

k

⎞

⎠q2
2k∑

l=0

⎛

⎝
2k

l

⎞

⎠(−1)l+2kβ̃(α)
n+m−l,q−1 , if k /= 0.

(2.18)

For m,n, k ∈ �+, we have

∫

�p

B
(α)
k,n

(
x, q

)
B
(α)
k,m

(
x, q

)
dμq(x)

=

(
n

k

)(
m

k

)∫

�p

[x]2kqα [1 − x]n+m−2k
q−α dμq(x)

=

(
n

k

)(
m

k

)
n+m−2k∑

l=0

(
n +m − 2k

l

)

(−1)l
∫

�p

[x]2k+lqα dμq(x)

=

(
n

k

)(
m

k

)
n+m−2k∑

l=0

(
n +m − 2k

l

)

(−1)lβ̃(α)l+2k,q.

(2.19)

Therefore, by (2.18) and (2.19), we obtain the following theorem.

Theorem 2.6. Form,n, k ∈ �+ withm + n > 2k + 1, one has

nα

[α]q
+ 1 − q + q2β̃

(α)
n+m−l,q−1 =

n+m∑

l=0

(
n +m

l

)

(−1)lβ̃(α)l,q
. (2.20)

Furthermore, for k /= 0, one has

n+m−2k∑

l=0

(
n +m − 2k

l

)

(−1)lβ̃(α)l+2k,q = q2
2k∑

l=0

(
2k

l

)

(−1)l+2kβ̃(α)
n+m−l,q−1 . (2.21)

By the induction hypothesis, we obtain the following theorem.

Theorem 2.7. For s ∈ � and k, n1, . . . , ns ∈ �+ with n1 + n2 + · · · + ns > sk + 1, one has

∫

�p

(
s∏

i=1

B
(α)
k,ni

(
x, q

)
)

dμq(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

nα

[α]q
+ 1 − q + q2β̃

(α)
n1+···+ns,q−1

, if k = 0,

⎛

⎝
s∏

i=1

⎛

⎝
ni

k

⎞

⎠

⎞

⎠
sk∑

l=0

⎛

⎝
sk

l

⎞

⎠(−1)l+skβ̃(α)
n1+···+ns−l,q−1 , if k /= 0.

(2.22)
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For s ∈ �, let k, n1, . . . , ns ∈ �+ with n1 + n2 + · · · + ns > sk + 1. Then we show that

∫

�p

(
s∏

i=1

B
(α)
k,ni

(
x, q

)
)

dμq(x) =

(
s∏

i=1

(
ni

k

))
n1+···+ns−sk∑

l=0

(
n1 + · · · + ns − sk

l

)

(−1)lβ̃(α)l+sk,q.

(2.23)

Therefore, by Theorem 2.7 and (2.23), we obtain the following theorem.

Theorem 2.8. For s ∈ �, let k, n1, . . . , ns ∈ �+ with n1 + n2 + · · · + ns > sk + 1. Then one sees that
for k = 0

n1+···+ns∑

l=0

(
n1 + · · · + ns

l

)

(−1)lβ̃(α)l,q
=

nα

[α]q
+ 1 − q + q2β̃

(α)
n1+···+ns,q−1

. (2.24)

For k /= 0, one has

sk∑

l=0

(
sk

l

)

(−1)l+skβ̃(α)
n1+···+ns−l,q−1 =

n1+···+ns−sk∑

l=0

(
n1 + · · · + ns − sk

l

)

(−1)lβ̃(α)l+sk,q. (2.25)
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