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A class of small-deviation theorems for the relative entropy densities of arbitrary random field on
the generalized Bethe tree are discussed by comparing the arbitrary measure μ with the Markov
measure μQ on the generalized Bethe tree. As corollaries, some Shannon-Mcmillan theorems for
the arbitrary random field on the generalized Bethe tree, Markov chain field on the generalized
Bethe tree are obtained.

1. Introduction and Lemma

Let T be a tree which is infinite, connected and contains no circuits. Given any two vertices
x /=y ∈ T , there exists a unique path x = x1, x2, . . . , xm = y from x to y with x1, x2, . . . , xm

distinct. The distance between x and y is defined to m − 1, the number of edges in the path
connecting x and y. To index the vertices on T , we first assign a vertex as the “root” and label
it asO. A vertex is said to be on the nth level if the path linking it to the root has n edges. The
root O is also said to be on the 0th level.

Definition 1.1. Let T be a tree with root O, and let {Nn, n ≥ 1} be a sequence of positive
integers. T is said to be a generalized Bethe tree or a generalized Cayley tree if each vertex
on the nth level has Nn+1 branches to the n + 1th level. For example, when N1 = N + 1 ≥ 2
and Nn = N (n ≥ 2), T is rooted Bethe tree TB,N on which each vertex hasN + 1 neighboring
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Figure 1: Bethe tree TB,2.

vertices (see Figure 1, TB,2), and when Nn = N ≥ 1 (n ≥ 1), T is rooted Cayley tree TC,N on
which each vertex hasN branches to the next level.

In the following, we always assume that T is a generalized Bethe tree and denote by
T (n) the subgraph of T containing the vertices from level 0 (the root) to level n. We use (n, j)
(1 ≤ j ≤ N1 · · ·Nn, n ≥ 1) to denote the jth vertex at the nth level and denote by |B| the
number of vertices in the subgraph B. It is easy to see that, for n ≥ 1,

∣
∣
∣T (n)
∣
∣
∣ =

n∑

m=0

N0 · · ·Nm = 1 +
n∑

m=1

N1 · · ·Nm. (1.1)

Let S = {s0, s1, s2, . . .}, Ω = ST , ω = ω(·) ∈ Ω, where ω(·) is a function defined on T and
taking values in S, and let F be the smallest Borel field containing all cylinder sets in Ω. Let
X = {Xt, t ∈ T} be the coordinate stochastic process defined on the measurable space (Ω, F);
that is, for any ω = {ω(t), t ∈ T}, define

Xt(ω) = ω(t), t ∈ T. (1.2)

XT (n)
�

{

Xt, t ∈ T (n)
}

, μ
(

XT (n)
= xT (n)

)

= μ
(

xT (n)
)

. (1.3)

Now we give a definition of Markov chain fields on the tree T by using the cylinder
distribution directly, which is a natural extension of the classical definition of Markov chains
(see [1]).

Definition 1.2. Let Q = Q(j | i). One has a strictly positive stochastic matrix on S, q = (q(s0),
q(s1), q(s2) . . .) a strictly positive distribution on S, and μQ a measure on (Ω, F). If

μQ(x0,1) = q(x0,1),

μQ

(

xT (n)
)

= q(x0,1)
n−1∏

m=0

N0···Nm∏

i=1

Nm+1i∏

j=Nm+1(i−1)+1
q
(

xm+1,j | xm,i

)

, n ≥ 1.
(1.4)
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Then μQ will be called a Markov chain field on the tree T determined by the stochastic matrix
Q and the distribution q.

Let μ be an arbitrary probability measure defined as (1.3), denote

fn(ω) = − 1
∣
∣T (n)
∣
∣
logμ

(

XT (n)
)

. (1.5)

fn(ω) is called the entropy density on subgraph T (n) with respect to μ. If μ = μQ, then by (1.4),
(1.5) we have

fn(ω) = − 1
∣
∣T (n)
∣
∣

⎡

⎣log q(X0,1) +
n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
log q
(

Xm+1,j | Xm,i

)

⎤

⎦. (1.6)

The convergence of fn(ω) in a sense (L1 convergence, convergence in probability, or
almost sure convergence) is called the Shannon-McMillan theorem or the entropy theorem or
the asymptotic equipartition property (AEP) in information theory. The Shannon-McMillan
theorem on the Markov chain has been studied extensively (see [2, 3]). In the recent years,
with the development of the information theory scholars get to study the Shannon-McMillan
theorems for the random field on the tree graph (see [4]). The tree models have recently
drawn increasing interest from specialists in physics, probability and information theory.
Berger and Ye (see [5]) have studied the existence of entropy rate for G-invariant random
fields. Recently, Ye and Berger (see [6]) have also studied the ergodic property and Shannon-
McMillan theorem for PPG-invariant random fields on trees. But their results only relate to
the convergence in probability. Yang et al. [7–9] have recently studied a.s. convergence of
Shannon-McMillan theorems, the limit properties and the asymptotic equipartition property
for Markov chains indexed by a homogeneous tree and the Cayley tree, respectively. Shi and
Yang (see [10]) have investigated some limit properties of random transition probability for
second-order Markov chains indexed by a tree.

In this paper, we study a class of Shannon-McMillan random approximation theorems
for arbitrary randomfields on the generalized Bethe tree by comparison between the arbitrary
measure and Markov measure on the generalized Bethe tree. As corollaries, a class of
Shannon-McMillan theorems for arbitrary random fields and the Markov chains field on the
generalized Bethe tree are obtained. Finally, some limit properties for the expectation of the
random conditional entropy are discussed.

Lemma 1.3. Let μ1 and μ2 be two probability measures on (Ω,F), D ∈ F, and let {τn, n ≥ 0} be a
positive-valued stochastic sequence such that

lim inf
n

τn
∣
∣T (n)
∣
∣
> 0, μ1-a.s. ω ∈ D, (1.7)

then

lim sup
n→∞

1
τn

log
μ2

(

XT (n)
)

μ1
(

XT (n))
≤ 0, μ1-a.s. ω ∈ D. (1.8)
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In particular, let τn = |T (n)|, then

lim sup
n→∞

1
∣
∣T (n)
∣
∣
log

μ2

(

XT (n)
)

μ1
(

XT (n))
≤ 0, μ1-a.s. ω ∈ D. (1.9)

Proof (see [11]). Let

ϕ
(

μ | μQ

)

= lim sup
n→∞

1
∣
∣T (n)
∣
∣
log

μ
(

XT (n)
)

μQ

(

XT (n))
. (1.10)

ϕ(μ | μQ) is called the sample relative entropy rate of μ relative to μQ. ϕ(μ | μQ) is also called
the asymptotic logarithmic likelihood ratio. By (1.9)

ϕ
(

μ | μQ

) ≥ lim inf
n→∞

1
∣
∣T (n)
∣
∣
log

μ
(

XT (n)
)

μQ

(

XT (n))
≥ 0, μ-a.s. (1.11)

Hence ϕ(μ | μQ) can be look on as a type of measures of the deviation between the arbitrary
random fields and the Markov chain fields on the generalized Bethe tree.

2. Main Results

Theorem 2.1. Let X = {Xt, t ∈ T} be an arbitrary random field on the generalized Bethe tree. fn(ω)
and ϕ(μ | μQ) are, respectively, defined as (1.5) and (1.10). Denote α ≥ 0, HQ

m(Xm+1,j | Xm,i) the
random conditional entropy of Xm+1,j relative to Xm,i on the measure μQ, that is,

H
Q
m

(

Xm+1,j | Xm,i

)

= −
∑

xm+1,j∈S
q
(

xm+1,j | Xm,i

)

log q
(

xm+1,j | Xm,i

)

. (2.1)

Let

D(c) =
{

ω : ϕ
(

μ | μQ

) ≤ c
}

, (2.2)

bα= lim sup
n→∞

1
∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
EQ

[

log2q
(

Xm+1,j | Xm,i

)· q(Xm+1,j | Xm,i

)−α | Xm,i

]

< ∞,

(2.3)
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when 0 ≤ c ≤ α2bα/2,

lim sup
n→∞

⎧

⎨

⎩
fn(ω) − 1

∣
∣T (n)
∣
∣

n−1∑

m=0

N0 ···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
H

Q
m

(

Xm+1,j | Xm,i

)

⎫

⎬

⎭

≤
√

2cbα, μ-a.s. ω ∈ D(c).

(2.4)

lim inf
n→∞

⎧

⎨

⎩
fn(ω) − 1

∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
H

Q
m

(

Xm+1,j | Xm,i

)

⎫

⎬

⎭

≥ −
√

2cbα − c, μ-a.s. ω ∈ D(c).

(2.5)

In particular,

lim
n→∞

⎡

⎣fn(ω) − 1
∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
H

Q
m

(

Xm+1,j | Xm,i

)

⎤

⎦

= 0, μ-a.s. ω ∈ D(0),

(2.6)

where log is the natural logarithmic, EQ is expectation with respect to the measure μQ.

Proof. Let (Ω,F, μ) be the probability space we consider, λ an arbitrary constant. Define

EQ

[

q(Xm+1,j | Xm,i)
−λ | Xm,i = xm,i

]

=
∑

xm+1,j∈S
q(xm+1,j | xm,i)

1−λ; (2.7)

denote

μQ

(

λ, xT (n)
)

= q(x0,1)
n−1∏

m=0

N0···Nm∏

i=1

Nm+1i∏

j=Nm+1(i−1)+1

q(xm+1,j | xm,i)
1−λ

EQ

[

q(Xm+1,j | Xm,i)−λ | Xm,i = xm,i

] . (2.8)
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We can obtain by (2.7), (2.8) that in the case n ≥ 1,

∑

xLn∈S
μQ

(

λ;xT (n)
)

=
∑

xLn∈S
q(x0,1)

n−1∏

m=0

N0···Nm∏

i=1

Nm+1i∏

j=Nm+1(i−1)+1

q
(

xm+1,j | xm,i

)1−λ

EQ

[

q
(

Xm+1,j | Xm,i

)−λ | Xm,i = xm,i

]

= μQ

(

λ;xT (n−1)) ∑

xLn∈S

N0···Nn−1∏

i=1

Nni∏

j=Nn(i−1)+1

q
(

xn,j | xn−1,i
)1−λ

EQ

[

q
(

Xn,j | Xn−1,i
)−λ | Xn−1,i = xn−1,i

]

= μQ

(

λ;xT (n−1))
N0···Nn−1∏

i=1

Nni∏

j=Nn(i−1)+1

∑

xn,j∈S

q
(

xn,j | xn−1,i
)1−λ

EQ

[

q
(

xn,j | xn−1,i
)−λ | Xn−1,i = xn−1,i

]

= μQ

(

λ;xT (n−1))
N0···Nn−1∏

i=1

Nni∏

j=Nn(i−1)+1

EQ

[

q
(

Xn,j | Xn−1,i
)−λ | Xn−1,i = xn−1,i

]

EQ

[

q
(

xn,j | xn−1,i
)−λ | Xn−1,i = xn−1,i

]

= μQ

(

λ;xT (n−1))
,

(2.9)

∑

xL0∈S
μQ

(

λ;xT (0)
)

=
∑

x0,1∈S
q(x0,1) = 1. (2.10)

Therefore, μQ(λ, xT (n)
), n = 0, 1, 2, . . . are a class of consistent distributions on ST (n)

. Let

Un(λ,ω) =
μQ

(

λ,XT (n)
)

μ
(

XT (n))
, (2.11)

then {Un(λ,ω),Fn, n ≥ 1} is a nonnegative supermartingale which converges almost surely
(see [12]). By Doob’s martingale convergence theorem we have

lim
n→∞

Un(λ,ω) = U∞(λ,ω) < ∞. μ-a.s. (2.12)

Hence by (1.3), (1.9), (2.9), and (2.11) we get

lim sup
n→∞

1
∣
∣T (n)
∣
∣
logUn(λ,ω) ≤ 0. μ-a.s. (2.13)
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By (1.4), (2.8), and (2.11), we have

1
∣
∣T (n)
∣
∣
logUn(λ,ω)

=
1
∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1

[

−λ log q(Xm+1,j | Xm,i

) − logEQ

(

q(Xm+1,j | Xm,i)−λ | Xm,i

)]

+
1
∣
∣T (n)
∣
∣
log

μQ

(

XT (n)
)

μ
(

XT (n))
.

(2.14)

By (1.10), (2.2), (2.13), and (2.14) we have

lim sup
n→∞

1
∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1

[

−λ log q(Xm+1,j | Xm,i

) − logEQ

(

q(Xm+1,j | Xm,i)
−λ | Xm,i

)]

≤ ϕ
(

μ | μQ

) ≤ c, μ-a.s. ω ∈ D(c).
(2.15)

By (2.15) we have

lim sup
n→∞

1
∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
(−λ){log q(Xm+1,j | Xm,i

) − EQ

(

log q
(

Xm+1,j | Xm,i

) | Xm,i

)}

≤ lim sup
n→∞

1
∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1

[

logEQ

(

q
(

Xm+1,j | Xm,i

)−λ | Xm,i

)

−EQ

(−λ log q(Xm+1,j | Xm,i

) | Xm,i

)]

+ c, μ-a.s. ω ∈ D(c).
(2.16)

By the inequality

x−λ − 1 + λ logx ≤
(
1
2

)

λ2(log x)2x−|λ|, 0 ≤ x ≤ 1, (2.17)

log x ≤ x − 1 (x ≥ 0) and (2.16), (2.17), (2.3), we have in the case of |λ| < α,
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lim sup
n→∞

1
∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
(−λ){log q(Xm+1,j | Xm,i

) − EQ

(

log q
(

Xm+1,j | Xm,i

) | Xm,i

)}

≤ lim sup
n→∞

1
∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1

[

EQ

(

q(Xm+1,j | Xm,i)−λ | Xm,i

)

− 1

−EQ

(

− λ log q
(

Xm+1,j | Xm,i

) | Xm,i

)]

+ c

≤ lim sup
n→∞

1
2
∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
EQ

[

λ2log2
(

q
(

Xm+1,j | Xm,i

))

·q(Xm+1,j | Xm,i)
−|λ| | Xm,i

]

+ c

≤ lim sup
n→∞

λ2

2
∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
EQ

[

log2(q
(

Xm+1,j |Xm,i

)) · q(Xm+1,j | Xm,i

)−α | Xm,i

]

+ c =
(
1
2

)

λ2bα + c. μ-a.s. ω ∈ D(c).

(2.18)

When 0 < λ < α, we get by (2.18)

lim sup
n→∞

1
∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
− {log q(Xm+1,j | Xm,i

) − EQ

(

log q
(

Xm+1,j | Xm,i

) | Xm,i

)}

≤
(
1
2

)

λbα +
c

λ
, μ-a.s. ω ∈ D(c).

(2.19)

Let g(λ) = (1/2)λbα + c/λ, in the case 0 < c ≤ (α2bα)/2, then it is obvious g(λ) attains, at
λ =
√

(2c)/bα, its smallest value g(
√

(2c)/bα) =
√

2cbα on the interval (0, α). We have

lim sup
n→∞

1
∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
− {log q(Xm+1,j | Xm,i

) − EQ

(

log q
(

Xm+1,j | Xm,i

) | Xm,i

)}

≤
√

2cbα, μ-a.s. ω ∈ D(c).
(2.20)
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When c = 0, we select 0 < λi < α such that λi → 0 (i → ∞). Hence for all i, it follows from
(2.19) that

lim sup
n→∞

1
∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
− {log q(Xm+1,j | Xm,i

) − EQ

(

log q
(

Xm+1,j | Xm,i

) | Xm,i

)}

≤ 0, μ-a.s. ω ∈ D(0).
(2.21)

It is easy to see that (2.20) also holds if c = 0 from (2.21).
Analogously, when −α < λ < 0, it follows from (2.18) if 0 ≤ c ≤ (α2bα)/2,

lim inf
n→∞

1
∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
− {log q(Xm+1,j | Xm,i

) − EQ

(

log q
(

Xm+1,j | Xm,i

) | Xm,i

)}

≥ −
√

2cbα, μ-a.s. ω ∈ D(c).
(2.22)

Setting λ = 0 in (2.14), by (2.14) we have

lim sup
n→∞

1
∣
∣T (n)
∣
∣
logUn(0, ω) = lim sup

n→∞

1
∣
∣T (n)
∣
∣
log

μQ

(

XT (n)
)

μ
(

XT (n))
≤ 0, μ-a.s. (2.23)

Noticing

H
Q
m

(

Xm+1,j | Xm,i

)

= EQ

[− log q
(

Xm+1,j | Xm,i

) | Xm,i

]

. (2.24)

By (1.4), (1.5), (2.20), and (2.23), we obtain

lim sup
n→∞

⎡

⎣fn(ω) − 1
∣
∣T (n)

∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
H

Q
m

(

Xm+1,j , Xm,i

)

⎤

⎦

≤ lim sup
n→∞

1
∣
∣T (n)

∣
∣
log

μQ

(

XT (n)
)

μ
(

XT (n))

+ lim sup
n→∞

1
∣
∣T (n)

∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1

− {log q(Xm+1,j | Xm,i

) − EQ

(

log q
(

Xm+1,j | Xm,i

) | Xm,i

)}

≤
√

2cbα, μ-a.s. ω ∈ D(c).

(2.25)
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Hence (2.4) follows from (2.25). By (1.4), (1.5), (1.10), (2.2), and (2.22), we have

lim inf
n→∞

⎡

⎣fn(ω) − 1
∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
H

Q
m(ω)

⎤

⎦

≥ lim inf
n→∞

1
∣
∣T (n)
∣
∣
log

⎡

⎢
⎣

μQ

(

XT (n)
)

μ
(

XT (n))

⎤

⎥
⎦

+ lim inf
n→∞

1
∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1

− {log q(Xm+1,j | Xm,i

) − EQ

(

log q
(

Xm+1,j | Xm,i

) | Xm,i

)}

≥ −ϕ(μ | μQ

) −
√

2cbα ≥ −
√

2cbα − c, μ-a.s. ω ∈ D(c).

(2.26)

Therefore (2.5) follows from (2.26). Set c = 0 in (2.4) and (2.5), (2.6) holds naturally.

Corollary 2.2. Let X = {Xt, t ∈ T} be the Markov chains field determined by the measure μQ on the
generalized Bethe tree T ·fn(ω), bα are, respectively, defined as (1.6) and (2.3), andH

Q
m(Xm+1,j | Xm,i)

is defined by (2.1). Then

lim
n→∞

⎧

⎨

⎩
fn(ω) − 1

∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
H

Q
m

(

Xm+1,j | Xm,i

)

⎫

⎬

⎭
= 0. μQ-a.s. (2.27)

Proof. We take μ ≡ μQ, then ϕ(μ | μQ) ≡ 0. It implies that (2.2) always holds when c = 0.
ThereforeD(0) = Ω holds. Equation(2.27) follows from (2.3) and (2.6).

3. Some Shannon-McMillan Approximation Theorems on
the Finite State Space

Corollary 3.1. Let X = {Xt, t ∈ T} be an arbitrary random field which takes values in the alphabet
S = {s1, . . . , sN} on the generalized Bethe tree. fn(ω), ϕ(μ | μQ) and D(c) are defined as (1.5),
(1.10), and (2.2). Denote 0 ≤ α < 1, 0 ≤ c ≤ 2Nα2/[(1 − α)e]2. HQ

m(Xm+1,j | Xm,i) is defined as
above. Then

lim sup
n→∞

⎡

⎣fn(ω) − 1
∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
H

Q
m

(

Xm+1,j | Xm,i

)

⎤

⎦

≤ 2e−1

(1 − α)

√
2cN, μ-a.s. ω ∈ D(c),

(3.1)
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lim inf
n→∞

⎡

⎣fn(ω) − 1
∣
∣T (n)

∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
H

Q
m

(

Xm+1,j | Xm,i

)

⎤

⎦

≥ − 2e−1

1 − α

√
2cN − c, μ-a.s. ω ∈ D(c).

(3.2)

Proof. Set 0 < α < 1 we consider the function

φ(x) = (log x)2x1−α, 0 < x ≤ 1, 0 < α < 1
(

Set φ(0) = 0
)
. (3.3)

Then

φ′(x) = x−α
[

2
(

logx
)

+
(

logx
)2(1 − α)

]

. (3.4)

Let φ′(x) = 0 thus x = e2/(α−1) . Accordingly it can be obtained that

max
{

φ(x), 0 ≤ x ≤ 1
}

= φ
(

e2/(α−1)
)

=
(

2
α − 1

)2

e−2. (3.5)

By (2.3) and (3.5) we have

bα = lim sup
n→∞

1
∣
∣T (n)
∣
∣

n−1∑

m=0

N0 ···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
EQ

[

log2q
(

Xm+1,j | Xm,i

) · q(Xm+1,j | Xm,i)−α | Xm,i

]

= lim sup
n→∞

1
∣
∣T (n)
∣
∣

n−1∑

m=0

N0 ···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1

∑

xm+1,j∈S
log2q

(

xm+1,j | Xm,i

) · q(xm+1,j | Xm,i)1−α

≤ lim sup
n→∞

1
∣
∣T (n)
∣
∣

n−1∑

m=0

N0 ···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1

sN∑

xm+1,j=s1

(
2

α − 1

)2

e−2

= N

(
2

α − 1

)2

e−2 · lim sup
n→∞

∣
∣T (n)
∣
∣ − 1

∣
∣T (n)
∣
∣

= N

(
2

α − 1

)2

e−2 < ∞.

(3.6)

Therefore, (2.3) holds naturally. By (2.18) and (3.6) we have

lim sup
n→∞

1
∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
(−λ){log q(Xm+1,j | Xm,i

) − EQ

(

log q
(

Xm+1,j | Xm,i

) | Xm,i

)}

≤ Nλ2 2e−2

(α − 1)2
+ c, μ-a.s. ω ∈ D(c).

(3.7)
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In the case of 0 < λ < α, by (3.7) we have

lim sup
n→∞

1
∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
− {log q(Xm+1,j | Xm,i

) − EQ

(

log q
(

Xm+1,j | Xm,i

) | Xm,i

)}

≤ Nλ
2e−2

(α − 1)2
+
c

λ
, μ-a.s. ω ∈ D(c).

(3.8)

Let g(λ) = 2λNe−2/(α − 1)2 + c/λ, in the case 0 < c ≤ 2Nα2/[(1 − α)e]2, then it is
obvious g(λ) attains, at λ = (1 − α)e

√

c/2N, its smallest value g((1 − α)e
√

c/2N) =
2e−1

√
2cN/(1 − α) on the interval (0, α). That is

lim sup
n→∞

1
∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
− {log q(Xm+1,j | Xm,i

) − EQ

(

log q
(

Xm+1,j | Xm,i

) | Xm,i

)}

≤ 2e−1

(1 − α)

√
2cN, μ-a.s. ω ∈ D(c).

(3.9)

By the similar means of reasoning (2.21), it can be concluded that (3.9) also holds when
c = 0. According to the methods of proving (2.4), (3.1) follows from (1.5), (2.23), and (3.9).
Similarly, when −α < λ < 0, 0 ≤ c ≤ 2Nα2/[(1 − α)e]2, by (3.7) we have

lim inf
n→∞

1
∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
− {log q(Xm+1,j | Xm,i

) − EQ

(

log q
(

Xm+1,j | Xm,i

) | Xm,i

)}

≥ − 2e−1

(1 − α)

√
2cN, μ-a.s. ω ∈ D(c).

(3.10)

Imitating the proof of (2.5), (3.2) follows from (1.5), (1.10), (2.2), and (3.10).

Corollary 3.2 (see [9]). Let X = {Xt, t ∈ T} be the Markov chains field determined by the measure
μQ on the generalized Bethe tree T · fn(ω) is defined as (1.6), and H

Q
m(Xm+1,j | Xm,i) is defined as

(2.1). Then

lim
n→∞

⎧

⎨

⎩
fn(ω) − 1

∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
H

Q
m

(

Xm+1,j | Xm,i

)

⎫

⎬

⎭
= 0. μQ-a.s. (3.11)
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Proof. By (3.1) and (3.2) in Corollary 3.1, we obtain that when c = 0,

lim
n→∞

⎧

⎨

⎩
fn(ω) − 1

∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
H

Q
m

(

Xm+1,j | Xm,i

)

⎫

⎬

⎭
= 0, μ-a.s. ω ∈ D(0).

(3.12)

Set μ ≡ μQ, then ϕ(μ | μQ) ≡ 0. It implies (2.2) always holds when c = 0. ThereforeD(0) = Ω
holds. Equation (3.11) follows from (3.12).

Corollary 3.3. Under the assumption of Corollary 3.1, if μ 
 μQ, then

lim
n→∞

⎧

⎨

⎩
fn(ω) − 1

∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
H

Q
m

(

Xm+1,j | Xm,i

)

⎫

⎬

⎭
= 0. μ-a.s. (3.13)

Proof. It can be obtained that ϕ(μ | μQ) ≡ 0, μ a.s. holds if μ 
 μQ (see Gray 1990 [13]),
therefore μ(D(0)) = 1. Equation (3.13) follows from (3.12).

Let X = {Xt, t ∈ T} be a Markov chains field on the generalized Bethe tree with the
initial distribution and the joint distribution with respect to the measure μP as follows:

μP (x0,1) = p(x0,1), (3.14)

μP

(

xT (n)
)

= p(x0,1)
n−1∏

m=0

N0···Nm∏

i=1

Nm+1i∏

j=Nm+1(i−1)+1
p
(

xm+1,j | xm,i

)

, n ≥ 1, (3.15)

where P = p(j | i) is a strictly positive stochastic matrix on S, p = (p(s0), p(s1), p(s2) . . .) is a
strictly positive distribution. Therefore, the entropy density of X = {Xt, t ∈ T} with respect to
the measure μP is

fn(ω) = − 1
∣
∣T (n)
∣
∣

⎡

⎣log p(X0,1) +
n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
log p
(

Xm+1,j | Xm,i

)

⎤

⎦. (3.16)

Let the initial distribution and joint distribution ofX = {Xt, t ∈ T}with respect to the measure
μQ be defined as (1.4) and (1.5), respectively.

We have the following conclusion.

Corollary 3.4. Let X = {Xt, t ∈ T} be a Markov chains field on the generalized Bethe tree T whose
initial distribution and joint distribution with respect to the measure μP and μQ are defined by (3.14),
(3.15) and (1.4), (1.5), respectively. fn(ω) is defined as (3.16). If

∑

h∈S

∑

l∈S

[

p(l | h) − q(l | h)]+
q(l | h) ≤ c, (3.17)
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then

lim sup
n→∞

⎡

⎣fn(ω) − 1
∣
∣T (n)
∣
∣

n−1∑

m=0

N0 ···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
H

Q
m

(

Xm+1,j | Xm,i

)

⎤

⎦

≤ 2e−1

1 − α

√
2cN, μP -a.s.

(3.18)

lim inf
n→∞

⎡

⎣fn(ω) − 1
∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
H

Q
m

(

Xm+1,j | Xm,i

)

⎤

⎦

≥ − 2e−1

1 − α

√
2cN − c. μP -a.s,

(3.19)

Proof. Let μ = μP in Corollary 3.1, and by (1.5), (3.15)we get (3.16). By the inequalities log x ≤
x − 1 (x > 0), a ≤ [a]+, (3.17), and (1.10), we obtain

ϕ
(

μP | μQ

)

= lim sup
n→∞

1
∣
∣T (n)
∣
∣
log

μP

(

XT (n)
)

μQ

(

XT (n))

= lim sup
n→∞

1
∣
∣T (n)
∣
∣
log

p(X0,1)
∏n−1

m=0
∏N0 ···Nm

i=1

∏Nm+1i
j=Nm+1(i−1)+1p

(

Xm+1,j | Xm,i

)

q(X0,1)
∏n−1

m=0
∏N0 ···Nm

i=1

∏Nm+1i
j=Nm+1(i−1)+1q

(

Xm+1,j | Xm,i

)

≤ lim sup
n→∞

1
∣
∣T (n)
∣
∣
log

p(X0,1)
q(X0,1)

+ lim sup
n→∞

1
∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1
log

p
(

Xm+1,j | Xm,i

)

q
(

Xm+1,j | Xm,i

)

≤ lim sup
n→∞

1
∣
∣T (n)
∣
∣

n−1∑

m=0

N0 ···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1

∑

h∈S

∑

l∈S
δh(Xm,i)δl

(

Xm+1,j
)

log
p(l | h)
q(l | h)

≤ lim sup
n→∞

1
∣
∣T (n)
∣
∣

n−1∑

m=0

N0···Nm∑

i=1

Nm+1i∑

j=Nm+1(i−1)+1

∑

h∈S

∑

l∈S
δh(Xm,i)δl

(

Xm+1,j
)
[
p(l | h)
q(l | h) − 1

]

≤
∑

h∈S

∑

l∈S
lim sup
n→∞

∣
∣T (n)
∣
∣ − 1

∣
∣T (n)
∣
∣

p(l | h) − q(l | h)
q(l | h)

≤
∑

h∈S

∑

l∈S

[p(l | h) − q(l | h)]+
q(l | h) .

(3.20)

By (3.17) and (3.20) we have

ϕ
(

μP | μQ

) ≤ c, a.s. (3.21)

It follows from (2.2) and (3.21) that D(c) = Ω; therefore (3.18), (3.19) follow from (3.1),
(3.2).
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4. Some Limit Properties for Expectation of Random Conditional
Entropy on the Finite State Space

Lemma 4.1 (see [8]). Let XT (n)
= {Xt, t ∈ T (n)} be a Markov chains field defined on a Bethe tree

TB,N , Sn(k,ω) be the number of k in the set of random variables XT (n)
= {Xt, t ∈ T (n)}. then for all

k ∈ S,

lim
n

Sn(k,ω)
∣
∣T (n)
∣
∣

= π(k) μQ-a.s, (4.1)

where π = (π(1), . . . , π(N)) is the stationary distribution determined by Q.

Theorem 4.2. Let XT (n)
= {Xt, t ∈ T (n)} be a Markov chains field defined on a Bethe tree TB,N , and

let HQ
m(Xm+1,j | Xm,i) be defined as above. Then

lim
n

1
∣
∣T (n)
∣
∣

⎡

⎣

N+1∑

i=1

H
Q
0 (X1,i | X0,1) +

n−1∑

m=1

(N+1)Nm−1
∑

i=1

Ni∑

j=N(i−1)+1
H

Q
m

(

Xm+1,j | Xm,i

)

⎤

⎦

= −
∑

k∈S

∑

l∈S
π(k)q(l | k) log q(l | k), μQ-a.s.

(4.2)

Proof. Noticing now N1 = N + 1, for all n ≥ 2,Nn = N, that therefore we have

N+1∑

i=1

H
Q
0 (X1,i | X0,1) +

n−1∑

m=1

(N+1)Nm−1
∑

i=1

Ni∑

j=N(i−1)+1
H

Q
m

(

Xm+1,j | Xm,i

)

=
N+1∑

i=1

− EQ

[

log q(X1,i | X0,1) | X0,1
]

+
n−1∑

m=1

(N+1)Nm−1
∑

i=1

Ni∑

j=N(i−1)+1
− EQ

[

log q
(

Xm+1,j | Xm,i

) | Xm,i

]

= −
N+1∑

i=1

∑

x1,i∈S
q(x1,i | X0,1) log q(x1,i | X0,1)

−
n−1∑

m=1

(N+1)Nm−1
∑

i=1

Ni∑

j=N(i−1)+1

∑

xm+1,j∈S
q
(

xm+1,j | Xm,i

)

log q
(

xm+1,j | Xm,i

)
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= −
N+1∑

i=1

∑

k∈S

∑

l∈S
δk(X0,1)q(l | k) log q(l | k)

−
n−1∑

m=1

(N+1)Nm−1
∑

i=1

Ni∑

j=N(i−1)+1

∑

k∈S

∑

l∈S
δk(Xm,i)q(l | k) log q(l | k)

= −
∑

k∈S

∑

l∈S
q(l | k) log q(l | k)

⎡

⎣

N+1∑

i=1

δk(X0,1) +
n−1∑

m=0

(N+1)Nm−1
∑

i=1

Ni∑

j=N(i−1)+1
δk(Xm,i)

⎤

⎦

= −
∑

k∈S

∑

l∈S
q(l | k) log q(l | k)[NSn−1(k,ω) + δk(X0,1)].

(4.3)

Noticing that limn→∞(|T (n)|/|T (n−1)|) = N, by (4.3) we have

lim
n

1
∣
∣T (n)
∣
∣

⎡

⎣

N+1∑

i=1

H
Q
0 (X1,i | X0,1) +

n−1∑

m=1

(N+1)Nm−1
∑

i=1

Ni∑

j=N(i−1)+1
H

Q
m

(

Xm+1,j | Xm,i

)

⎤

⎦

= −lim
n

1
∣
∣T (n)
∣
∣

∑

k∈S

∑

l∈S
q(l | k) log q(l | k)[NSn−1(k,ω) + δk(X0,1)]

= −
∑

k∈S

∑

l∈S
q(l | k) log q(l | k)lim

n

1
∣
∣T (n−1)∣∣Sn−1(k,ω)

= −
∑

k∈S

∑

l∈S
π(k)q(l | k) log q(l | k).

(4.4)

Equation(4.2) follows from (4.4).

Theorem 4.3. Let XT (n)
= {Xt, t ∈ T (n)} be a Markov chains field defined on a Bethe tree TB,N ,

H
Q
m(Xm+1,j | Xm,i) defined as above. Then

lim
n

1
∣
∣T (n)
∣
∣

⎧

⎨

⎩

N+1∑

i=1

EQ

[

H
Q
0 (X1,i | X0,1)

]

+
n−1∑

m=1

(N+1)Nm−1
∑

i=1

Ni∑

j=N(i−1)+1
EQ

[

H
Q
m

(

Xm+1,j | Xm,i

)]

⎫

⎬

⎭

= −
∑

k∈S

∑

l∈S
q(k)q(l | k) log q(l | k). μQ-a.s.

(4.5)
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Proof. By the definition of HQ
m(Xm+1,j | Xm,i) and properties of conditional expectation, we

have

N+1∑

i=1

EQ

[

H
Q
0 (X1,i | X0,1)

]

+
n−1∑

m=1

(N+1)Nm−1
∑

i=1

Ni∑

j=N(i−1) +1
EQ

[

H
Q
m

(

Xm+1,j | Xm,i

)]

=
N+1∑

i=1

− EQ

{

EQ

[

log q(X1,i | X0,1) | X0,1
]}

+
n−1∑

m=1

(N+1)Nm−1
∑

i=1

Ni∑

j=N(i−1)+1
− EQ

{

EQ

[

log q
(

Xm+1,j | Xm,i

) | Xm,i

]}

=
N+1∑

i=1

− EQ

[

log q(X1,i | X0,1)
]

+
n−1∑

m=1

(N+1)Nm−1
∑

i=1

Ni∑

j=N(i−1)+1
− EQ

[

log q
(

Xm+1,j | Xm,i

)]

= −
N+1∑

i=1

∑

x0,1∈S

∑

x1,i∈S
q(x0,1, x1,i) log q(x1,i | x0,1)

−
n−1∑

m=1

(N+1)Nm−1
∑

i=1

Ni∑

j=N(i−1)+1

∑

xm,i∈S

∑

xm+1,j∈S
q
(

xm,i, xm+1,j
)

log q
(

xm+1,j | xm,i

)

= −
N+1∑

i=1

∑

k∈S

∑

l∈S
q(k)q(l | k) log q(l | k)

−
n−1∑

m=1

(N+1)Nm−1
∑

i=1

Ni∑

j=N(i−1)+1

∑

k∈S

∑

l∈S
q(k)q(l | k) log q(l | k)

= −
∑

k∈S

∑

l∈S
q(k)q(l | k) log q(l | k)

(∣
∣
∣T (n)
∣
∣
∣ − 1
)

.

(4.6)

Accordingly we have by (4.6)

lim
n

1
∣
∣T (n)
∣
∣

⎧

⎨

⎩

N+1∑

i=1

EQ

[

H
Q
0 (X1,i | X0,1)

]

+
n−1∑

m=1

(N+1)Nm−1
∑

i=1

Ni∑

j=N(i−1)+1
EQ

[

H
Q
m

(

Xm+1,j | Xm,i

)]

⎫

⎬

⎭

= −
∑

k∈S

∑

l∈S
q(k)q(l | k) log q(l | k)lim

n

∣
∣T (n)
∣
∣ − 1

∣
∣T (n)
∣
∣

= −
∑

k∈S

∑

l∈S
q(k)q(l | k) log q(l | k), μQ-a.s.

(4.7)

Therefore (4.5) also holds.
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