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Complete convergence is studied for linear statistics that are weighted sums of identically
distributed ρ∗-mixing random variables under a suitable moment condition. The results obtained
generalize and complement some earlier results. A Marcinkiewicz-Zygmund-type strong law is
also obtained.

1. Introduction

Suppose that {Xn; n ≥ 1} is a sequence of random variables and S is a subset of the natural
number set N. Let FS = σ(Xi; i ∈ S),

ρ∗n = sup
{
corr

(
f, g

)
: ∀S × T ⊂ N ×N, dist(S, T) ≥ n, ∀f ∈ L2(FS), g ∈ L2(FT )

}
, (1.1)

where

corr
(
f, g

)
=

Cov
{
f(Xi; i ∈ S), g

(
Xj ; j ∈ T

)}
[
Var

{
f(Xi; i ∈ S)

}
Var

{
g
(
Xj ; j ∈ T

)}]1/2 . (1.2)

Definition 1.1. A random variable sequence {Xn; n ≥ 1} is said to be a ρ∗-mixing random
variable sequence if there exists k ∈ N such that ρ∗

k
< 1.
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The notion of ρ∗-mixing seems to be similar to the notion of ρ-mixing, but they
are quite different from each other. Many useful results have been obtained for ρ∗-mixing
random variables. For example, Bradley [1] has established the central limit theorem, Byrc
and Smoleński [2] and Yang [3] have obtained moment inequalities and the strong law
of large numbers, Wu [4, 5], Peligrad and Gut [6], and Gan [7] have studied almost sure
convergence, Utev and Peligrad [8] have established maximal inequalities and the invariance
principle, An and Yuan [9] have considered the complete convergence and Marcinkiewicz-
Zygmund-type strong law of large numbers, and Budsaba et al. [10] have proved the rate of
convergence and strong law of large numbers for partial sums of moving average processes
based on ρ−-mixing random variables under some moment conditions.

For a sequence {Xn; n ≥ 1} of i.i.d. random variables, Baum and Katz [11] proved
the following well-known complete convergence theorem: suppose that {Xn; n ≥ 1} is a
sequence of i.i.d. random variables. Then EX1 = 0 and E|X1|rp < ∞ (1 ≤ p < 2, r ≥ 1) if and
only if

∑∞
n=1 n

r−2P(|∑n
i=1 Xi| > n1/pε) < ∞ for all ε > 0.

Hsu and Robbins [12] and Erdös [13] proved the case r = 2 and p = 1 of the above
theorem. The case r = 1 and p = 1 of the above theorem was proved by Spitzer [14]. An and
Yuan [9] studied the weighted sums of identically distributed ρ∗-mixing sequence and have
the following results.

Theorem B. Let {Xn; n ≥ 1} be a ρ∗-mixing sequence of identically distributed random variables,
αp > 1, α > 1/2, and suppose that EX1 = 0 for α ≤ 1. Assume that {ani; 1 ≤ i ≤ n} is an array of
real numbers satisfying

n∑
i=1

|ani|p = O(δ), 0 < δ < 1, (1.3)

�Ank = �
{
1 ≤ i ≤ n : |ani|p > (k + 1)−1

}
≥ ne−1/k. (1.4)

If E|X1|p < ∞, then

∞∑
n=1

nαp−2P

(
max
1≤j≤n

∣∣∣∣∣
j∑
i=1

aniXi

∣∣∣∣∣ > εnα

)
< ∞. (1.5)

Theorem C. Let {Xn; n ≥ 1} be a ρ∗-mixing sequence of identically distributed random variables,
αp > 1, α > 1/2, and EX1 = 0 for α ≤ 1. Assume that {ani; 1 ≤ i ≤ n} is array of real numbers
satisfying (1.3). Then

n−1/p
n∑
i=1

aniXi −→ 0 a.s. (n −→ ∞). (1.6)

Recently, Sung [15] obtained the following complete convergence results for weighted
sums of identically distributed NA random variables.
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Theorem D. Let {X,Xn; n ≥ 1} be a sequence of identically distributed NA random variables, and
let {ani; 1 ≤ i ≤ n, n ≥ 1} be an array of constants satisfying

Aα = lim sup
n→∞

Aα,n < ∞, Aα,n =
n∑
i=1

|ani|α
n

(1.7)

for some 0 < α ≤ 2. Let bn = n1/α(logn)1/γ for some γ > 0. Furthermore, suppose that EX = 0 where
1 < α ≤ 2. If

E|X|α < ∞, for α > γ,

E|X|α log|X| < ∞, for α = γ,

E|X|γ < ∞, for α < γ,

(1.8)

then

∞∑
n=1

1
n
P

(
max
1≤j≤n

∣∣∣∣∣
j∑
i=1

aniXi

∣∣∣∣∣ > bnε

)
< ∞ ∀ε > 0. (1.9)

We find that the proof of Theorem C is mistakenly based on the fact that (1.5) holds for
αp = 1. Hence, the Marcinkiewicz-Zygmund-type strong laws for ρ∗-mixing sequence have
not been established.

In this paper, we shall not only partially generalize Theorem D to ρ∗-mixing case, but
also extend Theorem B to the case αp = 1. Themain purpose is to establish theMarcinkiewicz-
Zygmund strong laws for linear statistics of ρ∗-mixing random variables under some suitable
conditions.

We have the following results.

Theorem 1.2. Let {X,Xn;n ≥ 1} be a sequence of identically distributed ρ∗-mixing random variables,
and let {ani; 1 ≤ i ≤ n, n ≥ 1} be an array of constants satisfying

Aβ = lim sup
n→∞

Aβ,n < ∞, Aβ,n =
n∑
i=1

|ani|β
n

, (1.10)

where β = max(α, γ) for some 0 < α ≤ 2 and γ > 0. Let bn = n1/α(logn)1/γ . If EX = 0 for 1 < α ≤ 2
and (1.8) for α/= γ , then (1.9) holds.

Remark 1.3. The proof of Theorem D was based on Theorem 1 of Chen et al. [16], which gave
sufficient conditions about complete convergence for NA random variables. So far, it is not
known whether the result of Chen et al. [16] holds for ρ∗-mixing sequence. Hence, we use
different methods from those of Sung [15]. We only extend the case α/= γ of Theorem D to
ρ∗-mixing random variables. It is still open question whether the result of Theorem D about
the case α = γ holds for ρ∗-mixing sequence.
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Theorem 1.4. Under the conditions of Theorem 1.2, the assumptions EX = 0 for 1 < α ≤ 2 and (1.8)
for α/= γ imply the following Marcinkiewicz-Zygmund strong law:

b−1n
n∑
i=1

aniXi −→ 0 a.s. (n −→ ∞). (1.11)

2. Proof of the Main Result

Throughout this paper, the symbol C represents a positive constant though its value may
change from one appearance to next. It proves convenient to define logx = max(1, lnx),
where lnx denotes the natural logarithm.

To obtain our results, the following lemmas are needed.

Lemma 2.1 (Utev and Peligrad [8]). Suppose N is a positive integer, 0 ≤ r < 1, and q ≥ 2. Then
there exists a positive constant D = D(N, r, q) such that the following statement holds.

If {Xi; i ≥ 1} is a sequence of random variables such that ρ∗N ≤ r with EXi = 0 and E|Xi|q <
∞ for every i ≥ 1, then for all n ≥ 1,

E

(
max
1≤i≤n

|Si|q
)

≤ D

⎛
⎝

n∑
i=1

E|Xi|q +
(

n∑
i=1

EX2
i

)q/2
⎞
⎠, (2.1)

where Si =
∑i

j=1 Xj .

Lemma 2.2. Let X be a random variable and {ani; 1 ≤ i ≤ n, n ≥ 1} be an array of constants
satisfying (1.10), bn = n1/α(logn)1/γ . Then

∞∑
n=1

n−1
n∑
i=1

P(|aniX| > bn) ≤

⎧
⎪⎨
⎪⎩

CE|X|α for α > γ,

CE|X|γ for α < γ.

(2.2)

Proof. If γ > α, by
∑n

i=1 |ani|γ = O(n) and Lyapounov’s inequality, then

1
n

n∑
i=1

|ani|α ≤
(

1
n

n∑
i=1

|ani|γ
)α/γ

= O(1). (2.3)

Hence, (1.7) is satisfied. From the proof of (2.1) of Sung [15], we obtain easily that the result
holds.
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Proof of Theorem 1.2. Let Xni = aniXiI(|aniXi| ≤ bn). For all ε > 0, we have

∞∑
n=1

1
n
P

(
max
1≤j≤n

∣∣∣∣∣
j∑
i=1

aniXi

∣∣∣∣∣ > εbn

)
≤

∞∑
n=1

1
n
P

(
max
1≤j≤n

∣∣anjXj

∣∣ > bn

)
+

∞∑
n=1

1
n
P

(
max
1≤j≤n

∣∣∣∣∣
j∑
i=1

Xni

∣∣∣∣∣ > εbn

)

:= I1 + I2.

(2.4)

To obtain (1.9), we need only to prove that I1 < ∞ and I2 < ∞.
By Lemma 2.2, one gets

I1 ≤
∞∑
n=1

1
n

n∑
j=1

P
(∣∣anjXj

∣∣ > bn
)
=

∞∑
n=1

1
n

n∑
j=1

P
(∣∣anjX

∣∣ > bn
)
< ∞. (2.5)

Before the proof of I2 < ∞, we prove firstly

b−1n max
1≤j≤n

∣∣∣∣∣
j∑
i=1

EaniXiI(|aniXi| ≤ bn)

∣∣∣∣∣ −→ 0, as n −→ ∞. (2.6)

For 0 < α ≤ 1,

b−1n max
1≤j≤n

∣∣∣∣∣
j∑
i=1

EaniXiI(|aniXi| ≤ bn)

∣∣∣∣∣ ≤ b−1n
n∑
i=1

E|aniXi|I(|aniXi| ≤ bn) ≤ b−αn
n∑
i=1

|ani|αE|X|α

≤ C
(
logn

)−α/γ
E|X|α −→ 0, as n −→ ∞.

(2.7)

For 1 < α ≤ 2,

b−1n max
1≤j≤n

∣∣∣∣∣
j∑
i=1

EaniXiI(|aniXi| ≤ bn)

∣∣∣∣∣ = b−1n max
1≤j≤n

∣∣∣∣∣
j∑
i=1

EaniXiI(|aniXi| > bn)

∣∣∣∣∣(EXi = 0)

≤ b−1n
n∑
i=1

E|aniXi|I(|aniXi| > bn) ≤ b−αn
n∑
i=1

|ani|αE|X|α

≤ C
(
logn

)−α/γ
E|X|α −→ 0, as n −→ ∞.

(2.8)

Thus (2.6) holds. So, to prove I2 < ∞, it is enough to show that

I3 =
∞∑
n=1

1
n
P

(
max
1≤j≤n

∣∣∣∣∣
j∑
i=1

Xni − EXni

∣∣∣∣∣ > εbn

)
< ∞, ∀ε > 0. (2.9)
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By the Chebyshev inequality and Lemma 2.1, for q ≥ max{2, γ}, we have

I3 ≤ C
∞∑
n=1

n−1b−qn E

⎛
⎝max

1≤j≤n

∣∣∣∣∣
j∑
i=1

Xni − EXni

∣∣∣∣∣

q
⎞
⎠

≤ C
∞∑
n=1

n−1b−qn
n∑
i=1

E|aniXi|qI(|aniXi| ≤ bn)

+ C
∞∑
n=1

n−1b−qn

[
n∑
i=1

E(aniXi)2I(|aniXi| ≤ bn)

]q/2

:= I31 + I32.

(2.10)

For I31, we consider the following two cases.

If α < γ , note that E|X|γ < ∞. We have

I31 ≤ C
∞∑
n=1

n−1b−γn
n∑
i=1

|ani|γE|X|γ ≤ C
∞∑
n=1

n
−
γ

α
(
logn

)−1
< ∞. (2.11)

If α > γ , note that E|X|α < ∞. we have

I31 ≤ C
∞∑
n=1

n−1b−αn
n∑
i=1

|ani|αE|X|α ≤ C
∞∑
n=1

n−1(logn)−α/γ < ∞. (2.12)

Next, we prove I32 < ∞ in the following two cases.

If α < γ ≤ 2 or γ < α ≤ 2, take q > max(2, 2γ/α). Noting that E|X|α < ∞, we have

I32 ≤ C
∞∑
n=1

n−1b−αq/2n

[
n∑
i=1

|ani|αE|X|α
]q/2

≤ C
∞∑
n=1

n−1(logn)−αq/(2γ) < ∞.

(2.13)

If γ > 2 ≥ α or γ ≥ 2 > α, one gets E|X|2 < ∞. Since
∑n

i=1 |ani|α = O(n), it implies
max1≤i≤n|ani|α ≤ Cn. Therefore, we have

n∑
i=1

|ani|k =
n∑
i=1

|ani|α|ani|k−α ≤ Cnn(k−α)/α = Cnk/α (2.14)
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for all k ≥ α. Hence,
∑n

i=1 |ani|2 = O(n2/α). Taking q > γ , we have

I32 ≤ C
∞∑
n=1

n−1b−qn

[
n∑
i=1

|ani|2
]q/2

≤ C
∞∑
n=1

n−1b−qn nq/α = C
∞∑
n=1

n−1(logn)−q/γ < ∞.

(2.15)

Proof of Theorem 1.4. By (1.9), a standard computation (see page 120 of Baum and Katz [11]
or page 1472 of An and Yuan [9]), and the Borel-Cantelli Lemma, we have

max1≤j≤2i
∣∣∣∑j

i=1 aniXi

∣∣∣
2(i+1)/α

(
log 2i+1

)1/γ −→ 0 a.s. (i −→ ∞). (2.16)

For any n ≥ 1, there exists an integer i such that 2i−1 ≤ n < 2i. So

max
2i−1≤n<2i

∣∣∣∑n
j=1 anjXj

∣∣∣
bn

≤
max1≤j≤2i

∣∣∣∑j

i=1 anjXj

∣∣∣
2(i−1)/α

(
log 2i−1

)1/γ = 22/α
max1≤j≤2i

∣∣∣∑n
j=1 anjXj

∣∣∣
2(i+1)/α

(
log 2i+1

)1/γ
(
i + 1
i − 1

)1/γ

.

(2.17)

From (2.16) and (2.17), we have

lim
n→∞

b−1n
n∑
i=1

aniXi = 0 a.s. (2.18)
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