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This paper investigates the existence and asymptotic behavior of solutions for weighted p(t)-
Laplacian integro-differential system with multipoint and integral boundary value condition in
half line. When the nonlinearity term f satisfies sub-(p− − 1) growth condition or general growth
condition, we give the existence of solutions via Leray-Schauder degree. Moreover, the existence
of nonnegative solutions has been discussed.

1. Introduction

In this paper, we consider the existence and asymptotic behavior of solutions for the following
weighted p(t)-Laplacian integrodifferential system:

−Δp(t)u + δf
(
t, u, (w(t))1/(p(t)−1)u′, S(u), T(u)

)
= 0, t ∈ (0,+∞), (1.1)

with the following multipoint and integral boundary value condition:

u(0) =
m−2∑
i=1

αiu(ξi) + e0, lim
t→+∞

u(t) =
∫+∞

0
e(t)u(t)dt, (1.2)
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where u : [0,+∞) → R
N ;S and T are linear operators defined by

S(u)(t) =
∫ t

0
ψ(s, t)u(s)ds, T(u)(t) =

∫+∞

0
χ(s, t)u(s)ds, (1.3)

where ψ ∈ C(D,R), χ ∈ C(D,R), D = {(s, t) ∈ [0,+∞) × [0,+∞)}; ∫+∞
0 |ψ(s, t)|ds and∫+∞

0 |χ(s, t)|ds are uniformly bounded with t; p ∈ C([0,+∞),R), p(t) > 1, limt→+∞p(t) exists
and limt→+∞p(t) > 1; −Δp(t)u := −(w(t)|u′|p(t)−2u′)′ is called the weighted p(t)-Laplacian;w ∈
C([0,+∞),R) satisfies 0 < w(t), for all t ∈ (0,+∞), and (w(t))−1/(p(t)−1) ∈ L1(0,+∞); 0 < ξ1 <
· · · < ξm−2 < +∞, αi ≥ 0, (i = 1, . . . , m − 2) and 0 <

∑m−2
i=1 αi < 1; e ∈ L1(0,+∞) is nonnegative,

σ =
∫+∞
0 e(t)dt and σ ∈ [0, 1]; e0 ∈ R

N ; δ is a positive parameter.
The study of differential equations and variational problems with variable exponent

growth conditions is a new and interesting topic. Many results have been obtained on these
problems, for example, [1–18]. Such problems arise from the study of electrorheological
fluids, image processing, and the theory of nonlinear elasticity [2, 10, 18]. Many important
models in image processing can be unified to the following variable exponent flow (see [2]):

ut − div
(
|∇u|p(x)−2∇u

)
+ λ(u − u0) = 0, in Ω × [0, T],

u(x; t) = g(x), on ∂Ω × [0, T],

u(x, t) = u0.

(1.4)

The main benefit of this flow is the manner in which it accommodates the local image
information.

If w(t) ≡ 1 and p(t) ≡ p (a constant), −Δp(t) becomes the well-known p-Laplacian.
If p(t) is a general function, −Δp(t) represents a nonhomogeneity and possesses more
nonlinearity, thus −Δp(t) is more complicated than −Δp. For example,

(a) if Ω ⊂ R
n is a bounded domain, the Rayleigh quotient

λp(x) = inf
u∈W1,p(x)

0 (Ω)\{0}

∫
Ω

(
1/p(x)

)|∇u|p(x)dx
∫
Ω

(
1/p(x)

)|u|p(x)dx
(1.5)

is zero in general, and only under some special conditions λp(x) > 0 (see [6]), but
the fact that λp > 0 is very important in the study of p-Laplacian problems.

(b) If w(t) ≡ 1, p(t) ≡ p (a constant) and −Δpu > 0, then u is concave; this property
is used extensively in the study of one-dimensional p-Laplacian problems, but it is
invalid for −Δp(t). It is another difference between −Δp and −Δp(t).

There are many results on the existence of solutions for p-Laplacian equation
with integral boundary value conditions (see [19–24]). On the existence of solutions for
p(x)-Laplacian systems boundary value problems, we refer to [4–7, 12–17]. On the p-
Laplacian equation multipoint problems, we refer to [25–27] (and the references therein).
In [25], under some monotone assumptions, Ahmad and Nieto investigated the existence
of solutions for three-point second-order integrodifferential boundary value problems with
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p-Laplacian by monotone iterative technique. But results on the existence and asymptotic
behavior of solutions for weighted p(t)-Laplacian integrodifferential systems with multipoint
and integral boundary value conditions are rare. In this paper, when p(t) is a general
function, we investigate the existence and asymptotic behavior of solutions for weighted
p(t)-Laplacian integrodifferential systems with multipoint and integral boundary value
conditions. Moreover, we give the existence of nonnegative solutions. This paper do not
assume monotone assumptions on f , and f dependent on (w(t))1/(p(t)−1)u′, but it should
satisfy some growth conditions. Our results partly generalized the results of [25].

LetN ≥ 1 and J = [0,+∞); the function f = (f1, . . . , fN) : J×RN×RN×RN×RN → R
N

is assumed to be Caratheodory, by this we mean that

(i) for almost every t ∈ J , the function f(t, ·, ·, ·, ·) is continuous;

(ii) for each (x, y, z,w) ∈ R
N ×R

N ×R
N ×R

N , the function f(·, x, y, z,w) is measurable
on J ;

(iii) for each R > 0 there is a βR ∈ L1(J,R) such that, for almost every t ∈ J and every
(x, y, z,w) ∈ R

N × R
N × R

N × R
N with |x| ≤ R, |y| ≤ R, |z| ≤ R, |w| ≤ R, one has

∣∣f(t, x, y, z,w)∣∣ ≤ βR(t). (1.6)

Throughout the paper, we denote

w(0)
∣∣u′∣∣p(0)−2u′(0) = lim

t→ 0+
w(t)

∣∣u′∣∣p(t)−2u′(t),

w(+∞)
∣∣u′∣∣p(+∞)−2

u′(+∞) = lim
t→+∞

w(t)
∣∣u′∣∣p(t)−2u′(t).

(1.7)

The inner product in R
N will be denoted by 〈·, ·〉; | · | will denote the absolute value

and the Euclidean norm on R
N . Let AC(0,+∞) denote the space of absolutely continuous

functions on the interval (0,+∞). For N ≥ 1, we set C = C(J,RN), C1 = {u ∈ C | u′ ∈
C((0,+∞),RN), limt→ 0+w(t)1/(p(t)−1)u′(t) exists}. For any u(t) = (u1(t), . . . , uN(t)) ∈ C, we
denote |ui|0 = supt∈(0,+∞)|ui(t)|, ‖u‖0 = (

∑N
i=1 |ui|20)1/2, and ‖u‖1 = ‖u‖0 + ‖(w(t))1/(p(t)−1)u′‖0.

Spaces C and C1 will be equipped with the norms ‖ · ‖0 and ‖ · ‖1, respectively. Then
(C, ‖ · ‖0) and (C1, ‖ · ‖1) are Banach spaces. Denote L1 = L1(J,RN) with the norm ‖u‖L1 =
[
∑N

i=1(
∫∞
0 |ui|dt)2]1/2.
We say a function u : J → R

N is a solution of (1.1) if u ∈ C1 with w(t)|u′|p(t)−2u′

absolutely continuous on (0,+∞), which satisfies (1.1) a.e. on J .
In this paper, we always use Ci to denote positive constants if it cannot lead to

confusion. Denote

z− = inf
t∈J

z(t), z+ = sup
t∈J

z(t), for any z ∈ C(J,R). (1.8)
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We say f satisfies sub-(p− − 1) growth condition if f satisfies

lim
|x|+|y|+|z|+|w|→+∞

f
(
t, x, y, z,w

)
(|x| + ∣∣y∣∣ + |z| + |w|)q(t)−1

= 0, for t ∈ J uniformly, (1.9)

where q(t) ∈ C(J,R), and 1 < q− ≤ q+ < p−. We say f satisfies general growth condition, if f
does not satisfy sub-(p− − 1) growth condition.

We will discuss the existence of solutions of (1.1)-(1.2) in the following two cases

(i) f satisfies sub-(p− − 1) growth condition;

(ii) f satisfies general growth condition.

This paper is divided into five sections. In the Section 2, we will do some preparation.
In Section 3, we will discuss the existence and asymptotic behavior of solutions of (1.1)-(1.2),
when f satisfies sub-(p− − 1) growth condition. In Section 4, when f satisfies general growth
condition, we will discuss the existence and asymptotic behavior of solutions of (1.1)-(1.2).
Moreover, we discuss the existence of nonnegative solutions. Finally, in Section 5, we give
several examples.

2. Preliminary

For any (t, x) ∈ J × R
N , denote ϕ(t, x) = |x|p(t)−2x. Obviously, ϕ has the following properties

Lemma 2.1 (see [4]). ϕ is a continuous function and satisfies the following conditions.

(i) For any t ∈ [0,+∞), ϕ(t, ·) is strictly monotone, that is

〈ϕ(t, x1) − ϕ(t, x2), x1 − x2〉 > 0, for any x1, x2 ∈ R
N, x1 /=x2. (2.1)

(ii) There exists a function β : [0,+∞) → [0,+∞), β(s) → +∞ as s → +∞, such that

〈
ϕ(t, x), x

〉 ≥ β(|x|)|x|, ∀x ∈ R
N. (2.2)

It is well known that ϕ(t, ·) is a homeomorphism from R
N to R

N for any fixed t ∈
[0,+∞). For any t ∈ J , denote by ϕ−1(t, ·) the inverse operator of ϕ(t, ·); then

ϕ−1(t, x) = |x|(2−p(t))/(p(t)−1)x, for x ∈ R
N \ {0}, ϕ−1(t, 0) = 0. (2.3)

It is clear that ϕ−1(t, ·) is continuous and sends bounded sets into bounded sets.
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Now, let us consider the following problem with boundary value condition (1.2):

(
w(t)ϕ

(
t, u′(t)

))′ = g(t), t ∈ (0,+∞), where g ∈ L1. (2.4)

If u is a solution of (2.4) with (1.2), by integrating (2.4) from 0 to t, we find that

w(t)ϕ
(
t, u′(t)

)
= w(0)ϕ

(
0, u′(0)

)
+
∫ t

0
g(s)ds. (2.5)

Denote a = w(0)ϕ(0, u′(0)). It is easy to see that a is dependent on g(·). Define operator
F : L1 → C as

F
(
g
)
(t) =

∫ t

0
g(s)ds, ∀t ∈ J, ∀g ∈ L1. (2.6)

By solving for u′ in (2.5) and integrating, we find that

u(t) = u(0) + F
{
ϕ−1

[
t, (w(t))−1

(
a + F

(
g
))]}

(t), t ∈ J. (2.7)

From u(0) =
∑m−2

i=1 αiu(ξi) + e0, we have

u(0) =

∑m−2
i=1 αi

∫ ξi
0 ϕ−1

[
t, (w(t))−1

(
a + F

(
g
)
(t)

)]
dt + e0

1 −∑m−2
i=1 αi

. (2.8)

Suppose σ ∈ [0, 1). From limt→+∞u(t) =
∫+∞
0 e(t)u(t)dt, we obtain

u(0) =

∫+∞
0

{
e(t)

∫ t
0 ϕ

−1
[
r, (w(r))−1

(
a + F

(
g
)
(r)

)]
dr

}
dt

1 − σ

−
∫+∞
0 ϕ−1

[
t, (w(t))−1

(
a + F

(
g
)
(t)

)]
dt

1 − σ
.

(2.9)
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From (2.8) and (2.9), we have

∑m−2
i=1 αi

∫ ξi
0 ϕ−1

[
t, (w(t))−1

(
a + F

(
g
)
(t)

)]
dt + e0

1 −∑m−2
i=1 αi

=

∫+∞
0

{
e(t)

∫ t
0 ϕ

−1
[
r, (w(r))−1

(
a + F

(
g
)
(r)

)]
dr

}
dt

1 − σ

−
∫+∞
0 ϕ−1

[
t, (w(t))−1

(
a + F

(
g
)
(t)

)]
dt

1 − σ
.

(2.10)

For fixed h ∈ C, we denote

Λh(a) =

∑m−2
i=1 αi

∫ ξi
0 ϕ−1

[
t, (w(t))−1(a + h(t))

]
dt + e0

1 −∑m−2
i=1 αi

−
∫+∞
0

{
e(t)

∫ t
0 ϕ

−1
[
r, (w(r))−1(a + h(r))

]
dr

}
dt

1 − σ

+

∫+∞
0 ϕ−1

[
t, (w(t))−1(a + h(t))

]
dt

1 − σ
.

(2.11)

Throughout the paper, we denote E =
∫+∞
0 (w(t))

−1/(p(t)−1)
dt.

Lemma 2.2. The function Λh(·) has the following properties.

(i) For any fixed h ∈ C, the equation

Λh(a) = 0 (2.12)

has a unique solution ã(h) ∈ R
N .

(ii) The function ã : C → R
N , defined in (i), is continuous and sends bounded sets to bounded

sets. Moreover,

|ã(h)| ≤ 3N

⎡
⎢⎣ 2N(E + 1)(

1 −∑m−2
i=1 αi

)
E

+ 1

⎤
⎥⎦

p+

·
[
‖h‖0 + (2N)p

+ |e0|p
#−1

]
, (2.13)

where the notation Mp#−1 means

Mp#−1 =

⎧
⎨
⎩
Mp+−1, M > 1,

Mp−−1, M ≤ 1.
(2.14)
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Proof. (i) Obviously, we have

∫+∞

0

{
e(t)

∫ t

0
ϕ−1

[
r, (w(r))−1(a + h(r))

]
dr

}
dt

=
∫+∞

0

{
e(t)

∫+∞

0
ϕ−1

[
r, (w(r))−1(a + h(r))

]
dr

}
dt

−
∫+∞

0

{
e(t)

∫+∞

t

ϕ−1
[
r, (w(r))−1(a + h(r))

]
dr

}
dt

= σ

∫+∞

0
ϕ−1

[
t, (w(t))−1(a + h(t))

]
dt

−
∫+∞

0

{
e(t)

∫+∞

t

ϕ−1
[
r, (w(r))−1(a + h(r))

]
dr

}
dt.

(2.15)

It is easy to see that

Λh(a) =

∑m−2
i=1 αi

∫ ξi
0 ϕ−1

[
t, (w(t))−1(a + h(t))

]
dt + e0

1 −∑m−2
i=1 αi

+

∫+∞
0

{
e(t)

∫+∞
t ϕ−1

[
r, (w(r))−1(a + h(r))

]
dr

}
dt

1 − σ

+
∫+∞

0
ϕ−1

[
t, (w(t))−1(a + h(t))

]
dt.

(2.16)

From Lemma 2.1, it is immediate that

〈Λh(a1) −Λh(a2), a1 − a2〉 > 0, for a1 /=a2, (2.17)

and hence, if (2.12) has a solution, then it is unique.

Let t0 = 3N[2N(E + 1)/(1 −∑m−2
i=1 αi)E + 1]

p+ · [‖h‖0 + (2N)p
+ |e0|p

#−1]. If |a| > t0,
since (w(t))−1/(p(t)−1) ∈ L1(0,+∞) and h ∈ C, it is easy to see that there exists an i ∈ {1, . . . ,N}
such that the ith component ai of a satisfies

∣∣∣ai
∣∣∣ ≥ |a|

N
> 3

⎡
⎢⎣ 2N(E + 1)(

1 −∑m−2
i=1 αi

)
E

+ 1

⎤
⎥⎦

p+

·
[
‖h‖0 + (2N)p

+ |e0|p
#−1

]
. (2.18)
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Thus (ai + hi(t)) keeps sign on J and

∣∣∣ai + hi(t)
∣∣∣ ≥

∣∣∣ai
∣∣∣ − ‖h‖0

≥ 2|a|
3N

> 2

⎡
⎢⎣ 2N(E + 1)(

1 −∑m−2
i=1 αi

)
E

+ 1

⎤
⎥⎦

p+

·
[
‖h‖0 + (2N)p

+ |e0|p
#−1

]
, ∀t ∈ J.

(2.19)

Obviously, |a + h(t)| ≤ 4|a|/3 ≤ 2N|ai + hi(t)|, then

|a + h(t)|(2−p(t))/(p(t)−1)
∣∣∣ai + hi(t)

∣∣∣ > 1
2N

∣∣∣ai + hi(t)
∣∣∣
1/(p(t)−1)

>
E + 1(

1 −∑m−2
i=1 αi

)
E
|e0|, ∀t ∈ J.

(2.20)

Thus the ith component Λi
h(a) of Λh(a) is nonzero and keeps sign, and then we have

Λh(a)/= 0. (2.21)

Let us consider the equation

λΛh(a) + (1 − λ)a = 0, λ ∈ [0, 1]. (2.22)

It is easy to see that all the solutions of (2.22) belong to b(t0+1) = {x ∈ R
N | |x| < t0+1}.

So, we have

dB[Λh(a), b(t0 + 1), 0] = dB[I, b(t0 + 1), 0]/= 0, (2.23)

and it shows the existence of solutions of Λh(a) = 0.
In this way, we define a function ã(h) : C[0,+∞) → R

N , which satisfies

Λh(ã(h)) = 0. (2.24)

(ii) By the proof of (i), we also obtain that ã sends bounded sets to bounded sets, and

|ã(h)| ≤ 3N

⎡
⎢⎣ 2N(E + 1)(

1 −∑m−2
i=1 αi

)
E

+ 1

⎤
⎥⎦

p+

·
[
‖h‖0 + (2N)p

+ |e0|p
#−1

]
. (2.25)

It only remains to prove the continuity of ã. Let {un} be a convergent sequence in C
and un → u as n → +∞. Since {ã(un)} is a bounded sequence, then it contains a convergent
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subsequence {ã(unj )}. Let ã(unj ) → a0 as j → +∞. Since Λunj
(ã(unj )) = 0, letting j → +∞,

we have Λu(a0) = 0. From (i), we get a0 = ã(u); it means that ã is continuous.
This completes the proof.

Similarly, if u is a solution of (2.4) with (1.2) when σ = 1 we have

u(t) = u(0) + F
{
ϕ−1

[
t, (w(t))−1

(
a∗ + F

(
g
)
(t)

)]}
(t), t ∈ J, (2.26)

where a∗ = w(0)ϕ(0, u′(0)), then a∗ is dependent on g(·).
The boundary value condition (1.2) implies that

u(0) =

∑m−2
i=1 αi

∫ ξi
0 ϕ−1

[
t, (w(t))−1

(
a∗ + F

(
g
)
(t)

)]
dt + e0

1 −∑m−2
i=1 αi

,

∫+∞

0

{
e(t)

∫+∞

t

ϕ−1
[
r, (w(r))−1

(
a∗ + F

(
g
)
(r)

)]
dr

}
dt = 0.

(2.27)

For fixed h ∈ C, we denote

Θh(a∗) =
∫+∞

0

{
e(t)

∫+∞

t

ϕ−1
[
r, (w(r))−1(a∗ + h(r))

]
dr

}
dt. (2.28)

Lemma 2.3. The function Θh(·) has the following properties.

(i) For any fixed h ∈ C, the equation

Θh(a∗) = 0 (2.29)

has a unique solution ã∗(h) ∈ R
N .

(ii) The function ã∗ : C → R
N , defined in (i), is continuous and sends bounded sets to bounded

sets. Moreover,

∣∣∣ã∗(h)
∣∣∣ ≤ 3N‖h‖0. (2.30)

Proof. It is similar to the proof of Lemma 2.2, we omit it here.

Now, we define a : L1 → R
N as

a(u) = ã(F(u)), (2.31)

and define a∗ : L1 → R
N as

a∗(u) = ã∗(F(u)). (2.32)



10 Journal of Inequalities and Applications

It is also clear that a(·) and a∗(·) are continuous and they send bounded sets of L1 into
bounded sets of RN , and hence they are compact continuous.

If u is a solution of (2.4) with (1.2), when σ ∈ [0, 1), we have

u(t) = u(0) + F
{
ϕ−1

[
t, (w(t))−1

(
a
(
g
)
+ F

(
g
)
(t)

)]}
(t), ∀t ∈ [0,+∞),

u(0) =

∑m−2
i=1 αi

∫ ξi
0 ϕ−1

[
t, (w(t))−1

(
a + F

(
g
)
(t)

)]
dt + e0

1 −∑m−2
i=1 αi

.

(2.33)

When σ = 1, we have

u(t) = u(0) + F
{
ϕ−1

[
t, (w(t))−1

(
a∗(g) + F

(
g
)
(t)

)]}
(t), ∀t ∈ [0,+∞),

u(0) =

∑m−2
i=1 αi

∫ ξi
0 ϕ−1

[
t, (w(t))−1

(
a∗ + F

(
g
)
(t)

)]
dt + e0

1 −∑m−2
i=1 αi

.

(2.34)

We denote

K1(h)(t) := (K1 ◦ h)(t) = F
{
ϕ−1

[
t, (w(t))−1(a(h) + F(h))

]}
(t), ∀t ∈ (0,+∞),

K2(h)(t) := (K2 ◦ h)(t) = F
{
ϕ−1

[
t, (w(t))−1(a∗(h) + F(h))

]}
(t), ∀t ∈ (0,+∞).

(2.35)

Lemma 2.4. The operators Ki (i = 1, 2) are continuous and they send equi-integrable sets in L1 to
relatively compact sets in C1.

Proof. we only prove that the operator K1 is continuous and sends equi-integrable sets in L1

to relatively compact sets in C1; the rest is similar.
It is easy to check that K1(h)(t) ∈ C1, for all h ∈ L1. Since (w(t))−1/(p(t)−1) ∈ L1 and

K1(h)
′(t) = ϕ−1

[
t, (w(t))−1(a(h) + F(h))

]
, ∀t ∈ [0,+∞), (2.36)

it is easy to check that K1 is a continuous operator from L1 to C1.
Let now U be an equi-integrable set in L1; then there exists ρ∗ ∈ L1, such that

|u(t)| ≤ ρ∗(t) a.e. in J, for any u ∈ L1. (2.37)

We want to show that K1(U) ⊂ C1 is a compact set.
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Let {un} be a sequence in K1(U); then there exists a sequence {hn} ∈ U such that
un = K1(hn). For any t1, t2 ∈ J , we have

|F(hn)(t1) − F(hn)(t2)| =
∣∣∣∣∣
∫ t1

0
hn(t)dt −

∫ t2

0
hn(t)dt

∣∣∣∣∣

=

∣∣∣∣∣
∫ t2

t1

hn(t)dt

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ t2

t1

ρ∗(t)dt

∣∣∣∣∣.
(2.38)

Hence the sequence {F(hn)} is uniformly bounded and equi-continuous. By Ascoli-
Arzela Theorem, there exists a subsequence of {F(hn)} (which we rename the same) being
convergent in C. According to the bounded continuous of the operator a, we can choose a
subsequence of {a(hn) + F(hn)} (which we still denote {a(hn) + F(hn)}) which is convergent
in C, then w(t)ϕ(t,K1(hn)

′(t)) = a(hn) + F(hn) is convergent in C.
Since

K1(hn)(t) = F
{
ϕ−1

[
t, (w(t))−1(a(hn) + F(hn))

]}
(t), ∀t ∈ [0,+∞), (2.39)

it follows from the continuity of ϕ−1 and the integrability ofw(t)−1/(p(t)−1) in L1 thatK1(hn) is
convergent in C. Thus {un} is convergent in C1. This completes the proof.

Let us define P,Q : C1 → C1 as

P(h) =
∑m−2

i=1 αi(K1 ◦ h)(ξi) + e0

1 −∑m−2
i=1 αi

, Q(h) =
∑m−2

i=1 αi(K2 ◦ h)(ξi) + e0

1 −∑m−2
i=1 αi

. (2.40)

It is easy to see that P and Q are both compact continuous.
We denote by Nf(u) : [0,+∞) × C1 → L1 the Nemytski operator associated to f

defined by

Nf(u)(t) = f
(
t, u(t), (w(t))1/(p(t)−1) u′(t), S(u)(t), T(u)(t)

)
, a.e. on J. (2.41)

Lemma 2.5. (i) When σ ∈ [0, 1), u is a solution of (1.1)-(1.2) if and only if u is a solution of the
following abstract equation:

u = P
(
δNf(u)

)
+K1

(
δNf(u)

)
. (2.42)

(ii) When σ = 1, u is a solution of (1.1)-(1.2) if and only if u is a solution of the following
abstract equation:

u = Q
(
δNf(u)

)
+K2

(
δNf(u)

)
. (2.43)
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Proof. (i) If u is a solution of (1.1)-(1.2) when σ ∈ [0, 1), by integrating (1.1) from 0 to t, we
find that

w(t)ϕ
(
t, u′(t)

)
= a

(
δNf(u)

)
+ F

(
δNf(u)

)
(t), ∀t ∈ (0,+∞). (2.44)

From (2.44), we have

u(t) = u(0) + F
{
ϕ−1

[
t, (w(t))−1

(
a
(
δNf(u)

)
+ F

(
δNf(u)

)
(t)

)]}
(t), ∀t ∈ [0,+∞). (2.45)

Since

u(0) =
m−2∑
i=1

αi

[
u(0) + F

{
ϕ−1

[
t, (w(t))−1

(
a
(
δNf(u)

)
+ F

(
δNf(u)

)
(t)

)]}
(ξi)

]
+ e0, (2.46)

we have

u(0) =

∑m−2
i=1 αiF

{
ϕ−1

[
t, (w(t))−1

(
a
(
δNf(u)

)
+ F

(
δNf(u)

)
(t)

)]}
(ξi) + e0

1 −∑m−2
i=1 αi

=

∑m−2
i=1 αiK1

(
δNf(u)

)
(ξi) + e0

1 −∑m−2
i=1 αi

= P
(
δNf(u)

)
.

(2.47)

So we have

u = P
(
δNf(u)

)
+K1

(
δNf(u)

)
. (2.48)

Conversely, if u is a solution of (2.42), then

u(0) = P
(
δNf(u)

)
+K1

(
δNf(u)

)
(0) = P

(
δNf(u)

)
=

∑m−2
i=1 αiK1

(
δNf(u)

)
(ξi) + e0

1 −∑m−2
i=1 αi

, (2.49)

and then

u(0) =
m−2∑
i=1

αi

[
u(0) +K1

(
δNf(u)

)
(ξi)

]
+ e0 =

m−2∑
i=1

αiu(ξi) + e0. (2.50)

It follows from (2.42) that

u(+∞) = P
(
δNf(u)

)
+K1

(
δNf(u)

)
(+∞). (2.51)
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By the condition of the mapping a, we have

u(0) =

∑m−2
i=1 αiK1

(
δNf(u)

)
(ξi) + e0

1 −∑m−2
i=1 αi

= −
∫+∞
0

{
e(t)

∫+∞
t ϕ−1

[
r, (w(r))−1

(
a + F

(
δNf(u)

)
(r)

)]
dr

}
dt

1 − σ

−
∫+∞

0
ϕ−1

[
t, (w(t))−1

(
a + F

(
δNf(u)

)
(t)

)]
dt,

(2.52)

and then

u(+∞) = −
∫+∞
0

{
e(t)

∫+∞
t ϕ−1

[
r, (w(r))−1

(
a + F

(
δNf(u)

)
(r)

)]
dr

}
dt

1 − σ

= −
∫+∞
0

{
e(t)

∫+∞
0 ϕ−1

[
r, (w(r))−1

(
a + F

(
δNf(u)

)
(r)

)]
dr

}
dt

1 − σ

+

∫+∞
0

{
e(t)

∫ t
0 ϕ

−1
[
r, (w(r))−1

(
a + F

(
δNf(u)

)
(r)

)]
dr

}
dt

1 − σ

=

∫+∞
0 e(t)[u(+∞) − u(0)]dt

σ − 1
−

∫+∞
0 e(t)[u(t) − u(0)]dt

σ − 1

=
σu(+∞) − ∫+∞

0 e(t)u(t)dt
σ − 1

,

(2.53)

thus

u(+∞) =
∫+∞

0
e(t)u(t)dt. (2.54)

From (2.50) and (2.54), we obtain (1.2).
From (2.42), we have

u′(t) = ϕ−1
[
t, (w(t))−1

(
a + F

(
δNf(u)

)
(t)

)]
, (2.55)

and then

(
w(t)ϕ

(
t, u′))′ = δNf(u)(t). (2.56)

Hence u is a solution of (1.1)-(1.2) when σ ∈ [0, 1).
(ii) It is similar to the proof of (i).
This completes the proof.
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3. When f Satisfies Sub-(p− − 1) Growth Condition

In this section, we will apply Leray-Schauder’s degree to deal with the existence of solutions
for (1.1)-(1.2), when f satisfies sub-(p− − 1) growth condition. Moreover, the asymptotic
behavior has been discussed.

Theorem 3.1. If f satisfies sub-(p− − 1) growth condition, then problem (1.1)-(1.2) has at least a
solution for any fixed parameter δ when σ ∈ [0, 1).

Proof. Denote Ψf(u, λ) := P(λδNf(u)) + K1(λδNf(u)), where Nf(u) is defined in (2.41).
When σ ∈ [0, 1), we know that (1.1)-(1.2) has the same solution of

u = Ψf(u, λ), (3.1)

when λ = 1.
It is easy to see that the operator P is compact continuous. According to Lemmas 2.2

and 2.4, we can see that Ψf(·, λ) is compact continuous from C1 to C1 for any λ ∈ [0, 1].
We claim that all the solutions of (3.1) are uniformly bounded for λ ∈ [0, 1]. In fact, if

it is false, we can find a sequence of solutions {(un, λn)} for (3.1) such that ‖un‖1 → +∞ as
n → +∞, and ‖un‖1 > 1 for any n = 1, 2, . . . .

From Lemma 2.2, we have

∣∣a(λnδNf(un)
)∣∣ ≤ C1

(∥∥Nf(un)
∥∥
0 + 2N|e0|p

#−1
)

≤ C2

(
‖un‖q

+−1
1 + 1

)
,

(3.2)

which together with the sub-(p− − 1) growth condition of f implies that

∣∣a(λnδNf(un)
)
+ F

(
λnδNf(un)

)∣∣ ≤ ∣∣a(λnδNf(un)
)∣∣ + ∣∣F(

λnδNf(un)
)∣∣ ≤ C3‖un‖q

+−1
1 .

(3.3)

From (3.1), we have

w(t)
∣∣u′

n(t)
∣∣p(t)−2u′

n(t) = a
(
λnδNf(un)

)
+ F

(
λnδNf(un)

)
, t ∈ J, (3.4)

then

w(t)
∣∣u′

n(t)
∣∣p(t)−1 ≤ ∣∣a(λnδNf(un)

)∣∣ + ∣∣F(
λnδNf(un)

)∣∣ ≤ C4‖un‖q
+−1

1 . (3.5)

Denote α = (q+ − 1)/(p− − 1); we have

∥∥∥(w(t))1/(p(t)−1)u′
n(t)

∥∥∥
0
≤ C5‖un‖α1 . (3.6)
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Combining (2.47) and (3.3), we have

|un(0)| ≤ C6‖un‖α1 , where α =
q+ − 1
p− − 1

. (3.7)

For any j = 1, . . . ,N, since

∣∣∣uj
n(t)

∣∣∣ =
∣∣∣∣∣u

j
n(0) +

∫ t

0

(
u
j
n

)′
(r)dr

∣∣∣∣∣

≤
∣∣∣uj

n(0)
∣∣∣ +

∣∣∣∣∣
∫ t

0
(w(r))−1/(p(r)−1) sup

t∈(0,+∞)

∣∣∣∣(w(t))1/(p(t)−1)
(
u
j
n

)′
(t)

∣∣∣∣dr
∣∣∣∣∣

≤ [C7 + C5E]‖un‖α1 ≤ C8‖un‖α1 ,

(3.8)

we have

∣∣∣uj
n

∣∣∣
0
≤ C9‖un‖α1 , j = 1, . . . ,N; n = 1, 2, . . . . (3.9)

Thus

‖un‖0 ≤ C10‖un‖α1 , n = 1, 2, . . . . (3.10)

Combining (3.6) and (3.10), we obtain that {‖un‖1} is bounded.
Thus, we can choose a large enough R0 > 0 such that all the solutions of (3.1) belong

to B(R0) = {u ∈ C1 | ‖u‖1 < R0}. Thus, the Leray-Schauder degree dLS[I −Ψf(·, λ), B(R0), 0] is
well defined for each λ ∈ [0, 1], and

dLS
[
I −Ψf(·, 1), B(R0), 0

]
= dLS

[
I −Ψf(·, 0), B(R0), 0

]
. (3.11)

Let

u0 =

∑m−2
i=1 αi

∫ ξi
0 ϕ−1

[
t, (w(t))−1a(0)

]
dt + e0

1 −∑m−2
i=1 αi

+
∫ r

0
ϕ−1

[
t, (w(t))−1a(0)

]
dt, (3.12)

where a(0) is defined in (2.31); thus u0 is the unique solution of u = Ψf(u, 0).
It is easy to see that u is a solution of u = Ψf(u, 0) if and only if u is a solution of the

following system:

−Δp(t)u = 0, t ∈ (0,+∞),

u(0) =
m−2∑
i=1

αiu(ξi) + e0, lim
t→+∞

u(t) =
∫+∞

0
e(t)u(t)dt.

(I)
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Obviously, system (I) possesses a unique solution u0. Note that u0 ∈ B(R0),we have

dLS
[
I −Ψf(·, 1), B(R0), 0

]
= dLS

[
I −Ψf(·, 0), B(R0), 0

]
/= 0, (3.13)

Therefore (1.1)-(1.2) has at least one solutionwhen σ ∈ [0, 1). This completes the proof.

Similarly, we have the following theorem.

Theorem 3.2. If f satisfies sub-(p− − 1) growth condition, then for any fixed parameter δ, problem
(1.1)-(1.2) has at least a solution when σ = 1.

Now let us consider the boundary asymptotic behavior of solutions of system (1.1)-
(1.2).

Theorem 3.3. If u is a solution of (1.1)-(1.2) which is given in Theorem 3.1 or Theorem 3.2, then

(i) |u′(t)| ≤ C1/(w(t))1/(p(t)−1), t ∈ (0,+∞);

(ii) |u(+∞) − u(r)| ≤ ∫+∞
r (C2/(w(t))1/(p(t)−1))dt, as r → +∞;

(iii) |u(r) − u(0)| ≤ ∫r
0 (C3/(w(t))1/(p(t)−1))dt, as r → 0+.

Proof. Since limr→+∞p(r) exists, limr→+∞p(r) > 1, and u ∈ C1,we have |(w(t))1/(p(t)−1)u′(t)| ≤
C, for all t ∈ [0,+∞). Thus

(i) |u′(t)| ≤ C1/(w(t))1/(p(t)−1), t ∈ (0,+∞);

(ii) |u(+∞) − u(r)| = | ∫+∞r u′(t)dt| ≤ ∫+∞
r (C2/(w(t))1/(p(t)−1))dt, as r → +∞;

(iii) |u(r) − u(0)| = | ∫ r0 u′(t)dt| ≤ ∫ r
0 (C3/(w(t))1/(p(t)−1))dt, as r → 0+.

This completes the proof.

Corollary 3.4. Assume that limr→+∞p(r) exists, limr→+∞p(r) > 1, and

C4 ≤ w(t)
tα

≤ C5, α > p(t) − 1 as t −→ +∞,

C6 ≤ w(t)
t

≤ C7,  < p(t) − 1 as t −→ 0+,

(3.14)

then

(i) |u′(t)| ≤ C8/t
α/(p(t)−1), t ∈ (1,+∞) and |u′(t)| ≤ C9/t

/(p(t)−1), t ∈ (0, 1);

(ii) |u(+∞) − u(r)| ≤ ∫+∞
r (C10/t

α/(p(t)−1))dt, as r → +∞;

(iii) |u(r) − u(0)| ≤ ∫r
0 (C11/t

/(p(t)−1))dt, as r → 0+.

4. When f Satisfies General Growth Condition

In the following, we will investigate the existence and asymptotic behavior of solutions for
p(t)-Laplacian ordinary system, when f satisfies general growth condition. Moreover, wewill
give the existence of nonnegative solutions.
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Denote

Ωε =
{
u ∈ C1 | max

1≤i≤N

(∣∣∣ui
∣∣∣
0
+
∣∣∣∣(w(t))1/(p(t)−1)

(
ui

)′∣∣∣∣
0

)
< ε

}
, θ =

ε

2 + 1/E
. (4.1)

Assume

(A1) Let positive constant ε be such that u0 ∈ Ωε, |P(0)| < θ, and |a(0)| < (1/N(2E +
2))inft∈J |ε/2(E + 1)|p(t)−1, where u0 is defined in (3.12), and a(·) is defined in (2.31).

It is easy to see that Ωε is an open bounded domain in C1. We have the following
theorem

Theorem 4.1. Assume that (A1) is satisfied. If positive parameter δ is small enough, then the problem
(1.1)-(1.2) has at least one solution on Ωε when σ ∈ [0, 1).

Proof. Denote Ψf(u, λ) = P(λδNf(u)) + K1(λδNf(u)). According to Lemma 2.5, u is a
solution of

−Δp(t)u + λδf
(
t, u, (w(t))1/(p(t)−1)u′, S(u), T(u)

)
= 0, t ∈ (0,+∞), (4.2)

with (1.2) if and only if u is a solution of the following abstract equation:

u = Ψf(u, λ). (4.3)

From Lemmas 2.2 and 2.4, we can see that Ψf(·, λ) is compact continuous from C1 to
C1 for any λ ∈ [0, 1]. According to Leray-Schauder’s degree theory, we only need to prove
that

(1◦) u = Ψf(u, λ) has no solution on ∂Ωε for any λ ∈ [0, 1);

(2◦) dLS[I −Ψf(·, 0),Ωε, 0]/= 0;

then we can conclude that the system (1.1)-(1.2) has a solution on Ωε.
(1◦) If there exists a λ ∈ [0, 1) and u ∈ ∂Ωε is a solution of (4.2) with (1.2), then (λ, u)

satisfies

w(t)ϕ
(
t, u′(t)

)
= a

(
λδNf(u)

)
+ λδF

(
Nf(u)

)
(t), t ∈ (0,+∞). (4.4)

Since u ∈ ∂Ωε, there exists an i such that |ui|0 + |(w(t))1/(p(t)−1)(ui)′|0 = ε.
(i) Suppose that |ui|0 > 2θ, then |(w(t))1/(p(t)−1)(ui)′|0 < ε − 2θ = θ/E. On the other

hand, for any t, t′ ∈ J , we have

∣∣∣ui(t) − ui(t′)
∣∣∣ =

∣∣∣∣∣
∫ t

t′

(
ui

)′
(r)dr

∣∣∣∣∣ ≤
∫+∞

0
(w(r))−1/(p(r)−1)

∣∣∣∣(w(r))1/(p(r)−1)
(
ui

)′
(r)

∣∣∣∣dr < θ. (4.5)

This implies that |ui(t)| > θ for each t ∈ J .
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Note that u ∈ Ωε, then

∣∣∣f
(
t, u, (w(t))1/(p(t)−1)u′, S(u), T(u)

)∣∣∣ ≤ βC∗ε(t), (4.6)

where

C∗ := N + sup
t∈J

∫+∞

0

∣∣ψ(s, t)∣∣ds + sup
t∈J

∫+∞

0

∣∣χ(s, t)∣∣ds, (4.7)

holding |F(Nf)| ≤
∫+∞
0 βC∗ε(t)dt. Since P(·) is continuous, when 0 < δ is small enough, from

(A1), we have

|u(0)| = ∣∣P(
λδNf(u)

)∣∣ < θ. (4.8)

It is a contradiction to |ui(t)| > θ for each t ∈ J .
(ii) Suppose that |ui|0 ≤ 2θ; then θ/E ≤ |(w(t))1/(p(t)−1)(ui)′|0 ≤ ε. This implies that

∣∣∣∣(w(t2))1/(p(t2)−1)
(
ui

)′
(t2)

∣∣∣∣ >
ε

2(E + 1)
for some t2 ∈ J. (4.9)

Since u ∈ Ωε, it is easy to see that

∣∣∣∣(w(t2))1/(p(t2)−1)
(
ui

)′
(t2)

∣∣∣∣ >
ε

2(E + 1)
=

Nε

N(2E + 2)
≥

∣∣∣(w(t2))1/(p(t2)−1)u′(t2)
∣∣∣

N(2E + 2)
. (4.10)

Combining (4.4) and (4.10), we have

|ε/2(E + 1)|p(t2)−1
N(2E + 2)

<
1

N(2E + 2)
w(t2)

∣∣∣∣
(
ui

)′
(t2)

∣∣∣∣
p(t2)−1

≤ 1
N(2E + 2)

w(t2)
∣∣u′(t2)

∣∣p(t2)−1

≤ w(t2)
∣∣u′(t2)

∣∣p(t2)−2
∣∣∣∣
(
ui

)′
(t2)

∣∣∣∣

≤ ∣∣a(λδNf

)∣∣ + λ
∣∣δF(

Nf

)
(t2)

∣∣.

(4.11)

Since u ∈ Ωε and f is Caratheodory, it is easy to see that

∣∣∣f
(
t, u, (w(t))1/(p(t)−1)u′, S(u), T(u)

)∣∣∣ ≤ βC∗ε(t). (4.12)
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Thus

∣∣δF(
Nf(u)

)∣∣ ≤ δ

∫+∞

0
βC∗ε(t)dt. (4.13)

According to Lemma 2.2, a(·) is continuous; then we have

∣∣a(λδNf(u)
)∣∣ −→ |a(0)| as δ −→ 0. (4.14)

When 0 < δ is small enough, from (A1) and (4.11), we can conclude that

|ε/(2(E + 1))|p(t2)−1
N(2E + 2)

<
∣∣a(λδNf(u)

)∣∣ + λ
∣∣δF(

Nf(u)
)
(t)

∣∣ < 1
N(2E + 2)

inf
t∈J

∣∣∣∣
ε

2(E + 1)

∣∣∣∣
p(t)−1

.

(4.15)

It is a contradiction.
Summarizing this argument, for each λ ∈ [0, 1), the problem (4.2) with (1.2) has no

solution on ∂Ωε

(2◦) Since u0 (where u0 is defined in (3.12)) is the unique solution of u = Ψf(u, 0), and
(A1) holds u0 ∈ Ωε, we can see that the Leray-Schauder degree

dLS
[
I −Ψf(·, 0),Ωε, 0

]
/= 0. (4.16)

This completes the proof.

Assume the following.

(A2) Let positive constant ε be such that u∗
0 ∈ Ωε, |Q(0)| < θ and |a∗(0)| < (1/N(2E +

2))inft∈J |ε/2(E + 1)|p(t)−1, where a∗(·) is defined in (2.32) and

u∗
0 =

∑m−2
i=1 αi

∫ ξi
0 ϕ−1

[
t, (w(t))−1a∗(0)

]
dt + e0

1 −∑m−2
i=1 αi

+
∫ r

0
ϕ−1

[
t, (w(t))−1a∗(0)

]
dt. (4.17)

Theorem 4.2. Assume that (A2) is satisfied. If positive parameter δ is small enough, then the problem
(1.1)-(1.2) has at least one solution on Ωε when σ = 1.

Proof. Similar to the proof of Theorem 4.1, we omit it here.

Note. If u is a solution of (1.1)-(1.2) which is given in Theorem 4.1 or Theorem 4.2, then the
conclusions of Theorem 3.3 and Corollary 3.4 are valid.

In the following, we will deal with the existence of nonnegative solutions of (1.1)-
(1.2) when σ ∈ [0, 1]. For any x = (x1, . . . , xN) ∈ R

N , the notation x ≥ 0 (x > 0) means
xj ≥ 0 (xj > 0) for any j = 1, . . . ,N. For any x, y ∈ R

N, and the notation x ≥ y means
x − y ≥ 0, the notation x > y means x − y > 0.
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Theorem 4.3. We assume that

(10) δf(t, x, y, z,w) ≤ 0, for all (t, x, y, z,w) ∈ J × R
N × R

N × R
N × R

N ;

(20) e0 = 0.

Then every solution of (1.1)-(1.2) is nonnegative when σ ∈ [0, 1).

Proof. Let u be a solution of (1.1)-(1.2). From Lemma 2.5, we have

u(t) = u(0) + F
{
ϕ−1

[
t, (w(t))−1

(
a
(
δNf(u)

)
+ F

(
δNf(u)

)
(t)

)]}
(t), ∀t ∈ J. (4.18)

We claim that a(δNf(u)) ≥ 0. If it is false, then there exists some j ∈ {1, . . . ,N} such
that aj(δNf(u)) < 0. Combining conditions (10), we have

[
a
(
δNf(u)

)
+ F

(
δNf(u)

)
(t)

]j
< 0, ∀t ∈ J. (4.19)

Similar to the proof before Lemma 2.2, the boundary value conditions and (20) imply
that

0 =

∑m−2
i=1 αi

∫ ξi
0 ϕ−1

[
t, (w(t))−1

(
a
(
δNf(u)

)
+ F

(
δNf(u)

)
(t)

)]
dt

1 −∑m−2
i=1 αi

+

∫+∞
0

{
e(t)

∫+∞
t ϕ−1

[
r, (w(r))−1

(
a
(
δNf(u)

)
+ F

(
δNf(u)

)
(r)

)]
dr

}
dt

1 − σ

+
∫+∞

0
ϕ−1

[
t, (w(t))−1

(
a
(
δNf(u)

)
+ F

(
δNf(u)

)
(t)

)]
dt.

(4.20)

From (4.19), we get a contradiction to (4.20). Thus a(δNf(u)) ≥ 0.
We claim that

a
(
δNf(u)

)
+ F

(
δNf(u)

)
(+∞) ≤ 0. (4.21)

If it is false, then there exists some j ∈ {1, . . . ,N} such that

[
a
(
δNf(u)

)
+ F

(
δNf(u)

)
(+∞)

]j
> 0. (4.22)

It follows from (10) and (4.22) that

[
a
(
δNf(u)

)
+ F

(
δNf(u)

)
(t)

]j
> 0, ∀t ∈ J. (4.23)

From (4.23), we get a contradiction to (4.20). Thus (4.21) is valid.
Denote

Γ(t) = a
(
δNf(u)

)
+ F

(
δNf(u)

)
(t), ∀t ∈ J. (4.24)
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Obviously, Γ(0) = a(δNf(u)) ≥ 0, Γ(+∞) ≤ 0, and Γ(t) is decreasing, that is, Γ(t′) ≤
Γ(t′′) for any t′, t′′ ∈ J with t′ ≥ t′′. For any j = 1, . . . ,N, there exist ζj ∈ J such that

Γj(t) ≥ 0, ∀t ∈ (
0, ζj

)
, Γj(t) ≤ 0, ∀t ∈ (

ζj ,+∞
)
, (4.25)

which implies that uj(t) is increasing on [0, ζj], and uj(t) is decreasing on (ζj ,+∞). Thus

min
{
uj(0), uj(+∞)

}
= inf

t∈J
uj(t), j = 1, . . . ,N. (4.26)

For any fixed j ∈ {1, . . . ,N}, if

uj(0) = inf
t∈J

uj(t), (4.27)

which together with (20) and (1.2) implies that

uj(0) =
m−2∑
i=1

αiu
j(ξi) ≥

m−2∑
i=1

αiu
j(0), (4.28)

then

uj(0) ≥ 0. (4.29)

If

uj(+∞) = inf
t∈J

uj(t), (4.30)

and from (1.2) and (4.30), we have

uj(+∞) =
∫+∞

0
ej(t)uj(t)dt ≥

∫+∞

0
ej(t)uj(+∞)dt = σuj(+∞), (4.31)

then

uj(+∞) ≥ 0. (4.32)

Thus u(t) ≥ 0, for all t ∈ [0,+∞). The proof is completed.

Corollary 4.4. We assume

(10) δf(t, x, y, z,w) ≤ 0, for all (t, x, y, z,w) ∈ J × R
N × R

N × R
N × R

N with x, z,w ≥ 0;

(20) ψ(s, t) ≥ 0, χ(s, t) ≥ 0, for all (s, t) ∈ D;

(30) e0 = 0.
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Then we have

(a) On the conditions of Theorem 3.1, then (1.1)-(1.2) has at least a nonnegative solution u
when σ ∈ [0, 1).

(b) On the conditions of Theorem 4.1, then (1.1)-(1.2) has at least a nonnegative solution u
when σ ∈ [0, 1).

Proof. (a) Define

L(u) =
(
L∗

(
u1

)
, . . . , L∗

(
uN

))
, (4.33)

where

L∗(t) =

⎧
⎨
⎩
t, t ≥ 0,

0, t < 0.
(4.34)

Denote

f̃(t, u, v, S(u), T(u)) = f(t, L(u), v, S(L(u)), T(L(u))), ∀(t, u, v) ∈ J × R
N × R

N. (4.35)

Then f̃(t, u, v, S(u), T(u)) satisfies Caratheodory condition, and f̃(t, u, v, S(u), T(u)) ≤ 0 for
any (t, u, v) ∈ J × R

N × R
N .

Obviously, we have

(A3) lim|u|+|v|→+∞(f̃(t, u, v, S(u), T(u))/(|u| + |v|)q(t)−1) = 0, for t ∈ J uniformly, where
q(t) ∈ C(J,R), and 1 < q− ≤ q+ < p−.

Then f̃(t, ·, ·, ·, ·) satisfies sub-(p− − 1) growth condition.
Let us consider the existence of solutions of the following system:

−Δp(t)u + δf̃
(
t, u, (w(t))1/(p(t)−1)u′, S(u), T(u)

)
= 0, t ∈ (0,+∞), (4.36)

with boundary value condition (1.2). According to Theorem 3.1, (4.36) with (1.2) has at least
a solution u. From Theorem 4.3, we can see that u is nonnegative. Thus, u is a nonnegative
solution of (1.1)-(1.2) when σ ∈ [0, 1).

(b) It is similar to the proof of (a).
This completes the proof.

Theorem 4.5. We assume that

(10) δf(t, x, y, z,w) ≤ 0, for all (t, x, y, z,w) ∈ J × R
N × R

N × R
N × R

N ;

(20) e(t) > 0, for almost every t ∈ J ;

(30) e0 = 0.

Then every solution of (1.1)-(1.2) is nonnegative when σ = 1.
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Proof. Similar to the proof of Theorem 4.3, we can find that there exist ζj ∈ J for any j =
1, . . . ,N such that uj(t) is increasing on [0, ζj], and uj(t) is decreasing on (ζj ,+∞). Thus

min
{
uj(0), uj(+∞)

}
= inf

t∈J
uj(t), j = 1, . . . ,N. (4.37)

For any fixed j ∈ {1, . . . ,N}, if

uj(0) = inf
t∈J

uj(t), (4.38)

which together with (30) and (1.2) implies that

uj(0) =
m−2∑
i=1

αiu
j(ξi) ≥

m−2∑
i=1

αiu
j(0), (4.39)

then

uj(0) ≥ 0. (4.40)

If

uj(+∞) = inf
t∈J

uj(t), (4.41)

from (1.2), we have

(1 − σ)uj(+∞) =
∫+∞

0
ej(t)

(
uj(t) − uj(+∞)

)
dt. (4.42)

Since σ = 1 and e(t) > 0, we have

uj(t) ≡ uj(+∞). (4.43)

It follows from (4.43), (1.2), and (30) that

uj(+∞) = 0. (4.44)

Thus u(t) ≥ 0, for all t ∈ [0,+∞). The proof is completed.

Corollary 4.6. We assume that

(10) δf(t, x, y, z,w) ≤ 0, for all (t, x, y, z,w) ∈ J × R
N × R

N × R
N × R

N ;

(20) e(t) > 0, for almost every t ∈ J ;

(30) ψ(s, t) ≥ 0, χ(s, t) ≥ 0, for all (s, t) ∈ D;
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(40) e0 = 0.

Then we have the following.

(a) On the conditions of Theorem 3.2, then (1.1)-(1.2) has at least a nonnegative solution u
when σ = 1.

(b) On the conditions of Theorem 4.2, then (1.1)-(1.2) has at least a nonnegative solution u
when σ = 1.

Proof. It is similar to the proof of Theorem 4.5.

5. Examples

Example 5.1. Consider the following problem:

−Δp(t)u − |u|q(t)−2u − S(u)(t) − (t + 1)−2 = 0, t ∈ (0,+∞),

u(0) =
m−2∑
i=1

αiu(ξi) , lim
t→+∞

u(t) =
∫+∞

0
e−2tu(t)dt,

(S1)

where p(t) = 6 + e−t sin t, and q(t) = 3 + 2−t cos t, S(u)(t) =
∫∞
0 e−2s(sin st + 1)u(s)ds.

Obviously, |u|q(t)−2u + S(u)(t) + (t + 1)−2 is Caratheodory, q(t) ≤ 4 < 5 ≤ p(t), and the
conditions of Theorems 3.1 and 4.3 are satisfied; then (S1) has a nonnegative solution.

Example 5.2. Consider the following problem:

−Δp(t)u + f
(
r, u, (w(r))1/(p(r)−1)u′, S(u)

)
+ δh

(
r, u, (w(r))1/(p(r)−1)u′, S(u)

)
+ e−t

= 0, t ∈ (0,+∞),

u(0) =
m−2∑
i=1

αiu(ξi) + e0, lim
t→+∞

u(t) =
∫+∞

0
e−tu(t)dt,

(S2)

where h is Caratheodory and

f
(
r, u, (w(r))1/(p(r)−1)u′, S(u)

)
= |u|q(t)−2u +w(t)

∣∣u′∣∣q(t)−2u′ + S(u)(t), (5.1)

p(t) = 7 + 3−t cos 3t, q(t) = 4 + e−2t sin 2t, and S(u)(t) =
∫∞
0 e−s(cos st + 1)u(s)ds.

Obviously, |u|q(t)−2u +w(t)|u′|q(t)−2u′ + S(u)(t) is Caratheodory, q(t) ≤ 5 < 6 ≤ p(t), and
the conditions of Theorem 4.1 are satisfied; then (S2) has a solution when δ is small enough.
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