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We establish a generalization of the inequality introduced by Mitrinović and Pečarić in 1988.
We prove mean value theorems of Cauchy type for that new inequality by taking its difference.
Furthermore, we prove the positive semidefiniteness of the matrices generated by the difference
of the inequality which implies the exponential convexity and logarithmic convexity. Finally, we
define new means of Cauchy type and prove the monotonicity of these means.

1. Introduction

Let K(x, t) be a nonnegative kernel. Consider a function u : [a, b] → R, where u ∈ U(v,K),
and the representation of u is

u(x) =
∫b
a

K(x, t)v(t)dt (1.1)

for any continuous function v on [a, b]. Throughout the paper, it is assumed that all integrals
under consideration exist and that they are finite.

The following theorem is given in [1] (see also [2, page 235]).

Theorem 1.1. Let ui ∈ U(v,K) (i = 1, 2) and r(t) ≥ 0 for all t ∈ [a, b]. Also let φ : R+ → R be a
function such that φ(x) is convex and increasing for x > 0. Then

∫b
a

r(x)φ
(∣∣∣∣u1(x)

u2(x)

∣∣∣∣
)
dx ≤

∫b
a

s(x)φ
(∣∣∣∣v1(x)

v2(x)

∣∣∣∣
)
dx, (1.2)
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where

s(x) = v2(x)
∫b
a

r(t)K(t, x)
u2(t)

dt, u2(t)/= 0. (1.3)

The following definition is equivalent to the definition of convex functions.

Definition 1.2 (see [2]). Let I ⊆ R be an interval, and let φ : I → R be convex on I. Then, for
s1, s2, s3 ∈ I such that s1 < s2 < s3, the following inequality holds:

φ(s1)(s3 − s2) + φ(s2)(s1 − s3) + φ(s3)(s2 − s1) ≥ 0. (1.4)

Let us recall the following definition.

Definition 1.3 (see [3, page 373]). A function h : (a, b) → R is exponentially convex if it is
continuous and

n∑
i,j=1

ξiξjh
(
xi + xj

) ≥ 0 (1.5)

for all n ∈ N and all choices of ξi ∈ R,xi + xj ∈ (a, b), i, j = 1, . . . , n.

The following proposition is useful to prove the exponential convexity.

Proposition 1.4 (see [4]). Let h : (a, b) → R. The following statements are equivalent.

(i) h is exponentially convex.

(ii) h is continuous, and

n∑
i,j=1

ξiξjh

(
xi + xj

2

)
≥ 0 (1.6)

for every n ∈ N,ξi ∈ (a, b), and xi ∈ (a, b), 1 ≤ i ≤ n.

Corollary 1.5. If h : (a, b) → R
+ is exponentially convex, then h is log-convex; that is,

h
(
λx + (1 − λ)y

) ≤ h(x)λh
(
y
)1−λ ∀x, y ∈ (a, b), λ ∈ [0, 1]. (1.7)

This paper is organized in this manner. In Section 2, we give the generalization
of Mitrinović-Pečarić inequality and prove the mean value theorems of Cauchy type. We
also introduce the new type of Cauchy means. In Section 3, we give the proof of positive
semidefiniteness of matrices generated by the difference of that inequality obtained from the
generalization of Mitrinović-Pečarić inequality and also discuss the exponential convexity. At
the end, we prove the monotonicity of the means.
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2. Main Results

Theorem 2.1. Let ui ∈ U(v,K) (i = 1, 2), and r(x) ≥ 0 for all x ∈ [a, b]. Also let I ⊆ R be an
interval, let φ : I → R be convex, and let u1(x)/u2(x), v1(x)/v2(x) ∈ I. Then

∫b
a

r(x)φ
(
u1(x)
u2(x)

)
dx ≤

∫b
a

q(x)φ
(
v1(x)
v2(x)

)
dx, (2.1)

where

q(x) = v2(x)
∫b
a

r(t)K(t, x)
u2(t)

dt, u2(t)/= 0. (2.2)

Proof. Since u1 =
∫b
a K(x, t)v1(t)dt and v2(t) > 0, we have

∫b
a

r(x)φ
(
u1(x)
u2(x)

)
dx =

∫b
a

r(x)φ

(
1

u2(x)

∫b
a

K(x, t)v1(t)dt

)
dx

=
∫b
a

r(x)φ

(
1

u2(x)

∫b
a

K(x, t)v2(t)
v1(t)
v2(t)

dt

)
dx

=
∫b
a

r(x)φ

(∫b
a

K(x, t)v2(t)
u2(x)

v1(t)
v2(t)

dt

)
dx.

(2.3)

By Jensen’s inequality, we get

∫b
a

r(x)φ
(
u1(x)
u2(x)

)
dx ≤

∫b
a

r(x)

(∫b
a

K(x, t)v2(t)
u2(x)

φ

(
v1(t)
v2(t)

)
dt

)
dx

=
∫b
a

(∫b
a

r(x)K(x, t)v2(t)
u2(x)

φ

(
v1(t)
v2(t)

)
dt

)
dx

=
∫b
a

φ

(
v1(t)
v2(t)

)
v2(t)

(∫b
a

r(x)K(x, t)
u2(x)

dx

)
dt

=
∫b
a

q(t)φ
(
v1(t)
v2(t)

)
dt.

(2.4)

Remark 2.2. If φ is strictly convex on I and v1(x)/v2(x) is nonconstant, then the inequality in
(2.1) is strict.
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Remark 2.3. Let us note that Theorem 1.1 follows from Theorem 2.1. Indeed, let the condition
of Theorem 1.1 be satisfied, and let ũi ∈ U(|v|, K); that is,

ũ1(x) =
∫b
a

K(x, t)|v1(t)|dt. (2.5)

So, by Theorem 2.1, we have

∫b
a

q(x)φ
(∣∣∣∣v1(x)

v2(x)

∣∣∣∣
)
dx =

∫b
a

q(x)φ
( |v1(x)|

v2(x)

)
dx ≥

∫b
a

r(x)φ
(
ũ1(x)
u2(x)

)
dx. (2.6)

On the other hand, φ is increasing function, we have

φ

(
ũ1(x)
u2(x)

)
= φ

(
1

u2(x)

∫b
a

K(x, t)|v1(t)|dt
)

≥ φ

(
1

u2(x)

∣∣∣∣∣
∫b
a

K(x, t)v1(t)dt

∣∣∣∣∣
)

= φ

( |u1(x)|
u2(x)

)
= φ

(∣∣∣∣u1(x)
u2(x)

∣∣∣∣
)
.

(2.7)

From (2.6) and (2.7), we get (1.2).

If f ∈ C([a, b]) and α > 0, then the Riemann-Liouville fractional integral is defined by

Iαaf(x) =
1

Γ(α)

∫x
a

f(t)(x − t)α−1dt. (2.8)

We will use the following kernel in the upcoming corollary:

KI(x, t) =

⎧⎪⎨
⎪⎩

(x − t)α−1

Γ(α)
, a ≤ t ≤ x,

0, x < t ≤ b.

(2.9)

Corollary 2.4. Let ui ∈ C([a, b]) (i = 1, 2), and r(x) ≥ 0 for all x ∈ [a, b]. Also let I ⊆ R be
an interval, let φ : I → R be convex, u1(x)/u2(x), Iαau1(x)/Iαau2(x) ∈ I, and u1(x), u2(x) have
Riemann-Liouville fractional integral of order α > 0. Then

∫b
a

r(x)φ
(
Iαau1(x)
Iαau2(x)

)
dx ≤

∫b
a

φ

(
u1(t)
u2(t)

)
QI(t)dt, (2.10)

where

QI(t) =
u2(t)
Γ(α)

∫b
t

r(x)(x − t)α−1

Iαau2(x)
dx, Iαau2(x)/= 0. (2.11)
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LetAC([a, b]) be space of all absolutely continuous functions on [a, b]. ByACn([a, b]),
we denote the space of all functions g ∈ Cn([a, b])with g(n−1) ∈ AC([a, b]).

Let α ∈ R
+ and g ∈ ACn([a, b]). Then the Caputo fractional derivative (see [5, p. 270])

of order α for a function g is defined by

Dα
∗ag(t) =

1
Γ(n − α)

∫ t
a

g(n)(s)

(t − s)α−n+1
ds, (2.12)

where n = [α] + 1; the notation of [α] stands for the largest integer not greater than α.
Here we use the following kernel in the upcoming corollary:

KD(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

(x − t)n−α−1

Γ(n − α)
, a ≤ t ≤ x,

0, x < t ≤ b.

(2.13)

Corollary 2.5. Let ui ∈ ACn([a, b]) (i = 1, 2), and r(x) ≥ 0 for all x ∈ [a, b]. Also let I ⊆ R be an
interval, let φ : I → R be convex, u(n)

1 (t)/u(n)
2 (t), Dα

∗au1(x)/Dα
∗au2(x) ∈ I, and u1(x), u2(x) have

Caputo fractional derivative of order α > 0. Then

∫b
a

r(x)φ
(
Dα

∗au1(x)
Dα∗au2(x)

)
dx ≤

∫b
a

φ

(
u
(n)
1 (t)

u
(n)
2 (t)

)
QD(t)dt, (2.14)

where

QD(t) =
u
(n)
2 (t)

Γ(n − α)

∫b
t

r(x)(x − t)n−α−1

Dα∗au2(x)
dx, Dα

∗au2(x)/= 0. (2.15)

Let L1(a, b) be the space of all functions integrable on (a, b). For β ∈ R
+, we say that

f ∈ L1(a, b) has an L∞ fractional derivative D
β
af in [a, b] if and only if Dβ−k

a f ∈ C([a, b]) for
k = 1, . . . , [β] + 1, Dβ−1

a f ∈ AC([a, b]), and D
β
a ∈ L∞(a, b).

The next lemma is very useful to give the upcoming corollary [6] (see also [5, p. 449]).

Lemma 2.6. Let β > α ≥ 0, f ∈ L1(a, b) has an L∞ fractional derivative Dβ
af in [a, b], and

D
β−k
a f(a) = 0, k = 1, . . . ,

[
β
]
+ 1. (2.16)

Then

Dα
af(s) =

1
Γ
(
β − α

)
∫s
a

(s − t)β−α−1Dβ
af(t)dt (2.17)

for all a ≤ s ≤ b.
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Clearly

Dα
af is in AC([a, b]) for β − α ≥ 1,

Dα
af is in C([a, b]) for β − α ∈ (0, 1),

(2.18)

hence

Dα
af ∈ L∞(a, b),

Dα
af ∈ L1(a, b).

(2.19)

Now we use the following kernel in the upcoming corollary:

KL(s, t) =

⎧⎪⎪⎨
⎪⎪⎩

(s − t)β−α−1

Γ
(
β − α

) , a ≤ t ≤ s,

0, s < t ≤ b.

(2.20)

Corollary 2.7. Let β > α ≥ 0, ui ∈ L1(a, b) (i = 1, 2) has an L∞ fractional derivativeDβ
aui in [a, b],

and r(x) ≥ 0 for all x ∈ [a, b]. Also letDβ−k
a ui(a) = 0 for k = 1, . . . , [β] + 1 (i = 1, 2), let φ : I → R

be convex, and Dα
au1(x)/Dα

au2(x), D
β
au1(x)/D

β
au2(x) ∈ I. Then

∫b
a

r(x)φ
(
Dα

au1(x)
Dα

au2(x)

)
dx ≤

∫b
a

φ

(
D

β
au1(t)

D
β
au2(t)

)
QL(t)dt, (2.21)

where

QL(t) =
D

β
au2(t)

Γ
(
β − α

)
∫b
t

r(x)(x − t)β−α−1

Dα
au2(x)

dx, Dα
au2(x)/= 0. (2.22)

Lemma 2.8. Let f ∈ C2(I), and let I be a compact interval, such that

m ≤ f ′′(x) ≤ M, ∀x ∈ I. (2.23)

Consider two functions φ1, φ2 defined as

φ1(x) =
Mx2

2
− f(x),

φ2(x) = f(x) − mx2

2
.

(2.24)

Then φ1 and φ2 are convex on I.
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Proof. We have

φ′′
1(x) = M − f ′′(x) ≥ 0,

φ′′
2(x) = f ′′(x) −m ≥ 0,

(2.25)

that is φ1, φ2 are convex on I.

Theorem 2.9. Let f ∈ C2(I), let I be a compact interval, ui ∈ U(v,K) (i = 1, 2), and r(x) ≥ 0 for
all x ∈ [a, b]. Also let u1(x)/u2(x), v1(x)/v2(x) ∈ I, v1(x)/v2(x) be nonconstant, and let q(x) be
given in (2.2). Then there exists ξ ∈ I such that

∫b
a

(
q(x)f

(
v1(x)
v2(x)

)
− r(x)f

(
u1(x)
u2(x)

))
dx

=
f ′′(ξ)
2

∫b
a

(
q(x)
(
v1(x)
v2(x)

)2

− r(x)
(
u1(x)
u2(x)

)2
)
dx.

(2.26)

Proof. Since f ∈ C2(I) and I is a compact interval, therefore, suppose that m = min f ′′, M =
max f ′′. Using Theorem 2.1 for the function φ1 defined in Lemma 2.8, we have

∫b
a

r(x)

(
M

2

(
u1(x)
u2(x)

)2

− f

(
u1(x)
u2(x)

))
dx ≤

∫b
a
q(x)

(
M

2

(
v1(x)
v2(x)

)2

− f

(
v1(x)
v2(x)

))
dx. (2.27)

From Remark 2.2, we have

∫b
a

(
q(x)
(
v1(x)
v2(x)

)2

− r(x)
(
u1(x)
u2(x)

)2
)
dx > 0. (2.28)

Therefore, (2.27) can be written as

2
∫b
a

(
q(x)f(v1(x)/v2(x)) − r(x)f(u1(x)/u2(x))

)
dx∫b

a

(
q(x)(v1(x)/v2(x))

2 − r(x)(u1(x)/u2(x))
2
)
dx

≤ M. (2.29)

We have a similar result for the function φ2 defined in Lemma 2.8 as follows:

2
∫b
a

(
q(x)f(v1(x)/v2(x)) − r(x)f(u1(x)/u2(x))

)
dx∫b

a

(
q(x)(v1(x)/v2(x))

2 − r(x)(u1(x)/u2(x))
2
)
dx

≥ m. (2.30)

Using (2.29) and (2.30), we have

m ≤ 2
∫b
a

(
q(x)f(v1(x)/v2(x)) − r(x)f(u1(x)/u2(x))

)
dx∫b

a

(
q(x)(v1(x)/v2(x))

2 − r(x)(u1(x)/u2(x))
2
)
dx

≤ M. (2.31)
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By Lemma 2.8, there exists ξ ∈ I such that

∫b
a

(
q(x)f(v1(x)/v2(x)) − r(x)f(u1(x)/u2(x))

)
dx∫b

a

(
q(x)(v1(x)/v2(x))

2 − r(x)(u1(x)/u2(x))
2
)
dx

=
f ′′(ξ)
2

. (2.32)

This is the claim of the theorem.

Let us note that a generalized mean value Theorem 2.9 for fractional derivative was
given in [7]. Here we will give some related results as consequences of Theorem 2.9.

Corollary 2.10. Let f ∈ C2(I), let I be a compact interval, ui ∈ C([a, b]) (i = 1, 2), and r(x) ≥ 0
for all x ∈ [a, b]. Also let u1(x)/u2(x), Iαau1(x)/Iαau2(x) ∈ I, let u1(x)/u2(x) be nonconstant, let
QI(t) be given in (2.11), and u1(x), u2(x) have Riemann-Liouville fractional integral of order α > 0.
Then there exists ξ ∈ I such that

∫b
a

(
QI(x)f

(
u1(x)
u2(x)

)
− r(x)f

(
Iαau1(x)
Iαau2(x)

))
dx

=
f ′′(ξ)
2

∫b
a

(
QI(x)

(
u1(x)
u2(x)

)2

− r(x)
(
Iαau1(x)
Iαau2(x)

)2
)
dx.

(2.33)

Corollary 2.11. Let f ∈ C2(I), let I be compact interval, ui ∈ ACn([a, b]) (i = 1, 2), and
r(x) ≥ 0 for all x ∈ [a, b]. Also let u(n)

1 (t)/u(n)
2 (t), Dα

∗au1(x)/Dα
∗au2(x) ∈ I, let u(n)

1 (x)/u(n)
2 (x) be

nonconstant, let QD(t) be given in (2.15), and u1(x), u2(x) have Caputo derivative of order α > 0.
Then there exists ξ ∈ I such that

∫b
a

(
QD(x)f

(
u
(n)
1 (x)

u
(n)
2 (x)

)
− r(x)f

(
Dα

∗au1(x)
Dα∗au2(x)

))
dx

=
f ′′(ξ)
2

∫b
a

⎛
⎝QD(x)

(
u
(n)
1 (x)

u
(n)
2 (x)

)2

− r(x)
(
Dα

∗au1(x)
Dα∗au2(x)

)2
⎞
⎠dx.

(2.34)

Corollary 2.12. Let β > α ≥ 0, f ∈ C2(I), let I be a compact interval, ui ∈ L1(a, b) (i = 1, 2) has an
L∞ fractional derivative, and r(x) ≥ 0 for all x ∈ [a, b]. LetDβ−k

a ui(a) = 0 for k = 1, . . . , [β]+1 (i =
1, 2), Dα

au1(x)/Dα
au2(x), D

β
au1(x)/D

β
au2(x) ∈ I, let Dβ

au1(x)/D
β
au2(x) be nonconstant, and let

QL(t) be given in (2.22). Then there exists ξ ∈ I such that

∫b
a

(
QL(x)f

(
D

β
au1(x)

D
β
au2(x)

)
− r(x)f

(
Dα

au1(x)
Dα

au2(x)

))
dx

=
f ′′(ξ)
2

∫b
a

⎛
⎝QL(x)

(
D

β
au1(x)

D
β
au2(x)

)2

− r(x)
(
Dα

au1(x)
Dα

au2(x)

)2
⎞
⎠dx.

(2.35)
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Theorem 2.13. Let f, g ∈ C2(I), let I be a compact interval, ui ∈ U(v,K) (i = 1, 2), and r(x) ≥ 0
for all x ∈ [a, b]. Also let u1(x)/u2(x), v1(x)/v2(x) ∈ I, v1(x)/v2(x) be nonconstant, and let
q(x) be given in (2.2). Then there exists ξ ∈ I such that

∫b
a q(x)f(v1(x)/v2(x))dx − ∫ba r(x)f(u1(x)/u2(x))dx∫b
a q(x)g(v1(x)/v2(x))dx − ∫ba r(x)g(u1(x)/u2(x))dx

=
f ′′(ξ)
g ′′(ξ)

. (2.36)

It is provided that denominators are not equal to zero.

Proof. Let us take a function h ∈ C2(I) defined as

h(x) = c1f(x) − c2g(x), (2.37)

where

c1 =
∫b
a

q(x)g
(
v1(x)
v2(x)

)
dx −

∫b
a

r(x)g
(
u1(x)
u2(x)

)
dx,

c2 =
∫b
a

q(x)f
(
v1(x)
v2(x)

)
dx −

∫b
a

r(x)f
(
u1(x)
u2(x)

)
dx.

(2.38)

By Theorem 2.9 with f = h, we have

0 =
(c1
2
f ′′(ξ) − c2

2
g ′′(ξ)

)(∫b
a

q(x)
(
v1(x)
v2(x)

)2

dx −
∫b
a

r(x)
(
u1(x)
u2(x)

)2

dx

)
. (2.39)

Since

∫b
a

q(x)
(
v1(x)
v2(x)

)2

dx −
∫b
a

r(x)
(
u1(x)
u2(x)

)2

dx /= 0, (2.40)

so we have

c1f
′′(ξ) − c2g

′′(ξ) = 0. (2.41)

This implies that

c2
c1

=
f ′′(ξ)
g ′′(ξ)

. (2.42)

This is the claim of the theorem.

Let us note that a generalized Cauchy mean-valued theorem for fractional derivative
was given in [8]. Here we will give some related results as consequences of Theorem 2.13.
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Corollary 2.14. Let f, g ∈ C2(I), let I be a compact interval, ui ∈ C([a, b]) (i = 1, 2), and r(x) ≥ 0
for all x ∈ [a, b]. Also let u1(x)/u2(x), Iαau1(x)/Iαau2(x) ∈ I, let u1(x)/u2(x) be nonconstant,
let QI(t) be given in (2.11), and u1(x), u2(x) have Riemann-Liouville fractional derivative of order
α > 0. Then there exists ξ ∈ I such that

∫b
a QI(x)f(u1(x)/u2(x))dx − ∫ba r(x)f(Iαau1(x)/Iαau2(x))dx∫b
a QI(x)g(u1(x)/u2(x))dx − ∫ba r(x)g(Iαau1(x)/Iαau2(x))dx

=
f ′′(ξ)
g ′′(ξ)

. (2.43)

It is provided that denominators are not equal to zero.

Corollary 2.15. Let f, g ∈ C2(I), let I be a compact interval, ui ∈ ACn([a, b]) (i = 1, 2), and
r(x) ≥ 0 for all x ∈ [a, b]. Also let u(n)

1 (t)/u(n)
2 (t), Dα

∗au1(x)/Dα
∗au2(x) ∈ I, let u(n)

1 (x)/u(n)
2 (x)

be nonconstant, let QD(t) be given in (2.15), and u1(x), u2(x) have Caputo fractional derivative of
order α > 0. Then there exists ξ ∈ I such that

∫b
a QD(x)f

(
u
(n)
1 (x)/u(n)

2 (x)
)
dx − ∫ba r(x)f(Dα

∗au1(x)/Dα
∗au2(x))dx∫b

a QD(x)g
(
u
(n)
1 (x)/u(n)

2 (x)
)
dx − ∫ba r(x)g(Dα∗au1(x)/Dα∗au2(x))dx

=
f ′′(ξ)
g ′′(ξ)

. (2.44)

It is provided that denominators are not equal to zero.

Corollary 2.16. Let β > α ≥ 0, f, g ∈ C2(I), let I be a compact interval, ui ∈ L1(a, b) (i = 1, 2) has
an L∞ fractional derivativeDβ

aui in [a, b], and r(x) ≥ 0 for all x ∈ [a, b]. Also letDβ−k
a ui(a) = 0 for

k = 1, . . . , [β] + 1 (i = 1, 2), Dα
au1(x)/Dα

au2(x), D
β
au1(x)/D

β
au2(x) ∈ I, let Dβ

au1(x)/D
β
au2(x) be

nonconstant, and let QL(t) be given in (2.22). Then there exists ξ ∈ I such that

∫b
a QL(x)f

(
D

β
au1(x)/D

β
au2(x)

)
dx − ∫ba r(x)f(Dα

au1(x)/Dα
au2(x))dx∫b

a QL(x)g
(
D

β
au1(x)/D

β
au2(x)

)
dx − ∫ba r(x)g(Dα

au1(x)/Dα
au2(x))dx

=
f ′′(ξ)
g ′′(ξ)

. (2.45)

It is provided that denominators are not equal to zero.

Corollary 2.17. Let I ⊆ R
+, let I be a compact interval, ui ∈ U(v,K) (i = 1, 2), and r(x) ≥ 0 for

all x ∈ [a, b]. Let u1(x)/u2(x), v1(x)/v2(x) ∈ I, let v1(x)/v2(x) be nonconstant, and let q(x) be
given in (2.2). Then, for s, t ∈ R \ {0, 1} and s /= t, there exists ξ ∈ I such that

ξ =

⎛
⎝s(s − 1)

t(t − 1)

∫b
a q(x)(v1(x)/v2(x))

tdx − ∫ba r(x)(u1(x)/u2(x))
tdx∫b

a q(x)(v1(x)/v2(x))
sdx − ∫ba r(x)(u1(x)/u2(x))

sdx

⎞
⎠

1/(t−s)

. (2.46)
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Proof. We set f(x) = xt and g(x) = xs, t /= s, s, t /= 0, 1. By Theorem 2.13, we have

∫b
a q(x)(v1(x)/v2(x))

tdx − ∫ba r(x)(u1(x)/u2(x))
tdx∫b

a q(x)(v1(x)/v2(x))
sdx − ∫ba r(x)(u1(x)/u2(x))

sdx
=

t(t − 1)ξt−2

s(s − 1)ξs−2
. (2.47)

This implies that

ξt−s =
s(s − 1)
t(t − 1)

∫b
a q(x)(v1(x)/v2(x))

tdx − ∫ba r(x)(u1(x)/u2(x))
tdx∫b

a q(x)(v1(x)/v2(x))
sdx − ∫ba r(x)(u1(x)/u2(x))

sdx
. (2.48)

This implies that

ξ =

⎛
⎝s(s − 1)

t(t − 1)

∫b
a q(x)(v1(x)/v2(x))

tdx − ∫ba r(x)(u1(x)/u2(x))
tdx∫b

a q(x)(v1(x)/v2(x))
sdx − ∫ba r(x)(u1(x)/u2(x))

sdx

⎞
⎠

1/(t−s)

. (2.49)

Remark 2.18. Since the function ξ → ξt−s is invertible and from (2.46), we have

m ≤
⎛
⎝s(s − 1)

t(t − 1)

∫b
a q(x)(v1(x)/v2(x))

tdx − ∫ba r(x)(u1(x)/u2(x))
tdx∫b

a q(x)(v1(x)/v2(x))
sdx − ∫ba r(x)(u1(x)/u2(x))

sdx

⎞
⎠

1/(t−s)

≤ M. (2.50)

Now we can suppose that f ′′/g ′′ is an invertible function, then from (2.36)we have

ξ =
(
f ′′

g ′′

)−1
⎛
⎝
∫b
a q(x)(v1(x)/v2(x))dx − ∫ba r(x)(u1(x)/u2(x))

tdx∫b
a q(x)(v1(x)/v2(x))dx − ∫ba r(x)(u1(x)/u2(x))

sdx

⎞
⎠. (2.51)

We see that the right-hand side of (2.49) is mean, then for distinct s, t ∈ R it can be written as

Ms,t =
(∧

t∧
s

)1/(t−s)
(2.52)
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as mean in broader sense. Moreover, we can extend these means, so in limiting cases for
s, t /= 0, 1,

lim
t→ s

Ms,t

= Ms,s

= exp

⎛
⎝
∫b
a q(x)A(x)s logA(x)dx − ∫ba r(x)B(x)s logB(x)dx∫b

a q(x)A(x)sdx − ∫ba r(x)B(x)sdx
− 2s − 1
s(s − 1)

⎞
⎠,

lim
s→ 0

Ms,s

= M0,0 = exp

⎛
⎜⎝
∫b
a q(x)log

2A(x)dx − ∫ba r(x)log2B(x)dx
2
[∫b

a q(x) logA(x)dx − ∫ba r(x) logB(x)dx
] + 1

⎞
⎟⎠,

lim
s→ 1

Ms,s

= M1,1

= exp

⎛
⎜⎝
∫b
a q(x)A(x)log2A(x)dx − ∫ba r(x)B(x)log2B(x)dx

2
[∫b

a q(x)A(x) logA(x)dx − ∫ba r(x)B(x) logB(x)dx
] − 1

⎞
⎟⎠,

lim
t→ 0

Ms,t

= Ms,0 =

⎛
⎜⎝

∫b
a q(x)A(x)sdx − ∫ba r(x)B(x)sdx[∫b

a q(x) logA(x)dx − ∫ba r(x) logB(x)dx
]
s(s − 1)

⎞
⎟⎠

(1/s)

,

lim
t→ 1

Ms,t

= Ms,1

=

⎛
⎜⎝
[∫b

a q(x)A(x) logA(x)dx − ∫ba r(x)B(x) logB(x)dx
]
s(s − 1)

∫b
a q(x)A(x)sdx − ∫ba r(x)B(x)sdx

⎞
⎟⎠

1/(1−s)

,

(2.53)

where A(x) = v1(x)/v2(x) and B(x) = u1(x)/u2(x).

Remark 2.19. In the case of Riemann-Liouville fractional integral of order α > 0, we well use
the notation Ms,t instead of Ms,t and we replace vi(x) with ui(x), ui(x) with Iαaui(x), and
q(x)with QI(x).
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Remark 2.20. In the case of Caputo fractional derivative of order α > 0, we well use the
notation M̃s,t instead of Ms,t and we replace vi(x) with u

(n)
i (x), ui(x) with Dα

∗aui(x), and
q(x)with QD(x).

Remark 2.21. In the case of L∞ fractional derivative, we will use the notation M̂s,t instead of
Ms,t and we replace vi(x) with D

β
aui(x), ui(x) with Dα

aui(x), and q(x)with QL(x).

3. Exponential Convexity

Lemma 3.1. Let s ∈ R, and let ϕs : R+ → R be a function defined as

ϕs(x) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xs

s(s − 1)
, s /= 0, 1,

− logx, s = 0,

x logx, s = 1.

(3.1)

Then ϕs is strictly convex on R
+ for each s ∈ R.

Proof. Since ϕ′′
s(x) = xs−2 > 0 for all x ∈ R

+, s ∈ R, therefore, ϕ is strictly convex on R
+ for each

s ∈ R.

Theorem 3.2. Let ui ∈ U(v,K) (i = 1, 2), ui(x), vi(x) > 0 (i = 1, 2), r(x) ≥ 0 for all x ∈ [a, b],
let q(x) be given in (2.2), and

∧
t
=
∫b
a

q(x)ϕt

(
v1(x)
v2(x)

)
dx −

∫b
a

r(x)ϕt

(
u1(x)
u2(x)

)
dx. (3.2)

Then the following statements are valid.

(a) For n ∈ N and si ∈ R, i = 1, . . . , n, the matrix [
∧

(si+sj )/2]
n

i,j=1
is a positive semidefinite

matrix. Particularly

det
[∧

(si+sj)/2

]k
i,j=1

≥ 0 for k = 1, . . . n. (3.3)

(b) The function s �→ ∧s is exponentially convex on R.

(c) The function s �→ ∧s is log-convex on R, and the following inequality holds, for −∞ < r <
s < t < ∞:

∧t−r
s

≤
∧t−s

r

∧s−r
t

. (3.4)
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Proof. (a) Here we define a new function μ,

μ(x) =
k∑

i,j=1

aiajϕsij (x), (3.5)

for k = 1, . . . , n, ai ∈ R, sij ∈ R, where sij = (si + sj)/2,

μ′′(x) =
n∑

i,j=1

aiajx
sij−2 =

(
n∑
i=1

aix
(si/2)−1

)2

≥ 0. (3.6)

This shows that μ(x) is convex for x ≥ 0. Using Theorem 2.1, we have

k∑
i,j=1

aiaj

∧
sij

≥ 0. (3.7)

From the above result, it shows that thematrix [
∧

(si+sj )/2]
n

i,j=1
is a positive semidefinite matrix.

Specially, we get

det
[∧

(si+sj )/2

]k
i,j=1

≥ 0 ∀k = 1, . . . n. (3.8)

(b) Since

lim
s→ 1

∧
s
=
∧

1
,

lim
s→ 0

∧
s
=
∧

0
,

(3.9)

it follows that
∧

s is continuous for s ∈ R. Then, by using Proposition 1.4, we get the
exponential convexity of the function s �→ ∧s.

(c) Since
∧

s is continuous for s ∈ R and using Corollary 1.5, we get that
∧

s is log-
convex. Now by Definition 1.2 with f(t) = log

∧
t and r, s, t ∈ R such that r < s < t, we

get

log
∧t−r

s
≤ log

∧t−s
r

+ log
∧s−r

t
, (3.10)

which is equivalent to (3.4).
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Corollary 3.3. Let ui ∈ C([a, b]) (i = 1, 2), and r(x) ≥ 0 for all x ∈ [a, b]. Also let u1(x)/u2(x),
Iαau1(x)/Iαau2(x) ∈ R

+, u1(x), u2(x) have Riemann-Liouville fractional integral of order α > 0, let
QI(t) be given in (2.11), and

∧
t
=
∫b
a

QI(x)ϕt

(
u1(x)
u2(x)

)
dx −

∫b
a

r(x)ϕt

(
Iαau1(x)
Iαau2(x)

)
dx. (3.11)

Then the statement of Theorem 3.2 with
∧

t instead of
∧

t is valid.

Corollary 3.4. Let ui ∈ ACn([a, b]) (i = 1, 2), and r(x) ≥ 0 for all x ∈ [a, b]. Also let
u
(n)
1 (t)/u(n)

2 (t), Dα
∗au1(x)/Dα

∗au2(x) ∈ R
+, u1(x), u2(x) have Caputo fractional derivative of order

α > 0, let QD(t) be given in (2.15), and

∧̃
t
=
∫b
a

QD(x)ϕt

(
u
(n)
1 (x)

u
(n)
2 (x)

)
dx −

∫b
a

r(x)ϕt

(
Dα

∗au1(x)
Dα∗au2(x)

)
dx. (3.12)

Then the statement of Theorem 3.2 with
∧̃

t instead of
∧

t is valid.

Corollary 3.5. Let β > α ≥ 0, ui ∈ L1 (a, b) (i = 1, 2) has L∞ fractional derivative, and r(x) ≥ 0
for all x ∈ [a, b]. Also let Dβ−k

a ui(a) = 0 for k = 1, . . . , [β] + 1 (i = 1, 2), Dα
au1(x)/Dα

au2(x),
D

β
au1(x)/D

β
au2(x) ∈ R

+, let QL(t) be given in (2.22), and

∧̂
t
=
∫b
a

QL(x)ϕt

(
D

β
au1(x)

D
β
au2(x)

)
dx −

∫b
a

r(x)ϕt

(
Dα

au1(x)
Dα

au2(x)

)
dx. (3.13)

Then the statement of Theorem 3.2 with
∧̂

t instead of
∧

t is valid.

In the following theorem, we prove the monotonicity property of Ms,t defined in
(2.52).

Theorem 3.6. Let the assumption of Theorem 3.2 be satisfied, also let
∧

t be defined in (3.2), and
t, s, u, v ∈ R such that s ≤ v, t ≤ u. Then the following inequality is true:

Ms,t ≤ Mv,u. (3.14)
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Proof. For a convex function ϕ, using the Definition 1.2, we get the following inequality:

ϕ(x2) − ϕ(x1)
x2 − x1

≤ ϕ
(
y2
) − ϕ

(
y1
)

y2 − y1
(3.15)

with x1 ≤ y1, x2 ≤ y2, x1 /=x2, and y1 /=y2. Since by Theorem 3.2 we get that
∧

t is log-convex.
We set ϕ(t) = log

∧
t, x1 = s, x2 = t, y1 = v, y2 = u, s /= t, and v /=u. Terefore, we get

log
∧

t − log
∧

s

t − s
≤ log

∧
u − log

∧
v

u − v
,

log
(∧

t∧
s

)1/(t−s)
≤ log

(∧
u∧
v

)1/(u−v)
,

(3.16)

which is equivalent to (3.14) for s /= t, v /=u.
For s = t, v = u, we get the required result by taking limit in (3.16).

Corollary 3.7. Let ui ∈ C([a, b]) (i = 1, 2), and let the assumption of Corollary 3.3 be satisfied, also
let
∧

t be defined by (3.11). For t, s, u, v ∈ R such that s ≤ v, t ≤ u, then the following inequality
holds:

Ms,t ≤ Mv,u. (3.17)

Corollary 3.8. Let ui ∈ ACn([a, b]) (i = 1, 2) and let the assumption of Corollary 3.4 be satisfied,
also let

∧̃
t be defined by (3.12). For t, s, u, v ∈ R such that s ≤ v, t ≤ u, then the following inequality

holds:

M̃s,t ≤ M̃v,u. (3.18)

Corollary 3.9. Let β > α ≥ 0, ui ∈ L1(a, b) (i = 1, 2) and the assumption of Corollary 3.5 be
satisfied, also let

∧̂
t be defined by (3.13). For t, s, u, v ∈ R such that s ≤ v, t ≤ u. Then following

inequality holds

M̂s,t ≤ M̂v,u. (3.19)
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