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Let Ω be a G-invariant convex domain in CN including 0, where G is a complex Coxeter group
associated with reduced root system R ⊂ RN . We consider holomorphic functions f defined in Ω
which are Dunkl polyharmonic, that is, (Δh)

nf = 0 for some integer n. Here Δh =
∑N

j=1 D2
j is the

complex Dunkl Laplacian, and Dj is the complex Dunkl operator attached to the Coxeter group G,
Djf(z) = (∂f/∂zj)(z)+

∑
v∈R+

κv((f(z)−f(σvz))/〈z, v〉)vj ,where κv is a multiplicity function onR
and σv is the reflection with respect to the root v. We prove that any complex Dunkl polyharmonic
function f has a decomposition of the form f(z) = f0(z)+(

∑N
n=1 z

2
j )f1(z)+ · · ·+(

∑N
n=1 z

2
j )

n−1fn−1(z),
for all z ∈ Ω, where fj are complex Dunkl harmonic functions, that is, Δhfj = 0.

1. Introduction

A fundamental result in the theory of polyharmonic functions is the celebrated Almansi
theorem [1–3], which shows that for any polyharmonic function f of degree n in a starlike
domain D in R

N with center 0, that is,

(ΔR)nf :=

⎛

⎝
N∑

j=1

∂2

∂x2
j

⎞

⎠

n

, f = 0, (1.1)

there exist uniquely harmonic functions f0, . . . , fn−1 such that

f(x) = f0(x) + |x|2f1(x) + · · · + |x|2(n−1)fn−1(x), ∀x ∈ D. (1.2)
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The Almansi formula is a genuine analogy to the Taylor formula:

f(t) = f(0) + t
f ′(0)
1!

+ · · · + tn
f (n)(0)

n!
+ · · · . (1.3)

Compared with the Taylor formula, the Almansi formula is obtained by the scheme

d

dt
�−→ ΔR, (1.4)

and since the constants f (n)(0)/n! are solutions of (d/dt)(f (n)(0)/n!) = 0, they are replaced
by the solutions of the Laplace equation ΔRfk = 0.

In [1], Aronszajn et al. indicated some applications of the Almansi formula in several
complex variables. Its most eminent application is in spherical harmonic function theory [4,
5]. The polyharmonic functions have also applications in the theory of elasticity [6], in radar
imaging [7], and in multivariate approximation [8, 9].

The purpose of this article is to extend Almansi’s theorem to the theory of complex
Dunkl harmonics. The theory of Dunkl harmonics developed by Dunkl [10–13] is an
extension of the theory of ordinary harmonics. In 1989, Dunkl [10] constructed for each
Coxeter group a family of commutative differential-difference operators Dj , called Dunkl
operators, which can be considered as perturbations of the usual partial derivatives by
reflection parts. These operators step from the analysis of quantum many body system of
Calogero-Moser-Sutherland type [14] in mathematical physics. They also have roots in the
theory of special functions of several variables. With Dunkl operators in place of the usual
partial derivatives, one can define the Laplacian in the Dunkl setting, which is a parametrized
operator and invariant under reflection groups. These parametrized Laplacian suggests the
theory of Dunkl harmonics. In [15], we obtained the Almansi decomposition for the real
Dunkl operator. Now we continue to consider the Almansi decomposition for the complex
Dunkl operator.

As a direct consequence, we will show that the Almansi Theorem implies the Gauss
decomposition of the homogeneous polynomials into complex Dunkl harmonics.

We need some notations before stating our main result. Let R be a root system in R
N

and G the associated Coxeter group. Let κ : R → C be a fixed multiplicity function v �→ κv

on R. Fix a positive subsystem R+ of R, and denote γ = γκ :=
∑

v∈R+
κv. We will always assume

that

Re γκ > −N
2
. (1.5)

Let Dj be the Dunkl operator attached to the Coxeter group G and the multiplicity function
κ, defined by (see [16])

Djf(z) =
∂f

∂zj
(z) +

∑

v∈R+

κv
f(z) − f(σvz)

〈z, v〉 vj , (1.6)

where σv denotes the reflection in the hyperplane orthogonal to v.
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The Dunkl operators enjoy the regularity property: if f ∈ H(Ω), the space of
holomorphic functions in Ω, then Dif ∈ H(Ω). This follows immediately from the formula

f(z) − f(σvz)
〈z, v〉 =

∫1

0

〈

∇f(tσvz + (1 − t)z),
2v

|v|2
〉

dt (1.7)

for any f ∈ H(Ω) and v ∈ R.
The Dunkl Laplacian is defined as

Δh = D2
1 + · · · +D2

N, (1.8)

more precisely,

Δhf(z) = Δf(z) + 2
∑

v∈R+

κv
〈∇f(z), v〉

〈z, v〉 − 2
∑

v∈R+

κv
f(z) − f(σvz)

〈z, v〉2
|v|2. (1.9)

Here Δ and ∇ are the complex Laplacian and gradient operator:

Δ := ΔC =
∂2

∂z21
+ · · · + ∂2

∂z2n
,

∇ =
(

∂

∂z1
, . . . ,

∂

∂zn

)

.

(1.10)

Throughout this paper we let Ω be a G-invariant convex domain in C
N including 0, that is,

G(Ω) ⊂ Ω, 0 ∈ Ω, and tx+(1− t)y ∈ Ω for all t ∈ [0, 1] and x, y ∈ Ω. This class of domain turns
out to be natural for the Almansi decomposition. It is known that Δh is a regular operator in
such a domain. Namely, if f ∈ H(Ω), then Δhf ∈ H(Ω).

Definition 1.1. A holomorphic function f : Ω → C is Dunkl polyharmonic of degree n if
(Δh)

nf = 0. If n = 1, it is called Dunkl harmonic function.

Let I be the identity operator. For any s ∈ C with Re s > 0 we define the operator
Is : H(Ω) → H(Ω) by

Isf(x) =
∫1

0
f(tx)ts−1dt. (1.11)

If f is Dunkl harmonic in Ω, then so is Isf . For any j ∈ N, by assumption (1.5) we can
introduce the operator:

Qj =
1

4j j!
I(N+2(j−1))/2+γκI(N+2(j−2))/2+γκ · · · IN/2+γκ . (1.12)
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For any z ∈ C
N and j ∈ N, we denote

z2 = z21 + · · · + z2N, z2j =
(
z2
)j

=
(
z21 + · · · + z2N

)j
. (1.13)

Our main result is the following theorem.

Theorem 1.2. Assume that R is a root system in R
N and G its associated complex Coxter group. Let

Ω be a G-invariant convex domain in C
N including 0. If f is a Dunkl polyharmonic function in Ω of

degree n, then there exist uniquely Dunkl harmonic functions f0, . . . , fn−1 such that

f(z) = f0(z) + z2f1(z) + · · · + z2(n−1)fn−1(z), ∀x ∈ Ω. (1.14)

Moreover the Dunkl harmonic functions f0, . . . , fn−1 are given by the following formulae:

f0 =
(
I − z2Q1Δh

)(
I − z4Q2Δ2

h

)
· · ·

(
I − z2(n−1)Qn−1Δn−1

h

)
f(z)

f1 = Q1Δh

(
I − z4Q2Δ2

h

)
· · ·

(
I − z2(n−1)Qn−1Δn−1

h

)
f(z)

...

fn−2 = Qn−2Δn−2
h

(
I − z2(n−1)Qn−1Δn−1

h

)
f(z)

fn−1 = Qn−1Δn−1
h f(z).

(1.15)

Conversely, the sum in (1.14), with f0, . . . , fn−1 Dunkl harmonic in Ω, defines a Dunkl
polyharmonic function in Ω of degree n.

Remark 1.3. By the Scheme in (1.4), we know that the formulae of fj above play the role of
Taylor coefficient formulae. These formulae are new even in the classical case κ = 0.

2. Preliminaries

Let us recall some notation in the theory of Dunkl harmonics; see [16, 17]. Concerning root
system and reflection groups, see [18].

A root system R is a finite set of nonzero vectors in R
N such that σvR = R and R∩Rv =

{±v} for all v ∈ R.
The positive subsystem R+ is a subset of R such that R = R+ ∪ (−R+), where R+ and

−R+ are separated by a hyperplane through the origin.
For a nonzero vector v ∈ C

N , the reflection σv in the hyperplane orthogonal to v is
defined by

σvz := z − 2
〈z, v〉
|v|2

v, z ∈ C
N, (2.1)

where the symbol 〈z, v〉 =
∑N

j=1 zjvj and |z|2 = 〈z, z〉.
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The Coxeter group G (or the finite reflection group) generated by the root system R is
the subgroup of the unitary group U(N) generated by {σu : u ∈ R}.

A multiplicity function κv is a G-invariant complex valued function defined on R, that
is, κv = κgv for all g ∈ G.

Notice that Dunkl operators were studied in literature for Reκv ≥ 0.
The Dunkl operator Dj , associated with the Coxeter group G and the multiplicity

function κ, is the first-order differential-difference operator. The remarkable property of
Dunkl operators is that they are commutative:

DiDj = DjDi. (2.2)

The Dunkl Laplacian Δh =
∑N

j=1 D2
j can be split into three parts

Δh = Δ +Gh +Dh (2.3)

with

Ghf(z) = 2
∑

v∈R+

κv
〈∇f(z), v〉

〈z, v〉 ;

Dhf(z) = −2
∑

v∈R+

κv
f(z) − f(σvz)

〈z, v〉2
|v|2.

(2.4)

When κ = 0, the Dunkl Laplacian Δh is just the ordinary complex Laplacian Δ.
Consider the natural action of U(N) on functions f : CN → C, given by gf(z) =

f(g−1z). The Dunkl Laplacian Δh is G-invariant, that is,

g ◦Δh = Δh ◦ g, ∀g ∈ G. (2.5)

Example 2.1. Let N be an integer and N ≥ 2. Since we need to consider the sum i /= j and i
runs from 1 to N, this forces N ≥ 2. Take the Coxeter group G = SN , which is the symmetric
group inN elements, acting on R

N by permuting the standard basis e1, . . . , eN (see [17, page
289]). We regard the transposition (ij) in SN as a reflection σij such that

σij

(
ei − ej

)
= −(ei − ej

)
. (2.6)

Therefore, SN is a finite reflection generated by σij with a root system

R =
{±(ei − ej

)
: 1 ≤ i < j ≤ N

}
. (2.7)

As all transpositions are conjugate in SN , the vector space of multiplicity function is one
dimensional. The complex Dunkl operators associated with themultiplicity parameters κ ∈ C

are given by

Djf(z) =
∂f

∂zj
(z) + κ

∑

i /= j

f(z) − f
(
σijz

)

zi − zj
, (2.8)
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where σij acts on C
N by interchanging zi and zj ; more precisely, σijz = (σijz1, . . . , σijzn) with

σijzi = zj , σijzj = zi, and σijzk = zk for any k /= i, j.
In this case, the condition (1.5) of the main theorem reduces to

κ > − 1
N − 1

. (2.9)

Example 2.2. In the one-dimensional caseN = 1, the root system R is of typeA1, the reflection
group G = Z2, and the multiplicity function is given by a single parameter κ ∈ C. The Dunkl
operator D := D1 and the Dunkl Laplacian Δh are given, respectively, by

Df(z) = f ′(z) + κ
f(z) − f(−z)

z
,

Δhf(z) = f ′′(z) + 2κ
f ′(z)
z

− 2κ
f(z) − f(−z)

z2
.

(2.10)

If f is an even function, then the third term in the formula of Δhf vanishes, while the
sum of the first two items provides a singular Sturm-Liouville operator.

3. Proof of the Main Theorem

Before proving Theorem 1.2, we need some lemmas.
Denote

Rs = sI +
N∑

j=1

zj
∂

∂zj
. (3.1)

We write R instead of R0 when s = 0.

Lemma 3.1. If s ∈ C, Re s > 0, and f ∈ H(Ω), then

f(z) = IsRsf(z) = RsIsf(z). (3.2)

Proof. For any s ∈ C, Re s > 0 and f ∈ H(Ω),

f(z) =
∫1

0

d

dt

(
tsf(tz)

)
dt. (3.3)

By direct calculation

d

dt

(
tsf(tz)

)
= sts−1f(tz) + ts−1

(
N∑

i=1

wi
∂f

∂wi

)

(tz), (3.4)
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where wi = tzi. Therefore

f(z) =
∫1

0

(

sf(tz) +

(
N∑

i=1

wi
∂f

∂wi

)

(tz)

)

ts−1dt;

f(z) = s

∫1

0
f(tz)ts−1dt +

(
N∑

i=1

wi
∂

∂wi

)∫1

0
f(tz)ts−1dt.

(3.5)

From the above two identities and the definitions of Is and Rs, we have f(z) = IsRsf(z) and
f(z) = RsIsf(z).

Lemma 3.2. If f ∈ H(Ω), then for any s ∈ C, Re s > 0, and z ∈ Ω

ΔhIsf(z) = Is+2Δhf(z). (3.6)

Proof. By definition, we have for a.e. z ∈ Ω

GhIsf(z) = 2
∑

v∈R+

κv

〈∇(
Isf(z)

)
, v

〉

〈z, v〉

= 2
∑

v∈R+

κv
1

〈z, v〉
∫1

0

N∑

i=1

∂f

∂zi
(tz)vit

sdt

=
∫1

0
2
∑

v∈R+

κv

〈∇f(tz), v
〉

〈tz, v〉 ts+1dt

=
∫1

0
Ghf(tz)ts+1dt

= Is+2Ghf(z).

(3.7)

Similarly

DhIsf(z) = −2
∑

v∈R+

κv

(
Isf

)
(z) − (

Isf
)
(σvz)

〈z, v〉2
|v|2

= −2
∑

v∈R+

κv
|v|2

〈z, v〉2
∫1

0

(
f(tz) − f(tσvz)

)
ts−1dt

=
∫1

0
−2

∑

v∈R+

κv
|v|2

〈tz, v〉2
(
f(tz) − f(tσvz)

)
ts+1dt

= Is+2Dhf(z).

(3.8)
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It is also easy to see

ΔIsf(z) = Is+2Δf(z). (3.9)

Since Δh = Δ + Gh + Dh, it follows that ΔhIsf(z) = Is+2Δhf(z) for a.e. z ∈ Ω. From
the regularity property of Dunkl operators, Δh maps C2(Ω) into C(Ω). By the continuity,
Lemma 3.2 follows.

Lemma 3.3. LetH1 = {f ∈ H(Ω) : Δhf = 0}. If s > 0 and Qj as in (1.12), then

RsH1 = H1, IsH1 = H1, QjH1 = H1. (3.10)

Proof. Note that (3.6) implies

Rs+2Δhf(z) = ΔhRsf(z), z ∈ Ω. (3.11)

Indeed, from Lemma 3.1, Rs+2Δh = Rs+2ΔhIsRs = Rs+2Is+2ΔhRs = ΔhRs. As direct
consequence of (3.6) and (3.11), we find that Isf and Rsf are Dunkl harmonic, whenever
f is Dunkl harmonic. From the definition of Qj , we thus obtain QjH1 = H1.

Lemma 3.4. Let g ∈ H(Ω), j ∈ N, Then for any z ∈ Ω

Δh

(
z2jg(x)

)
= z2jΔhg(x) + 4jz2(j−1)R(N+2j−2)/2+γ + 2jg(z). (3.12)

Proof. For any f, g ∈ H(Ω)

Δ
(
fg

)
=
(
Δf

)
g + 2

〈∇f,∇g
〉
+ f

(
Δg

)
. (3.13)

Take f(z) = z2j and apply identities (∂/∂zi)(z2j) = 2jziz2(j−1) andΔ(z2j) = 2j(N+2j−2)z2(j−1)
to yield

Δ
(
z2jg

)
= z2jΔg + 4jz2(j−1)R(N+2j−2)/2g. (3.14)

By our assumption R+ ⊂ R
N . Therefore

v = v, v ∈ R+. (3.15)

As a result,

z2 = (σvz)2 (3.16)
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for any z ∈ Ω and v ∈ R+. Indeed

(σvz)2 =
N∑

j=1

(

zj − 2
〈z, v〉
|v|2

vj

)2

= z2 − 4
〈z, v〉〈z, v〉

|v|2
+ 4

〈z, v〉2〈v, v〉
|v|4

= z2.

(3.17)

Then

Dh

(
z2jg(z)

)
= −2

∑

v∈R+

κv
z2jg(z) − (σvz)2jg(σvz)

〈z, v〉2
|v|2

= z2jDhg(z).

(3.18)

By definition, we have

Gh

(
z2jg

)
= 2

∑

v∈R+

κv

〈∇(
z2jg

)
, v

〉

〈z, v〉

= z2jGh

(
g
)
+ 2

∑

v∈R+

κv

〈∇(
z2j

)
, v

〉

〈z, v〉 g

= z2jGh

(
g
)
+ 4jγz2(j−1)g(z).

(3.19)

Since Δh = Δ+Gh +Dh, summing up the above identity leads to identity (3.12) for z ∈ Ω.

Lemma 3.5. For any complex Dunkl harmonic function f in Ω,

Δn
hz

2nQnf(z) = f(z), z ∈ Ω. (3.20)

Proof. From (1.12) and Lemma 3.1, we know that

Q−1
n = 4nn!R(N+2(n−1))/2+γR(N+2(n−2))/2+γ · · ·RN/2+γ . (3.21)

Denote g = Qnf . Then g is Dunkl harmonic in Ω due to (3.10), and

f(z) = 4nn!R(N+2(n−1))/2+γR(N+2(n−2))/2+γ · · ·RN/2+γg(z). (3.22)

We need to show

Δn
hz

2ng(z) = 4nn!R(N+2(n−1))/2+γR(N+2(n−2))/2+γ · · ·RN/2+γg(z) (3.23)

for any Dunkl harmonic function g in Ω and n ∈ N.
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Let g be Dunkl harmonic in Ω and n ∈ N. Then Lemma 3.4 shows

Δh

(
z2ng(z)

)
= 4nz2(n−1)R(N+2(n−1))/2+γg(z). (3.24)

We use induction on n to prove (3.23). It is easy to prove when n = 1. For the general case,
from (3.24) we have

Δn
h

(
z2ng(z)

)
= Δn−1

h

(
Δh

(
z2ng(z)

))

= 4nΔn−1
h

(
z2(n−1)R(N+2(n−1))/2+γg(z)

)
.

(3.25)

Equation (3.23) follows directly from the assumption of induction.

Now we come to the proof of our main theorem.

Proof of Theorem 1.2. Denote Hn = {f ∈ H(Ω) : (Δh)
nf = 0}. It is sufficient to show that

Hn = Hn−1 + Tn−1H1, n ∈ N, (3.26)

where Tn = z2nI. Notice that Lemma 3.5 states that

Δn
hTnQn = I. (3.27)

We split the proof into two parts.

(i) Hn ⊃ Hn−1 + Tn−1H1. SinceHn−1 ⊂ Hn, we need only to show Tn−1H1 ⊂ Hn. For any
g ∈ H1, by (3.27) and (3.10)we have

Δn
h

(
Tn−1g

)
= Δh

(
Δn−1

h Tn−1Qn−1
)
Q−1

n−1g = ΔhQ
−1
n−1g = 0. (3.28)

(ii) Hn ⊂ Hn−1 + Tn−1H1. For any f ∈ Hn, we have the decomposition

f =
(
I − Tn−1Qn−1Δn−1

h

)
f + Tn−1

(
Qn−1Δn−1

h f
)
. (3.29)

Wewill show that the first summand above is inHn−1 and the item in the braces of the second
summand is in H1. This can be verified directly. First,

Δn−1
h

(
I − Tn−1Qn−1Δn−1

)
f =

(
Δn−1

h −
(
Δn−1

h Tn−1Qn−1
)
Δn−1

h

)
f

=
(
Δn−1

h −Δn−1
h

)
f = 0.

(3.30)

Next, since Δn−1
h f ∈ H1 and Qn−1H1 ⊂ H1, we have Qn−1Δn−1

h f ∈ H1, as desired.This proves
thatHn = Hn−1+Tn−1H1. By induction, we can easily deduce thatHn = H1+T1H1+· · ·+Tn−1H1.
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Next we prove that for any f ∈ Hn the decomposition

f = g + Tn−1fn, g ∈ Hn−1, fn ∈ H1 (3.31)

is unique. In fact, for such a decomposition, applying Δn−1
h on both sides we obtain

Δn−1
h f = Δn−1

h g + Δn−1
h Tn−1fn

= Δn−1
h Tn−1Qn−1Q−1

n−1f1

= Q−1
n−1fn.

(3.32)

Therefore

fn = Qn−1Δn−1
h f, (3.33)

so that

g = f − Tn−1fn =
(
I − Tn−1Qn−1Δn−1

)
f. (3.34)

Thus the uniqueness follows by induction.
To prove the converse, we see from (3.23) that, for any n ∈ N, Δn+1

h
z2nH1 = 0.

Replacing n by j, we have

Δn
hz

2jH1 = 0 (3.35)

for any n > j.

4. Gauss Decomposition

As a direct consequence of Theorem 1.2, we can get the extended Fischer decomposition
theorem. Let Pm denote the space of homogeneous polynomials of degree m in C

N . Notice
that Dj maps Pm into Pm−1, so that ΔhPm ⊂ Pm−2. If f ∈ Pm, then

Δ[m/2]+1
h f(z) = 0, (4.1)

and Isf(z) = (1/(m + s))f(z) so that

Qjf(z) = dj,mf(z), (4.2)

where d−1
j,n = 4j j!(N/2 + γ + n)j and (a)n = a(a + 1) · · · (a + n − 1). Denote

cj = dj,m−2j =
1

4j j!
(
N/2 + γ +m − 2j

)
j

. (4.3)
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Corollary 4.1. Let f be a homogeneous polynomial of degree m in C
N . Then there exist uniquely

Dunkl harmonic homogeneous polynomials fj of degreem − 2j such that

f(z) = f0(z) + z2f1(z) + · · · + z2[m/2]f[m/2](z), ∀z ∈ Ω. (4.4)

Moreover the Dunkl harmonic functions f0, . . . , f[m/2] are given by the following formulae:

f0 =
(
I − c1z

2Δh

)(
I − c2z

4Δ2
h

)
· · ·

(
I − c[m/2]z

2[m/2]Δ[m/2]
h

)
f(z)

f1 = c1Δh

(
I − c2z

4Δ2
h

)
· · ·

(
I − c[m/2]z

2[m/2]Δ[m/2]
h

)
f(z)

...

f[m/2]−1 = c[m/2]−1Δ
[m/2]−1
h

(
I − c[m/2]z

2[m/2]Δ[m/2]
h

)
f(z)

f[m/2] = c[m/2]Δ
[m/2]
h f(z).

(4.5)

Proof. Let f ∈ Pm, then f is Dunkl harmonic of degree [m/2] + 1, so that Theorem 1.2 gives
the decomposition of f as in (4.4). It remains to check the formulae of f0, . . . , f[m/2]. We only
consider the formula of f0, since the others are similar. That is, we need to show

f0 =
(
I − z2Q1Δh

)(
I − z4Q2Δ2

h

)
· · ·

(
I − z2[m/2]Q[m/2]Δ

[m/2]
h

)
f(z)

=
(
I − c1z

2Δh

)(
I − c2z

4Δ2
h

)
· · ·

(
I − c[m/2]z

2[m/2]Δ[m/2]
h

)
f(z).

(4.6)

Notice that for any f ∈ Pm, Δ
[m/2]
h

f ∈ Pm−2[m/2] ∩H1, so that (4.2) implies

Q[m/2]Δ
[m/2]
h f(z) = c[m/2]Δ

[m/2]
h f(z). (4.7)

Therefore

z2[m/2]Q[m/2]Δ
[m/2]
h

f(z) = c[m/2]z
2[m/2]Δ[m/2]

h
f(z) ∈ Pm, (4.8)

and also

(
I − z2[m/2]Q[m/2]Δ

[m/2]
h

)
f(z) =

(
I − c[m/2]z

2[m/2]Δ[m/2]
h

)
f(z) ∈ Pm. (4.9)

The remaining proof follows by induction.
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