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Two open problems were posed in the work of Long and Chu (2010). In this paper, we give the
solutions of these problems.

1. Introduction

The arithmetic A(a, b) and geometric G(a, b) means of two positive numbers a and b are
defined by A(a, b) = (a + b)/2, G(a, b) =

√
ab, respectively. If p is a real number, then

the generalized logarithmic mean Lp(a, b) with parameter p of two positive numbers a, b
is defined by

Lp(a, b) =

⎧
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a, a = b,

[
bp+1 − ap+1

(
p + 1

)
(b − a)

]1/p

, p /= 0, p /= − 1, a /= b,

1
e

(
bb

aa

)1/(b−a)
, p = 0, a /= b,

b − a

ln b − lna
, p = −1, a /= b.

(1.1)

In the paper [1], Long and Chu propose the two following open problems:
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Open Problem 1. What is the least value p such that the inequality

αA(a, b) + (1 − α)G(a, b) < Lp(a, b) (1.2)

holds for α ∈ (0, 1/2) and all a, b > 0 with a/= b?

Open Problem 2. What is the greatest value q such that the inequality

αA(a, b) + (1 − α)G(a, b) > Lq(a, b) (1.3)

holds for α ∈ (1/2, 1) and all a, b > 0 with a/= b?

For information on the history, background, properties, and applications of inequali-
ties for generalized logarithmic, arithmetic, and geometric means, please refer to [1–19] and
related references there in.

The aim of this article is to prove the following Theorem 2.1.

2. Main Result

Theorem 2.1. Let α ∈ (0, 1/2) ∪ (1/2, 1), a/= b, a > 0, b > 0. Let p(α) be a solution of

1
p
ln
(
1 + p

)
+ ln

(α

2

)
= 0 in (−1, 1). (2.1)

Then,

if α ∈
(

0,
1
2

)

, then αA(a, b) + (1 − α)G(a, b) < Lp(a, b) for p ≥ p(α) (2.2)

and p(α) is the best constant,

if α ∈
(
1
2
, 1
)

, then αA(a, b) + (1 − α)G(a, b) > Lp(a, b) for p ≤ p(α) (2.3)

and p(α) is the best constant.

3. Proof of Theorem 2.1

Because Lp(a, b) is increasing with respect to p ∈ R for fixed a and b, it suffices to prove that
for any α ∈ (0, 1/2) (resp., α ∈ (1/2, 1)) there exists p(α) such that αA(a, b) + (1 − α)G(a, b) <
Lp(α)(a, b) (resp., αA(a, b) + (1 − α)G(a, b) > Lp(α)(a, b)), and p(α) is the best constant.
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Without loss of generality, we assume that a > b > 0. Let p /= 0, p /= − 1. Equations (2.2),
(2.3) are equivalent to

α

(
a + b

2

)

+ (1 − α)
√
ab ≶

(
bp+1 − ap+1

(
p + 1

)
(b − a)

)1/p

. (3.1)

On putting t =
√
b/a, we obtain (3.1) is equivalent to

1
p
ln

(
1 − t2p+2

(
p + 1

)
(1 − t2)

)

− ln
(α

2

(
1 + t2

)
+ (1 − α)t

)
≷ 0, t ∈ (0, 1). (3.2)

Introduce the function H : (0, 1) × (0, 1) × (−1, 1) → R by

H
(
t, α, p

)
=

1
p
ln

(
1 − t2p+2

(
p + 1

)
(1 − t2)

)

− ln
(α

2

(
1 + t2

)
+ (1 − α)t

)
, p /= 0,

H(t, α, 0) = lim
p→ 0

H
(
t, α, p

)
.

(3.3)

Simple computations yield for p /= 0

∂H
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)

∂t
=

2
p

(
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− 2
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)

,
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(
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(3.4)

Let α ∈ (0, 1/2) ∪ (1/2, 1) and p(α) the unique solution to

1
p
ln
(
1 + p

)
+ ln

(α

2

)
= 0. (3.5)

To see that p(α) is optimal in both cases (2.2), (2.3), note that limt→ 0+H(t, α, p(α)) = 0. Thus,
if the constant is decreased (resp., increased), then the desired bound for H would not hold
for small t. This follows from the fact that for a fixed α, the function

H
(
0+, α, p

)
= −

(
1
p

)

ln
(
p + 1

) − ln
(α

2

)

(3.6)

is nondecreasing.
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From now on, let p = p(α) for α ∈ (0, 1/2) ∪ (1/2, 1). To show the estimates for this
p, we start from observing that H(0+, α, p) = H(1−, α, p) = 0. Furthermore, one easily checks
that

H ′
t

(
0+, α, p

)
= ∞ for α <

1
2
,

H ′
t

(
0+, α, p

)
=

2(α − 1)
α

< 0 for α >
1
2
.

(3.7)

Thus, it suffices to verify that H ′
t(·, α, p) has exactly one zero inside the interval (0, 1).

It follows from themean value theorem. After some computations, this is equivalent to saying
that the function R given by

R
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t, α, p

)
= ln
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α
(
p + 1

)
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(
p + 2

)
t2 + α

(
1 − p
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(3.8)

has exactly one root in (0, 1). Here, the expression under the logarithm may be nonpositive,
so we define R on a maximal interval, contained in (0, 1). It is easy to see that this interval
must be of the form (t0, 1), for some t0 ∈ 〈0, 1). This follows from the fact that s2 is strictly
positive on 〈0, 1〉 and s1 is strictly increasing on this interval.

Since R(1−) = 0 and R(t0+) = ±∞, we will be done if we show that R′ has exactly one
root in (0, 1). After some computations, we obtain that the equation R′(t) = 0 is equivalent to

g(t) = α(1 − α)
(
2p + 1

)(
1 + t2

)
+ 2

(
p
(
2α2 − 2α + 1

)
+ α2 − 4α + 2

)
t = 0. (3.9)

Because g is a quadratic polynomial in the variable t, all that remains is to show that

g(0)g(1) = α(1 − α)
(
2p + 1

)(
p − 3α + 2

)
< 0 (3.10)

or, in virtue of the definition of p = p(α),

(
2p + 1

)
(

p + 2 − 6
(
p + 1

)1/p

)

< 0. (3.11)

This can be easily established by some elementary calculations. It completes the proof.
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