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We investigate the nontrivial solutions for a class of the systems of the superquadratic nonlinear
wave equations with Dirichlet boundary condition and periodic condition with a superquadratic
nonlinear terms at infinity which have continuous derivatives. We approach the variational
method and use the critical point theory on the manifold, in terms of the limit relative category
of the sublevel subsets of the corresponding functional.

1. Introduction

We investigate the nontrivial solutions for a class of the systems of the superquadratic
nonlinear wave equations with Dirichlet boundary condition and periodic condition:

utt − uxx = av + Fu(x, t, u, v) in
(
−π
2
,
π

2

)
× R,

vtt − vxx = bu + Fv(x, t, u, v) in
(
−π
2
,
π

2

)
× R,

u
(
±π
2
, t
)
= v

(
±π
2
, t
)
= 0,

u(x, t + π) = u(x, t) = u(−x, t) = u(x,−t),

v(x, t + π) = v(x, t) = v(−x, t) = v(x,−t),

(1.1)

where F : [−π/2, π/2] × R × R × R → R is a superquadratic function at infinity which
has continuous derivatives Fr(x, t, r, s), Fs(x, t, r, s) with respect to r, s, for almost any
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(x, t) ∈ (−π/2, π/2) × R. Moreover we assume that F satisfies the following conditions:

(F1) F(x, t, 0, 0) =Fx(x, t, 0, 0) =Ft(x, t, 0, 0) = 0, Fxx(x, t, 0, 0) =Ftt(x, t, 0, 0) =Fxt(x, t, 0, 0)
= 0, F(x, t, r, s) > 0 if (r, s)/= (0, 0), inf(x,t)∈(−π/2,π/2)×R, |r|2+|s|2=R2F(x, t, r, s) > 0;

(F2) |Fr(x, t, r, s)| + |Fs(x, t, r, s)| ≤ c(|r|ν + |s|ν) for all x, t, r,s;
(F3) rFr(x, t, r, s) + sFs(x, t, r, s) ≥ μF(x, t, r, s) for all x, t, r, s;

(F4) |Fr(x, t, r, s)| + |Fs(x, t, r, s)| ≤ d(F(x, t, r, s)δ1 + F(x, t, r, s)δ2),

where c > 0, d > 0, R > 0, μ > 2, ν > 1 and 1/2 < δ1 ≤ δ2 ≤ 1/r, for some 1 < r < 2.
As the physical model for these systems we can find crossing two beams with

travelling waves, which are suspended by cable under a load. The nonlinearity u+ models
the fact that cables resist expansion but do not resist compression.

Choi and Jung [1–3] investigate the existence andmultiplicity of solutions of the single
nonlinear wave equation with Dirichlet boundary condition. In [4] the authors show by
critical point theory (Linking Theorem) that system (1.1) has at least one nontrivial solution
(u, v). In this paper we show by the limit relative category theory that system (1.1) has at
least two nontrivial solutions (u, v).

Let us set

L(u, v) = (Lu, Lv), Lu = utt − uxx. (1.2)

Then system (1.1) can be rewritten by

LU = ∇
(
1
2
(AU,U) + F(x, t, u, v)

)
,

U
(
±π
2
, t
)
=

(
0

0

)
,

U(x, t + π) = U(x, t) = U(−x, t) = U(x,−t),

(1.3)

where ∇ is the gradient operator, U =
(

u

v

)
, A =

(
0 a

b 0

)
∈ M2×2(R).

We note that
√
ab, −

√
ab are two eigenvalues of the matrix A =

(
0 a

b 0

)
.

Let λmn be the eigenvalues of the eigenvalue problem utt−uxx = λu in (−π/2, π/2)×R,
u(±π/2, t) = 0, u(x, t + π) = u(x, t) = u(−x, t) = u(x,−t).

Our main result is the following.

Theorem 1.1. Assume that

λ2mn − ab /= 0 ∀m,n with (m,n)/= (0, 0), (1.4)

a > 0, b > 0, (1.5)
√
ab < 1. (1.6)

Then, for any F with (F1), (F2), (F3) and (F4), system (1.3) has at least two nontrivial solutions
(u, v).
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In Section 2, we obtain some results on the nonlinear term F. In Section 3, we approach
the variational method and recall the abstract results of the critical point theory on the
manifold in terms of the limit relative category of the sublevel sets of the corresponding
functional of (1.3), which plays a crucial role to prove the multiplicity result. In Section 4,
we prove Theorem 1.1.

2. Some Results on the Nonlinear Term F

The eigenvalue problem for u(x, t)

utt − uxx = λu in
(
−π
2
,
π

2

)
× R,

u
(
±π
2
, t
)
= 0, u(x, t + π) = u(x, t) = u(−x, t) = u(x,−t)

(2.1)

has infinitely many eigenvalues

λmn = (2n + 1)2 − 4m2 (m,n = 0, 1, 2, . . .) (2.2)

and corresponding normalized eigenfunctions φmn (m,n ≥ 0) given by

φ0n =
√
2

π
cos(2n + 1)x for n ≥ 0,

φmn =
2
π

cos 2mt · cos(2n + 1)x for m > 0, n ≥ 0.

(2.3)

Let Q be the square [−π/2, π/2] × [−π/2, π/2] and H0 the Hilbert space defined by

H0 =

{
u ∈ L2(Q) | u is even in x and t and

∫

Q

u = 0

}
. (2.4)

The set of functions {φmn} is an orthonormal basis in H0. Let us denote an element u, in H0,
by

u =
∑

hmnφmn. (2.5)

We define a Hilbert space D as follows:

D =

{
u ∈

∑
hmnφmn :

∑
mn

λ2mnh
2
mn < +∞

}
. (2.6)



4 Journal of Inequalities and Applications

Then this space is a Banach space with norm

‖u‖ =
[∑

λ2mnh
2
mn

]1/2
. (2.7)

Let us set E = D × D. We endow the Hilbert space E with the norm

‖(u, v)‖2E = ‖u‖2 + ‖v‖2. (2.8)

We are looking for the weak solutions of (1.3) in D × D, that is, (u, v) such that u ∈ D, v ∈ D,
Lu = av + Fu(x, t, u, v), Lv = bu + Fv(x, t, u, v). Since |λmn| ≥ 1 for all m, n, we have the
following lemma.

We state the lemmas. For the proofs of Lemmas 2.1, 2.2, and 2.3, we refer [4].

Lemma 2.1. (i)‖u‖ ≥ ‖u‖L2(Q), where ‖u‖L2(Q) denotes the L2 norm of u.
(ii)‖u‖ = 0 if and only if ‖u‖L2(Q) = 0.
(iii)utt − uxx ∈ D implies u ∈ D.

Lemma 2.2. Suppose that c is not an eigenvalue of L : D → H0, Lu = utt − uxx, and let f ∈ H0.
Then one has (L − c)−1f ∈ D.

By (F1) and (F3), we obtain the lower bound for F(x, t, u, v) in the term of |u|μ + |v|μ.

Lemma 2.3. Assume that F satisfies the conditions (F1) and (F3). Then there exist a0, b0 ∈ R with
a0 > 0 such that

F(x, t, r, s) ≥ a0
(|r|μ + |s|μ) − b0, ∀x, t, r, s. (2.9)

Lemma 2.4. Assume that F satisfies the conditions (F1), (F2), and (F3). Then

(i)
∫
Q F(x, t, 0, 0)dxdt= 0,

∫
Q F(x, t, u, v)dxdt > 0 if (u, v)/= (0, 0), grad(

∫
Q F(x, t, u, v))

dxdt= o(‖(u, v)‖E) as (u, v) → (0, 0);

(ii) there exist a0 > 0, μ > 2 and b1 ∈ R such that

∫

Q

F(x, t, u, v)dxdt ≥ a0‖(u, v)‖μLμ − b1 ∀(u, v) ∈ E; (2.10)

(iii) (u, v) → grad(
∫
Q F(x, t, u · v))dxdt is a compact map;

(iv) if
∫
Q[uFu(x, t, u, v) + vFv(x, t, u, v)]dxdt − 2

∫
Q F(x, t, u, v)dxdt = 0, then grad

(
∫
Q F(x, t, u, v)dxdt) = 0;

(v) if ‖(un, vn)‖E → +∞ and

∫
Q[unFu(x, t, un, vn) + vnFv(x, t, un, vn)]dxdt − 2

∫
Q F(x, t, un, vn)dxdt

‖(u, v)‖E −→ 0, (2.11)
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then there exists ((uhn , vhn))n and w ∈ E such that

grad
(∫

Q F
(
x, y, un, vn

)
dxdt

)

‖(uhn , vhn)‖E
−→ w,

(uhn , vhn)
‖(uhn , vhn)‖E

⇀ (0, 0). (2.12)

Proof. (i) Follows from (F1) and (F2), since 1 < ν.
(ii) By Lemma 2.3, for U = (u, v) ∈ E,

∫

Q

F(x, t,U)dxdt ≥ a0‖U‖μLμdxdt − b1, (2.13)

where b1 ∈ R. Thus (ii) holds.
(iii) Is easily obtained with standard arguments.
(iv) Is implied by (F3) and the fact that F(x, t, u, v) > 0 for (u, v)/= (0, 0).
(v) By Lemma 2.3 and (F3), for U = (u, v),

∫

Q

[uFu(x, t, u, v) + vFv(x, t, u, v)]dxdt − 2
∫

Q

F(x, t, u, v)dxdt

≥ (μ − 2
) ∫

Q

F(x, t, u, v)dxd ≥ (μ − 2
)(

a0‖U‖μLμ − b1
)
.

(2.14)

By (F2),

∥∥∥∥∥grad
(∫

Q

F(x, t, u, v)dxdt

)∥∥∥∥∥
E

≤ C′‖FU(x, t,U)‖Lr ≤ C′′‖|U|ν‖Lr , for some 1 < r < 2

(2.15)

and suitable constants C′, C′′. To get the conclusion it suffices to estimate ‖|U|ν/‖U‖E‖Lr

in terms of ‖U‖μLμ/‖U‖E. If μ ≥ rν, then this is a consequence of Hölder inequality.
If μ < rν, by the standard interpolation arguments, it follows that ‖|U|ν/‖U‖E‖Lr ≤
C(‖U‖μLμ/‖U‖E)ν/μ‖U‖lE, where l is such that l = −1 + ν/μ. Thus we prove (v).

Lemma 2.5. Assume that F satisfies the conditions (F1), (F2), (F3), and (F4). Then there exist φ,
ψ : [0,+∞] → R continuous and such that

ψ(s)
s

−→ 0 as s −→ 0, φ(s) > 0 if s > 0, (2.16)

(i) ‖grad ∫Q F(x, t, u, v)dxdt‖2E ≤ ψ(
∫
Q F(x, t, u, v)dxdt), for all (u, v) ∈ E,

(ii)
∫
Q[uFu(x, t, u, v)+vFv(x, t ·u, v)]dxdt−2

∫
Q F(x, t, u, v)dxdt ≥ φ(u, v), for all (u, v) ∈

E.
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Proof. (i) By (F4), for all U = (u, v) ∈ E,

∥∥∥∥∥grad
(∫

Q

F(x, t,U)dxdt

)∥∥∥∥∥
E

≤ ‖FU(x, t,U)‖Lr

≤ C1

∥∥∥F(x, t,U)δ1 + F(x, t,U)δ2
∥∥∥
Lr

≤ C2

(∥∥∥F(x, t,U)δ1
∥∥∥
Lr
+
∥∥∥F(x, t,U)δ2

∥∥∥
Lr

)

≤ C3

(∥∥∥F(x, t,U)δ1
∥∥∥
L1/δ1

+
∥∥∥F(x, t,U)δ2

∥∥∥
L1/δ2

)

≤ C4

(
‖F(x, t,U)‖δ1

L1 + ‖F(x, t,U)‖δ2
L1

)

= C5

⎛
⎝
(∫

Q

F(x, t,U)dxdt

)δ1

+

(∫

Q

F(x, t,U)dxdt

)δ2
⎞
⎠,

(2.17)

where 1 < r < 1/δ1, 1/δ2 < 2, C1, C2, C3, C4, and C5 are constants. Since δ1, δ2 > 1/2, (i)
follows.

(ii) By (F3),

∫

Q

[uFu(x, t, u, v) + vFv(x, t · u, v)]dxdt − 2
∫

Q

F(x, t, u, v)dxdt

≥ (μ − 2
) ∫

Q

F(x, t,U)dxd ≥ (μ − 2
)(

a0‖U‖μLμ − b1
)
.

(2.18)

Thus (ii) follows.

3. Abstract Results of Critical Point Theory

Nowwe are looking for the weak solutions of system (1.3). We shall approach the variational
method and recall the abstract results of the critical point theory on the manifold in terms of
the limit relative category of the sublevel sets of the functional of (1.3). We observe that the
weak solutions of (1.3) coincide with the critical points of the corresponding functional:

I : E −→ R ∈ C1,1, (3.1)

I(U) =
1
2

∫

Q

LU ·Udxdt − 1
2

∫

Q

(AU,U)R2dxdt −
∫

Q

F(x, t, u, v)dxdt. (3.2)

Nowwe recall the critical point theory for strongly indefinite functional. Since the functional I
is strongly indefinite functional, it is convenient to use (P.S.)∗c condition and the limit relative
categorywhich is a suitable version of (P.S.)c condition and the relative category, respectively.

Now, we consider the critical point theory on the manifold with boundary. Let E be a
Hilbert space and let M be the closure of an open subset of E such that M can be endowed
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with the structure of C2 manifold with boundary. Let f : W → R be a C1,1 functional, where
W is an open set containingM. For applying the usual topological methods of critical points
theory we need a suitable notion of critical point for f onM. We recall the following notions:
lower gradient of f on M, (P.S.)∗c condition, and the limit relative category (see [4]).

Definition 3.1. If u ∈ M, the lower gradient of f on M at u is defined by

grad−
Mf(u) =

⎧
⎨
⎩
∇f(u) if u ∈ int(M),

∇f(u) +
[〈∇f(u), ν(u)

〉]−
ν(u) if u ∈ ∂M,

(3.3)

where we denote by ν(u) the unit normal vector to ∂M at the point u, pointing outwards. We
say that u is a lower critical for f on M, if grad−

Mf(u) = 0.
Since the functional I(u) (which is introduced in Section 4 ) is strongly indefinite, the

notion of the (P.S.)∗c condition and the limit relative category is a very useful tool for the proof
of the main theorems.

Let E−, E0, E+ be the subspace of E on which the functional U 
→ (1/2)
∫
Q LU · U is

positive definite, null, negative definite, and E−, E0, and E+ are mutually orthogonal. Let P+

be the projection for E onto E+, P 0 the one from E onto E0, and P− the one from E onto E−.
Let (En)n be a sequence of closed subspaces of E with the conditions:

En = E−
n ⊕ E0 ⊕ E+

n, where E+
n ⊂ E+, E−

n ⊂ E− ∀n (3.4)

(E+
n and E−

n are subspaces ofE), dimEn < +∞, En ⊂ En+1,
⋃

n∈N En is dense in E.
Let PEn be the orthogonal projections from E onto En. Mn = M ∩ En, for any n, and let

be the closure of an open subset of En and have the structure of a C2 manifold with boundary
in En. We assume that for any n there exists a retraction rn : M → Mn. For given B ⊂ E, we
will write Bn = B ∩ En.

Definition 3.2. Let c ∈ R. We say that f satisfies the (P.S.)∗c condition with respect to (Mn)n,
on the manifold with boundary M, if for any sequence (kn)n in N and any sequence (un)n
in M such that kn → ∞, un ∈ Mkn , for all n, f(un) → c, grad−

Mkn
f(un) → 0, there exists a

subsequence of (un)n which converges to a point u ∈ M such that grad−
Mf(u) = 0.

Let Y be a closed subspace of M.

Definition 3.3. Let B be a closed subset of M with Y ⊂ B. We define the relative category
catM,Y (B) of B in (M,Y ), as the least integer h such that there exist h + 1 closed subsets U0,
U1, . . . , Uh with the following properties:

B ⊂ U0 ∪U1 ∪ · · · ∪Uh;

U1, . . . , Uh are contractible inM;

Y ⊂ U0 and there exists a continuous map F : U0 × [0, 1] → M such that

F(x, 0) = x ∀x ∈ U0,
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F(x, t) ∈ Y ∀x ∈ Y, ∀t ∈ [0, 1],

F(x, 1) ∈ Y ∀x ∈ U0.

(3.5)

If such an h does not exist, we say that catM,Y (B) = +∞.

Definition 3.4. Let (X,Y ) be a topological pair and let (Xn)n be a sequence of subsets of X. For
any subset B of X we define the limit relative category of B in (X,Y ), with respect to (Xn)n,
by

cat∗(X,Y )(B) = lim sup
n→∞

cat(Xn,Yn)(Bn). (3.6)

Now we consider a theorem which gives an estimate of the number of critical points
of a functional, in terms of the limit relative category of its sublevels. The theorem is proved
repeating the classical arguments, using the nonsmooth version of the classical Deformation
Lemma for functions on manifolds with boundary.

Let Y be a fixed subset ofM. We set

Bi =
{
B ⊂ M | cat∗(M,Y )(B) ≥ i

}
,

ci = inf
B∈Bi

sup
x∈B

f(x).
(3.7)

We have the following multiplicity theorem.

Theorem 3.5. Let i ∈ N and assume that

(1) ci < +∞,

(2) supx∈Yf(x) < ci,

(3) the (P.S.)∗ci condition with respect to (Mn)n holds.

Then there exists a lower critical point x such that f(x) = ci. If

ci = ci+1 = · · · = ci+k−1 = c, (3.8)

then

catM
({

x ∈ M | f(x) = c,grad−
Mf(x) = 0

}) ≥ k. (3.9)

Proof. Let c = ci; using the (P.S.)∗c condition, with respect to (Mn)n, one can prove that, for
any neighbourhood N of

Kc =
{
x | f(x) = c,grad−

Mf(x) = 0
}
, (3.10)
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there exist n0 in N and δ > 0 such that ‖grad−
M‖ ≥ δ for all n ≥ n0 and all x ∈ En \ N

with c − δ ≤ f(x) ≤ c + δ. Moreover it is not difficult to see that, for all n, the function
f̃n : En → R ∪ {+∞} defined by f̃n = f(x), if x ∈ Mn, f̃n(x) = +∞, otherwise, is φ-convex
of order two, according to the definitions of [3]. Then the conclusion follows using the same
arguments of [4, 5] and the nonsmooth version of the classical Deformation Lemma.

Lemma 3.6 (Deformation Lemma). Let h : H → R ∪ {+∞} be a lower semicontinuous function
and assume h to be φ-convex of order 2 (see [3]). Let c ∈ R, δ > 0, and D be a closed set in H such
that

inf
{∥∥gradMh(x)

∥∥ | c − δ ≤ h(x) ≤ c + δ, dist(x,D) < δ
}
> 0. (3.11)

Then there exists ε > 0 and a continuous deformation η : hc+ε ∩D × [0, 1] → hc+ε ∩Dδ (Dδ is the
δ-neighborhood of D and hc = {x | h(x) ≤ 0}) such that

(i) η(x, 0) = x for all x ∈ hc+ε ∩D,

(ii) η(x, t) = x for all x ∈ hc−ε ∩D, for all t ∈ [0, 1],

(iii) η(x, 1) ∈ hc−ε for all x ∈ hc+ε ∩D, for all t ∈ [0, 1].

Proof. See [6, Lemmas 4.5 and 4.6].

Now we state the following multiplicity result (for the proof see [7, Theorem 4.6])
which will be used in the proofs of our main theorems.

Theorem 3.7. LetH be a Hilbert space and letH = X1 ⊕X2 ⊕X3, where X1, X2, X3 are three closed
subspaces ofH withX1,X2 of finite dimension. For a given subspaceX ofH, let PX be the orthogonal
projection from H onto X. Set

C = {x ∈ H | ‖PX2x‖ ≥ 1}, (3.12)

and let f : W → R be a C1,1 function defined on a neighborhood W of C. Let 1 < ρ < R, R1 > 0. We
define

Δ = {x1 + x2 | x1 ∈ X1, x2 ∈ X2, ‖x1‖ ≤ R1, 1 ≤ ‖x2‖ ≤ R},
Σ = {x1 + x2 | x1 ∈ X1, x2 ∈ X2, ‖x1‖ ≤ R1, ‖x2‖ = 1}

∪ {x1 + x2 | x1 ∈ X1, x2 ∈ X2, ‖x1‖ ≤ R1, ‖x2‖ = R}
∪ {x1 + x2 | x1 ∈ X1, x2 ∈ X2, ‖x1‖ = R1, 1 ≤ ‖x2‖ ≤ R},

S =
{
x ∈ X2 ⊕X3 | ‖x‖ = ρ

}
,

B =
{
x ∈ X2 ⊕X3 | ‖x‖ ≤ ρ

}
.

(3.13)

Assume that

sup f(Σ) < inf f(S) (3.14)
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and that the (P.S.)c condition holds for f on C, with respect to the sequence (Cn)n, for all c ∈ [α, β],
where

α = inf f(S), β = sup f(Δ). (3.15)

Moreover one assumes β < +∞ and f |X1⊕X3 has no critical points z in X1 ⊕ X3 with α ≤ f(z) ≤ β.
Then there exist two lower critical points z1, z2 for f on C such that α ≤ f(zi) ≤ β, i = 1.2.

4. Proof of Theorem 1.1

Let I1,1loc(E,R) be the functional defined in (3.2). Let Y be a closed subspace of E+ with finite
dimension. Let us set

X1 = E− ⊕ E0, X2 = Y, X3 = (X1 ⊕X2)⊥(⊂ E+). (4.1)

Then E is the topological direct sum of the subspacesX1,X2, andX3. Let PX be the orthogonal
projection from E onto X. Let us set

C = {U ∈ H | ‖PX2U‖ ≥ 1}. (4.2)

Then C is the smooth manifold with boundary. Let Cn = C ∩ En. Let us define a functional
Ψ : E \ {X1 ⊕X3} → E by

Ψ(U) = U − PX2U

‖PX2U‖ = PX1⊕X3U +
(
1 − 1

‖PX2U‖
)
PX2U. (4.3)

We have

∇Ψ(U)(V ) = V − 1
‖PX2U‖

(
PX2V −

〈
PX2U

‖PX2U‖ , V
〉

PX2U

‖PX2U‖
)
. (4.4)

Let us define the constrained functional Ĩ : C → R by

Ĩ = I ◦Ψ. (4.5)

Then Ĩ ∈ C1,1
loc. It turns out that

grad−
CĨ
(
Z̃
)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

PX1⊕X3∇I(Z) +

⎛
⎜⎝1 − 1∥∥∥PX2Z̃

∥∥∥
E

⎞
⎟⎠PX2∇I(Z) if Z ∈ int(C),

PX1⊕X3∇I(Z) −
〈
∇I(Z),

PX2Z̃∥∥∥PX2Z̃
∥∥∥
E

〉+
PX2Z̃∥∥∥PX2Z̃

∥∥∥
E

if Z ∈ ∂C.

(4.6)
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We note that if Ũ is the critical point of Ĩ and lies in the interior of C, then U = Ψ(Ũ) is the
critical point of I. Thus it suffices to find the critical points, which lies in the interior of C, for
Ĩ. We also note that

∥∥∥grad−
CĨ
(
Ũ
)∥∥∥

E
≥
∥∥∥PX1⊕X3∇I

(
Ψ
(
Ũ
))∥∥∥

E
, ∀Ũ ∈ ∂C. (4.7)

Let us set

S23
(
ρ
)
=
{
U ∈ X2 ⊕X3 | ‖U‖E = ρ

}
, ρ > 0,

˜S23(ρ) = Ψ−1(S23
(
ρ
))
,

Δ12(R,R1) = {U1 +U2 | U1 ∈ X1, U2 ∈ X2, ‖U1‖E ≤ R1, 1 ≤ ‖U2‖E ≤ R},

˜Δ12(R,R1) = Ψ−1(Δ12(R,R1)),

Σ12(R,R1) = {U1 +U2 | U1 ∈ X1, U2 ∈ X2, ‖U1‖E ≤ R1, ‖U2‖E = 1}
∪ {U1 +U2 | U1 ∈ X1, U2 ∈ X2, ‖U1‖E ≤ R1, ‖U2‖E = R}
∪ {U1 +U2 | U1 ∈ X1, U2 ∈ X2, ‖U1‖E = R1, 1 ≤ ‖U2‖E ≤ R},

˜Σ12(R,R1) = Ψ−1(Σ12(R,R1)).

(4.8)

We will prove the multiplicity result by using Theorem 3.7 for Ĩ, C, ˜S23(ρ), ˜Δ12(R,R1), and
˜Σ12(R,R1). Now we have the following linking geometry for Ĩ.

Lemma 4.1. Assume that the conditions (1.4), (1.5), and (1.6) hold. Then there exist R > ρ > 0,
R1 > 0, and R > 1 such that

sup
Ṽ∈ ˜Σ12(R,R1)

Ĩ
(
Ṽ
)
< inf

W̃∈˜S23(ρ)
Ĩ
(
W̃
)

(4.9)

Proof. It suffices to show that there exist R > ρ > 0, R1 > 0 and R > 1 such that for V = ψ(Ṽ ),
W = ψ(W̃),

sup
V∈Σ12(R,R1)

I(V ) < inf
W∈S23(ρ)

I(W), (4.10)

because

sup
Ṽ∈ ˜Σ12(R,R1)

Ĩ
(
Ṽ
)
= sup

V∈Σ12(R,R1)
I(V ), inf

W̃∈˜S23(ρ)
Ĩ
(
W̃
)
= inf

W∈S23(ρ)
I(W). (4.11)
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By (1.6) and (i) of Lemma 2.4, we can find a small number ρ such that, for U ∈ E+,

I(U) =
1
2

∫

Q

LU ·U − 1
2

∫

Q

(AU,U)R2 −
∫

Q

F(x, t, u, v)dxdt ≥ 1
2

(
1 −

√
ab

λ00

)
‖U‖2E − 0(‖U‖E).

(4.12)

Since
√
ab < 1 = λ00, there exist a small number ρ > 0 and a small sphere S23(ρ) ⊂ E+ with

radius ρ such that if U ∈ S23(ρ) ⊂ E+, then inf I(U) > 0.
Next we will show that there exist R > ρ, R1 > 0, and R > 1 such that

supV∈Σ12(R,R1)I(V ) < 0. Let U(/= (0, 0)) ∈ E0 ⊕ E− ⊕ Y . We note that

if U ∈ E+, then
∫

Q

(LU ·U − (AU,U)R2)dxdt ≥ τ1‖U‖2E,

if U ∈ E−, then
∫

Q

(LU ·U − (AU,U)R2)dxdt ≤ −τ2‖U‖2E
(4.13)

for some τ1 > 0, τ2 > 0. Let us choose a sequence (Un)n, Un = (un, vn) such that ‖Un‖E → ∞.
Let us set Ǔn = Un/‖Un‖E. By Lemma 2.3, we have that

I(Un)

‖Un‖2E
≤ ‖L −A‖∥∥P+Ǔn

∥∥2
E − a0

∥∥Ǔn

∥∥μ

Lμ‖Un‖μ−2E +
b0

‖Un‖2
− τ2

∥∥P−Ǔn

∥∥2
E. (4.14)

Since ‖Un‖E → ∞, two possible cases arise. For the case ‖Ǔn‖Lμ → 0 it follows that Ǔn ⇀ 0,
and hence P+Ǔn → 0 and P 0Ǔn → 0. Then ‖P−Ǔn‖E → 1. Then

lim sup
n→∞

I(Un)

‖Un‖2E
≤ −τ2. (4.15)

For the case ‖Ǔn‖Lμ ≥ ε > 0 (4.14) implies

lim
n→∞

I(Un)

‖Un‖2E
= −∞. (4.16)

In any case

lim sup
‖U‖→∞�U∈E0⊕E−⊕Y

I(U)

‖U‖2
< 0. (4.17)

Thus we can choose a large number R > ρ > 0, R1 > 0, and R > 1 such that if U ∈ Σ12(R,R1),
then sup I(U) ≤ 0. Thus supV∈Σ12(R,R1)I(V ) < infW∈S23(ρ)I(W). So the lemma is proved.

Lemma 4.2. Assume that the conditions (1.4), (1.5), and (1.6) hold. Then Ĩ has no critical point Ũ
such that Ĩ(Ũ) = c > 0 and Ũ ∈ ∂C.
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Proof. It suffices to prove that I has no critical point U = ψ(Ũ) such that I(U) = c and U ∈
X1 ⊕ X3. We notice that from Lemma 4.1, for fixed U1 ∈ X1, the functional U3 
→ I(U1 +U3)
is weakly convex in X3, while, for fixed U3 ∈ X3, the functional U1 
→ I(U1 + U3) is strictly
concave in X1. Moreover (0, 0) is a critical point in X1 ⊕X3 with I(0, 0) = 0. So ifU = U1 +U3

is another critical point for I|X1⊕X3 , then we have

0 = I(0, 0) ≤ I(U3) ≤ I(U1 +U3) ≤ I(U1) ≤ I(0, 0) = 0. (4.18)

So I(U1 +U3) = I(0, 0) = 0.

We shall prove that the functional Ĩ satisfies the (P.S.)∗c condition with respect to (Cn)n
for any c ∈ [α, β], where α = inf

W̃∈˜S23(ρ)
Ĩ(W̃) and β = sup

Ṽ∈ ˜Δ12(R,R1)
Ĩ(Ṽ ).

To prove that Ĩ satisfies the (P.S.)∗c condition with respect to (Cn)n for any c ∈ [α, β], we
first shall prove that I satisfies the (P.S.)∗c condition with respect to (En)n for any real number
c ∈ R.

Lemma 4.3. Assume that the conditions (1.4), (1.5), and (1.6) hold. Then, for any F with (F1), (F2),
(F3), and (F4), the functional I satisfies the (P.S.)∗c condition with respect to (En)n for any real number
c ∈ R.

Proof. Let c ∈ R and (hn) be a sequence inN such that hn → +∞, and let (Un)n be a sequence
such that

Un = (un, vn) ∈ Ehn , ∀n, I(Un) −→ c, PEhn
∇I(Un) −→ 0. (4.19)

We claim that (Un)n is bounded. By contradiction we suppose that ‖Un‖E → +∞ and set
Ûn = Un/‖Un‖E. Then

〈
PEhn

∇I(Un), Ûn

〉
=
〈
∇I(Un), Ûn

〉

= 2
I(Un)
‖Un‖E

−
∫
Q ∇F(x, t,Un) ·Undxdt − 2

∫
Q F(x, t,Un)dxdt

‖Un‖E
−→ 0.

(4.20)

Hence

∫
Q ∇F(x, t,Un) ·Undxdt − 2

∫
Q F(x, t,Un)dxdt

‖Un‖E
−→ 0. (4.21)

By (v) of Lemma 2.4,

grad
∫
Q F(x, t,Un)dxdt

‖Un‖E
converges (4.22)
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and Ûn ⇀ 0. We get

PEhn
∇I(Un)

‖Un‖E
= PEhn

LÛn −AÛn −
PEhn

grad
(∫

Q F(x, t,Un)dxdt
)

‖Un‖E
−→ 0, (4.23)

and so (PEhn
LÛn−AÛn)n converges. Since (Ûn)n is bounded andL−A is a compact mapping,

up to subsequence, (Ûn)n has a limit. Since Ûn ⇀ (0, 0), we get Ûn → (0, 0), which is a
contradiction to the fact that ‖Ûn‖E = 1. Thus (Un)n is bounded. We can now suppose that
Un ⇀ U for some U ∈ E. Since the mapping U 
→ grad(

∫
Q F(x, t,U)dxdt) is a compact

mapping, grad(
∫
Q F(x, t,Un)dxdt) → grad(

∫
Q F(x, t, u, v)dxdt). Thus (PEhn

(LUn − AUn))n
converges. Since L − A is a compact operator and (Un)n is bounded, we deduce that, up to
a subsequence, (Un)n converges to some U strongly with ∇I(U) = lim∇I(Un) = 0. Thus we
prove the lemma.

Lemma 4.4. Assume that the conditions (1.4), (1.5), and (1.6) hold. Then the functional Ĩ satisfies
the (P.S.)∗c condition with respect to (Cn)n for any c ∈ [α, β].

Proof. Let (hn)n be a sequence in N with hn → +∞ and let (Z̃n)n be a sequence in C with
Z̃n ∈ Chn for all n, Ĩ(Z̃n) → c and grad−

Chn
Ĩ|Ehn

(Z̃n) → 0. Set Zn = Ψ(Z̃n). Then I(Zn) → c.

We first consider the case Z̃n /∈ ∂Chn for large n. Since for large n PEn ◦ PX2 = PX2 ◦ PEn = PX2 ,
we have, by (4.6),

grad−
Chn

Ĩ
(
Z̃n

)
= PEhn

Ψ′
(
Z̃n

)
∇I(Zn) = Ψ′

(
Z̃n

)(
PEhn

∇I(Zn)
)

= PEhn
PX1⊕X3∇I(Zn) + PEhn

⎛
⎜⎝1 − 1∥∥∥PX2Z̃n

∥∥∥
E

⎞
⎟⎠PX2∇I(Zn) −→ 0,

(4.24)

thus

PX1⊕X3PEhn
∇I(Zn) −→ 0,

⎛
⎜⎝1 − 1∥∥∥PX2Z̃n

∥∥∥
E

⎞
⎟⎠PX2∇I(Zn) −→ 0. (4.25)

It is impossible that ‖PX2Z̃n‖E → 1 because dist(Zn,X2) → 0. Thus PEhn
∇I(Zn) → 0. Using

(P.S.)∗c for I of Lemma 4.3 it follows that (Zn)n has a subsequence (Zkn)n such that Z̃kn → Z

for some Z in X2. Since Ψ is invertible in int(C), Z̃kn → Ψ−1(Z). Next we consider the case
Z̃n ∈ ∂Chn for infinitely many n. We claim that this case cannot occur. If Z̃n ∈ ∂Chn , then
‖PX2Z̃n‖E = 1. Thus we have

grad−
Chn

Ĩ
(
Z̃n

)
= PEhn

(
PX1⊕X3∇I(Zn) −

〈
∇I(Zn), PX2Z̃n

〉+
PX2Z̃n

)
−→ 0. (4.26)
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Using the properties of the projections we get

PEhn
PX1⊕X3∇I(Zn) −→ 0, (4.27)

which contradicts to Lemma 4.2. In fact, let Z̃ be the limit point of the subsequence Z̃kn of Z̃n,
then Z̃ ∈ ∂C and

grad−
CĨ
(
Z̃
)
= PX1⊕X3grad I(Z) −

〈
grad I(Z), PX2Z̃

〉
PX2Z̃. (4.28)

Proof of Theorem 1.1. We assume that the conditions (1.4), (1.5), and (1.6) hold and F satisfies
(F1), (F2), (F3), and (F4). We note that Ĩ : C → R ∈ C1,1

loc and by Lemma 4.1, there exist
R > ρ > 0, R1 > 0 and R > 1 such that

sup
Ṽ∈ ˜Σ12(R,R1)

Ĩ
(
Ṽ
)
< inf

W̃∈ ˜S23(ρ)
Ĩ
(
W̃
)
. (4.29)

By Lemma 4.2, Ĩ has no critical point Ũ inX1⊕X3 whose critical value is c > 0. By Lemma 4.4,
Ĩ satisfies the (P.S.)∗c condition with respect to (Cn)n for any c ∈ [α, β], α > 0. Thus by
Theorem 3.7, Ĩ has at least two critical points Ũi, i = 1, 2, in intC with

0 < inf
W̃∈ ˜S23(ρ)

Ĩ
(
W̃
)
≤ Ĩ

(
Ũi

)
≤ sup

Ṽ∈ ˜Δ12(R,R1)

Ĩ
(
Ṽ
)
. (4.30)

Since Ĩ(0, 0) = 0 and (0,0) is the isolate point, Ũi, i = 1, 2 are nontrivial. Thus I has at least two
nontrivial critical points Ui, i = 1, 2, in X2 with

inf
W∈S23(ρ)

I(W) ≤ I(Ui) ≤ sup
V∈Δ12(R,R1)

I(V ). (4.31)

Thus system (1.3) has at least two nontrivial solutions. Thus Theorem 1.1 is proved.
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