
Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2010, Article ID 850125, 12 pages
doi:10.1155/2010/850125

Research Article
On Integral Operators with
Operator-Valued Kernels

Rishad Shahmurov1,2

1 Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487-0350, USA
2 Vocational High School, Okan University, Istanbul 34959, Turkey

Correspondence should be addressed to Rishad Shahmurov, shahmurov@hotmail.com

Received 17 October 2010; Revised 18 November 2010; Accepted 23 November 2010

Academic Editor: Martin Bohner

Copyright q 2010 Rishad Shahmurov. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Here, we study the continuity of integral operators with operator-valued kernels. Particularly we
get Lq(S;X) → Lp(T ;Y ) estimates under some natural conditions on the kernel k : T × S →
B(X,Y ), where X and Y are Banach spaces, and (T,

∑
T , μ) and (S,

∑
S, ν) are positive measure

spaces: Then, we apply these results to extend the well-known Fourier Multiplier theorems on
Besov spaces.

1. Introduction

It is well known that solutions of inhomogeneous differential and integral equations are
represented by integral operators. To investigate the stability of solutions, we often use the
continuity of corresponding integral operators in the studied function spaces. For instance,
the boundedness of Fourier multiplier operators plays a crucial role in the theory of linear
PDE’s, especially in the study of maximal regularity for elliptic and parabolic PDE’s. For an
exposition of the integral operators with scalar-valued kernels see [1] and for the application
of multiplier theorems see [2].

Girardi and Weis [3] recently proved that the integral operator

(
Kf

)
(·) =

∫

S

k(·, s)f(s)dν(s) (1.1)

defines a bounded linear operator

K : Lp(S,X) −→ Lp(T, Y ) (1.2)
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provided some measurability conditions and the following assumptions

sup
s∈S

∫

T

‖k(t, s)x‖Ydμ(t) ≤ C1‖x‖X, ∀x ∈ X,

sup
t∈T

∫

S

∥
∥k∗(t, s)y∗∥∥

X∗dν(s) ≤ C2
∥
∥y∗∥∥

Y ∗ , ∀y∗ ∈ Y ∗
(1.3)

are satisfied. Inspired from [3]we will show that (1.1) defines a bounded linear operator

K : Lq(S,X) −→ Lp(T, Y ) (1.4)

if the kernel k : T × S → B(X,Y ) satisfies the conditions

sup
s∈S

(∫

T

‖k(t, s)x‖θYdt
)1/θ

≤ C1‖x‖X, ∀x ∈ X,

sup
t∈T

(∫

S

∥
∥k∗(t, s)y∗∥∥θ

X∗ds

)1/θ

≤ C2
∥
∥y∗∥∥

Y ∗ , ∀y∗ ∈ Y ∗,

(1.5)

where

1
q
− 1
p
= 1 − 1

θ
(1.6)

for 1 ≤ q < θ/(θ − 1) ≤ ∞ and θ ∈ [1,∞).
Here X and Y are Banach spaces over the field C and X∗ is the dual space of X. The

space B(X,Y ) of bounded linear operators from X to Y is endowed with the usual uniform
operator topology.

Now let us state some important notations from [3]. A subspace Y of X∗ τ-norms X,
where τ ≥ 1, provided

‖x‖X ≤ τ sup
x∗∈B(Y )

|x∗(x)| ∀x ∈ X. (1.7)

It is clear that if Y τ-norms X then the canonical mapping

u : X −→ Y ∗ with
〈
y, ux

〉
=
〈
x, y

〉
(1.8)

is an isomorphic embedding with

1
τ
‖x‖X ≤ ‖u(x)‖Y ∗ ≤ ‖x‖X. (1.9)
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Let (T,
∑

T , μ) and (S,
∑

S, ν) be σ-finite (positive) measure spaces and

finite∑

S

=

{

A ∈
∑

S

: ν(A) < ∞
}

,
full∑

S

=

{

A ∈
∑

S

: ν(S \A) = 0

}

. (1.10)

ε(S,X) will denote the space of finitely valued and finitely supported measurable functions
from S into X, that is,

ε(S,X) =

{
n∑

i=1

xi1Ai : xi ∈ X, Ai ∈
finite∑

S

, n ∈ N

}

. (1.11)

Note that ε(S,X) is norm dense in Lp(S,X) for 1 ≤ p < ∞. Let L0
∞(S,X) be the closure of

ε(S,X) in the L∞(S,X) norm. In general L0
∞(S,X)/=L∞(S,X) (see [3, Proposition 2.2] and [3,

Lemma 2.3]).
A vector-valued function f : S → X is measurable if there is a sequence (fn)

∞
n=1 ⊂

ε(S,X) converging (in the sense of X topology) to f and it is σ(X,Γ)-measurable provided
〈f(·), x∗〉 : S → K is measurable for each x∗ ∈ Γ ⊂ X∗. Suppose 1 ≤ p ≤ ∞ and 1/p+ 1/p′ = 1.
There is a natural isometric embedding of Lp′(T, Y ∗) into [Lp(T, Y )]

∗ given by

〈
f, g

〉
=
∫

T

〈
f(t), g(t)

〉
dμ(t) for g ∈ Lp′(T, Y ∗), f ∈ Lp(T, Y ). (1.12)

Now, let us note that if X is reflexive or separable, then it has the Radon-Nikodym property,
which implies that [E(X)]∗ = E∗(X∗).

2. Lq → Lp Estimates for Integral Operators

In this section, we identify conditions on operator-valued kernel k : T × S → B(X,Y ),
extending theorems in [3] so that

‖K‖Lq(S,X)→Lp(T,Y ) ≤ C (2.1)

for 1 ≤ q ≤ p. To prove ourmain result, we shall use some interpolation theorems of Lp spaces.
Therefore, we will study L1(S,X) → Lθ(T, Y ) and Lθ′(S,X) → L∞(T, Y ) boundedness of
integral operator (1.1). The following two conditions are natural measurability assumptions
on k : T × S → B(X,Y ).
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Condition 1. For any A ∈ ∑finite
S and each x ∈ X

(a) there is TA,x ∈ ∑full
T so that if t ∈ TA,x then the Bochner integral

∫

A

k(t, s)xdν(s) exists, (2.2)

(b) TA,x : t → ∫
A k(t, s)xdν(s) defines a measurable function from T into Y .

Note that if k satisfies the above condition then for each f ∈ ε(S,X), there is Tf ∈ ∑full
T

so that the Bochner integral

∫

S

k(t, s)f(s)dν(s) exists (2.3)

and (1.1) defines a linear mapping

K : ε(S,X) −→ L0(T, Y ), (2.4)

where L0 denotes the space of measurable functions.

Condition 2. The kernel k : T × S → B(X,Y ) satisfies the following properties:

(a) a real-valued mapping ‖k(t, s)x‖θX is product measurable for all x ∈ X,

(b) there is Sx ∈ ∑full
S so that

‖k(t, s)x‖Lθ(T,Y )
≤ C1‖x‖X (2.5)

for 1 ≤ θ < ∞ and x ∈ X.

Theorem 2.1. Suppose 1 ≤ θ < ∞ and the kernel k : T × S → B(X,Y ) satisfies Conditions 1 and 2.
Then the integral operator (1.1) acting on ε(S,X) extends to a bounded linear operator

K : L1(S,X) −→ Lθ(T, Y ). (2.6)

Proof. Let f =
∑n

i=1 xi1Ai(s) ∈ ε(S,X) be fixed. Taking into account the fact that 1 ≤ θ
and using the general Minkowski-Jessen inequality with the assumptions of the theorem we
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obtain

∥
∥(Kf)(t)

∥
∥
Lθ(T,Y )

≤
⎡

⎣

∫

T

(∫

S

∥
∥
∥
∥
∥
k(t, s)

n∑

i=1

xi1Ai(s)

∥
∥
∥
∥
∥
Y

dν(s)

)θ

dμ(t)

⎤

⎦

1/θ

≤
∫

S

⎛

⎝
∫

T

∥
∥
∥
∥
∥
k(t, s)

n∑

i=1

xi1Ai(s)

∥
∥
∥
∥
∥

θ

Y

dμ(t)

⎞

⎠

1/θ

dν(s)

≤
∫

S

⎡

⎣

∫

T

(
n∑

i=1

1Ai(s)‖k(t, s)xi‖Y
)θ

dμ(t)

⎤

⎦

1/θ

dν(s)

≤
∫

S

n∑

i=1

1Ai(s)
(∫

T

‖k(t, s)xi‖θYdμ(t)
)1/θ

dν(s)

≤
∫

S

n∑

i=1

1Ai(s)‖k(t, s)xi‖Lθ(T,Y )
dν(s) ≤ C1

n∑

i=1

‖xi‖X
∫

S

1Ai(s)dν(s)

= C1

n∑

i=1

‖xi‖Xν(Ai) = C1
∥
∥f
∥
∥
L1(S,X).

(2.7)

Hence, ‖K‖L1 →Lθ
≤ C1.

Condition 3. For each y∗ ∈ Z there is Ty∗ ∈ ∑full
T so that for all t ∈ Ty∗ ,

(a) a real-valued mapping ‖k∗(t, s)x∗‖θX∗ is measurable for all x∗ ∈ X∗,

(b) there is Sx ∈ ∑full
S so that

∥
∥k∗(t, s)y∗∥∥

Lθ(S,X∗)
≤ C2

∥
∥y∗∥∥

Y ∗ (2.8)

for 1 ≤ θ < ∞ and x ∈ X.

Theorem 2.2. Let Z be a separable subspace of Y ∗ that τ-norms Y . Suppose 1 ≤ θ < ∞ and k :
T ×S → B(X,Y ) satisfies Conditions 1 and 3. Then integral operator (1.1) acting on ε(S,X) extends
to a bounded linear operator

K : Lθ′(S,X) −→ L∞(T, Y ). (2.9)

Proof. Suppose f ∈ ε(S,X) and y∗ ∈ Z are fixed. Let Tf ,Ty∗ ∈ ∑full
T be corresponding sets

due to Conditions 1 and 3. By separability of Z, we can choose a countable set of Ty∗ ∈ ∑full
T

satisfying the above condition (note that since
∑full

T is a sigma algebra, the union of these
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countable sets still belongs to
∑full

T and the intersection of these sets should be nonempty). If
t ∈ Tf ∩ Ty∗ then, by using Hölder’s inequality and assumptions of the theorem, we get

∣
∣
〈
y∗,

(
Kf

)
(t)
〉
Y

∣
∣ =

∣
∣
∣
∣

〈

y∗,
∫

S

k(t, s)f(s)dν(s)
〉∣
∣
∣
∣

≤
∫

S

∣
∣
[
k∗(t, s)y∗]f(s)

∣
∣dν(s)

≤ ‖k∗(t, s)y∗‖Lθ(S,X∗)‖f(s)‖Lθ′ (S,X)

≤ C2‖y∗‖‖f‖Lθ′ (S,X).

(2.10)

Since, Tf ∩ Ty∗ ∈ ∑full
T and Z τ-norms Y

∥
∥Kf

∥
∥
L∞(T,Y ) ≤ C2τ‖f‖Lθ′ (S,X). (2.11)

Hence, ‖K‖Lθ′ →L∞ ≤ τC2.

In [3, Lemma 3.9], the authors slightly improved interpolation theorem [4, Theorem
5.1.2]. The next lemma is a more general form of [3, Lemma 3.9].

Lemma 2.3. Suppose a linear operator

K : ε(S,X) −→ Lθ(T, Y ) + L∞(T, Y ) (2.12)

satisfies

∥
∥Kf

∥
∥
Lθ(T,Y )

≤ C1
∥
∥f
∥
∥
L1(S,X),

∥
∥Kf

∥
∥
L∞(T,Y ) ≤ C2

∥
∥f
∥
∥
Lθ′ (S,X). (2.13)

Then, for 1/q − 1/p = 1 − 1/θ and 1 ≤ q < θ/(θ − 1) ≤ ∞ the mapping K extends to a bounded
linear operator

K : Lq(S,X) −→ Lp(T, Y ) (2.14)

with

‖K‖Lq →Lp
≤ (C1)θ/p(C2)1−θ/p. (2.15)

Proof. Let us first consider the conditional expectation operator

(
K0f

)
= E

((
Kf

)
1B
|∑
)
, (2.16)
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where
∑

is a σ-algebra of subsets of B ∈ ∑finite
T . From (2.13) it follows that

∥
∥K0f

∥
∥
Lθ(T,Y )

≤ C1
∥
∥f
∥
∥
L1(S,X) < ∞,

∥
∥K0f

∥
∥
L∞(T,Y ) ≤ C2

∥
∥f
∥
∥
Lθ′ (S,X) < ∞.

(2.17)

Hence, by Riesz-Thorin theorem [4, Theorem 5.1.2], we have

‖K0f‖Lp(T,Y ) ≤ (C1)θ/p(C2)1−θ/p
∥
∥f
∥
∥
Lq(S,X). (2.18)

Now, taking into account (2.18) and using the same reasoning as in the proof of [3, Lemma
3.9], one can easily show the assertion of this lemma.

Theorem 2.4 (operator-valued Schur’s test). Let Z be a subspace of Y ∗ that τ-norms Y and 1/q−
1/p = 1 − 1/θ for 1 ≤ q < θ/(θ − 1) ≤ ∞. Suppose k : T × S → B(X,Y ) satisfies Conditions 1, 2,
and 3 with respect to Z. Then integral operator (1.1) extends to a bounded linear operator

K : Lq(S,X) −→ Lp(T, Y ) (2.19)

with

‖K‖Lq →Lp
≤ (C1)θ/p(τC2)1−θ/p. (2.20)

Proof. Combining Theorems 2.1 and 2.2, and Lemma 2.3, we obtain the assertion of the
theorem.

Remark 2.5. Note that choosing θ = 1 we get the original results in [3].

For L∞ estimates (it is more delicate and based on ideas from the geometry Banach
spaces) and weak continuity and duality results see [3]. The next corollary plays important
role in the Fourier Multiplier theorems.

Corollary 2.6. Let Z be a subspace of Y ∗ that τ-norms Y and 1/q − 1/p = 1 − (1/θ) for 1 ≤ q <
θ/θ − 1 ≤ ∞. Suppose k : Rn → B(X,Y ) is strongly measurable on X, k∗ : Rn → B(Y ∗, X∗) is
strongly measurable on Z and

‖kx‖Lθ(Rn,Y ) ≤ C1‖x‖X, ∀x ∈ X,

∥
∥k∗y∗∥∥

Lθ (R
n,X∗)

≤ C2
∥
∥y∗∥∥

Y ∗ , ∀y∗ ∈ Y ∗.
(2.21)

Then the convolution operator defined by

(
Kf

)
(t) =

∫

Rn

k(t − s)f(s)ds for t ∈ Rn (2.22)

satisfies ‖K‖Lq →Lp ≤ (C1)
θ/p(C2)

1−θ/p.
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It is easy to see that k : Rn → B(X,Y ) satisfies Conditions 1, 2, and 3 with respect to
Z. Thus, assertion of the corollary follows from Theorem 2.4.

3. Fourier Multipliers of Besov Spaces

In this section we shall indicate the importance of Corollary 2.6 in the theory of Fourier
multipliers (FMs). Thus we give definition and some basic properties of operator valued
FM and Besov spaces.

Consider some subsets {Jk}∞k=0 and {Ik}∞k=0 of Rn given by

J0 = {t ∈ Rn : |t| ≤ 1}, Jk =
{
t ∈ Rn : 2k−1 < |t| ≤ 2k

}
for k ∈ N,

I0 = {t ∈ Rn : |t| ≤ 2}, Ik =
{
t ∈ Rn : 2k−1 < |t| ≤ 2k+1

}
for k ∈ N.

(3.1)

Let us define the partition of unity {ϕk}k∈N0
of functions from S(Rn, R). Suppose ψ ∈ S(R,R)

is a nonnegative function with support in [2−1, 2], which satisfies

∞∑

k=−∞
ψ
(
2−ks

)
= 1 for s ∈ R \ {0},

ϕk(t) = ψ
(
2−k|t|

)
, ϕ0(t) = 1 −

∞∑

k=1

ϕk(t) for t ∈ Rn.

(3.2)

Note that

supp ϕk ⊂ Ik, supp ϕk ⊂ Ik. (3.3)

Let 1 ≤ q ≤ r ≤ ∞ and s ∈ R. The Besov space is the set of all functions f ∈ S′(Rn,X) for
which

∥
∥f
∥
∥
Bs
q,r(Rn,X) : =

∥
∥
∥2ks

{
(ϕ̌k ∗ f)

}∞
k=0

∥
∥
∥
lr(Lq(Rn,X))

≡

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[ ∞∑

k=0

2ksr
∥
∥ϕ̌k ∗ f

∥
∥r

Lq(Rn,X)

]1/r

if r /=∞

sup
k∈N0

[
2ks

∥
∥ϕ̌k ∗ f

∥
∥
Lq(Rn,X)

]
if r = ∞

(3.4)
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is finite; here q and s are main and smoothness indexes respectively. The Besov space has
significant interpolation and embedding properties:

Bs
q,r(R

n;X) =
(
Lq(Rn;X),Wm

q (Rd;X)
)

s/m,r
,

Wl+1
q (X) ↪→ Bs

q,r(X) ↪→ Wl
q(X) ↪→ Lq(X), where l < s < l + 1,

Bs
∞,1(X) ↪→ Cs(X) ↪→ Bs

∞,∞(X) for s ∈ Z,

B
d/p

p,1

(
Rd,X

)
↪→ L∞

(
Rd,X

)
for s ∈ Z,

(3.5)

where m ∈ N and Cs(X) denotes the Holder-Zygmund spaces.

Definition 3.1. Let X be a Banach space and 1 ≤ u ≤ 2. We say X has Fourier type u if

∥
∥Ff∥∥Lu′ (Rn,X) ≤ C

∥
∥f
∥
∥
Lu(Rn,X) for each f ∈ S

(
RN,X

)
, (3.6)

where 1/u + 1/u′ = 1,Fu,n(X) is the smallest C ∈ [0,∞]. Let us list some important facts:

(i) any Banach space has a Fourier type 1,

(ii) B-convex Banach spaces have a nontrivial Fourier type,

(iii) spaces having Fourier type 2 should be isomorphic to a Hilbert spaces.

The following corollary follows from [5, Theorem 3.1].

Corollary 3.2. Let X be a Banach space having Fourier type u ∈ [1, 2] and 1 ≤ θ ≤ u′. Then the
inverse Fourier transform defines a bounded operator

F−1 : Bn(1/θ−1/u′)
u,1 (Rn,X) −→ Lθ(Rn,X). (3.7)

Definition 3.3. Let (E1(Rn,X), E2(Rn, Y )) be one of the following systems, where 1 ≤ q ≤ p ≤
∞:

(
Lq(X), Lp(Y )

)
or

(
Bs
q,r(X), Bs

p,r(Y )
)
. (3.8)

A bounded measurable function m : Rn → B(X,Y ) is called a Fourier multiplier from E1(X)
to E2(Y ) if there is a bounded linear operator

Tm : E1(X) −→ E2(Y ) (3.9)

such that

Tm
(
f
)
= F−1[m(·)(Ff)(·)] for each f ∈ S(X), (3.10)

Tm is σ
(
E1(X), E∗

1(X
∗)
)
to σ

(
E2(Y ), E∗

2(Y
∗)
)
continuous. (3.11)
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The uniquely determined operator Tm is the FM operator induced by m. Note that if
Tm ∈ B(E1(X), E2(Y )) and T ∗

m maps E∗
2(Y

∗) into E∗
1(X

∗) then Tm satisfies the weak continuity
condition (3.11).

For the definition of Besov spaces and their basic properties we refer to [5].
Since (3.10) can be written in the convolution form

Tm
(
f
)
(t) =

∫

Rn

m̌(t − s)f(s)ds, (3.12)

Corollaries 2.6 and 3.2 can be applied to obtain Lq(Rn,X) → Lp(Rn, Y ) regularity for (3.10).

Theorem 3.4. LetX and Y be Banach spaces having Fourier type u ∈ [1, 2] and p, q ∈ [1,∞] so that
0 ≤ 1/q − 1/p ≤ 1/u. Then there is a constant C depending only on Fu,n(X) and Fu,n(Y ) so that if

m ∈ B
n(1/u+1/p−1/q)
u,1 (Rn, B(X,Y )) (3.13)

thenm is a FM from Lq(Rn,X) to Lp(Rn, Y ) with

‖Tm‖Lq(Rn,X)→Lp(Rn,Y ) ≤ CMu(m), (3.14)

where

M
p,q
u (m) = inf

{

an(1/q−1/p)‖m(a·)‖
B
n(1/u+1/p−1/q)
u,1 (Rn,B(X,Y )) : a > 0

}

. (3.15)

Proof. Let 1/q − 1/p = 1 − 1/θ and 1 ≤ q < θ/(θ − 1) ≤ ∞. Assume thatm ∈ S(B(X,Y )). Then
m̌ ∈ S(B(X,Y )). Since F−1[m(a·)x](s) = a−nm̌(s/a)x, choosing an appropriate a and using
(3.7) we obtain

‖m̌x‖Lθ(Y ) = an−n/θ∥∥[m(a·)x]∨∥∥Lθ(Y )

≤ C1a
n/θ′ ‖m(a·)‖

B
n(1/θ−1/u′)
u,1

‖x‖X

≤ 2C1M
p,q
u (m)‖x‖X,

(3.16)

where C1 depends only on Fu,n(Y ). Since m ∈ S(B(X,Y )) we have [m∗]∨ = [m̌]∗ ∈
S(B(Y ∗, X∗)) and M

p,q
u (m) = M

p,q
u (m∗). Thus, in a similar manner as above, we get

∥
∥[m̌(·)]∗y∗∥∥

Lθ(Y )
≤ 2C2M

p,q
u (m)

∥
∥y∗∥∥

Y ∗ (3.17)

for some constant C2 depending on Fu,n(X∗). Hence by (3.16)-(3.17) and Corollary 2.6

(
Tmf

)
(t) =

∫

Rn

m̌(t − s)f(s)ds (3.18)
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satisfies

∥
∥Tmf

∥
∥
Lp(Rn,Y ) ≤ CM

p,q
u (m)

∥
∥f
∥
∥
Lq(Rn,X) (3.19)

for all p, q ∈ [1,∞] so that 0 ≤ 1/q − 1/p ≤ 1/u. Now, taking into account the fact
that S(B(X,Y )) is continuously embedded in B

n(1/u+1/p−1/q)
u,1 (B(X,Y )) and using the same

reasoning as [5, Theorem 4.3] one can easily prove the general case m ∈ B
n(1/u+1/p−1/q)
u,1 and

the weak continuity of Tm.

Theorem 3.5. Let X and Y be Banach spaces having Fourier type u ∈ [1, 2] and p, q ∈ [1,∞] be so
that 0 ≤ 1/q − 1/p ≤ 1/u. Then, there exist a constant C depending only on Fu,n(X) and Fu,n(Y ) so
that ifm : Rn → B(X,Y ) satisfy

ϕk ·m ∈ B
n(1/u+1/p−1/q)
u,1 (Rn, B(X,Y )), M

p,q
u

(
ϕk ·m

) ≤ A (3.20)

then m is a FM from Bs
q,r(R

n,X) to Bs
p,r(R

n, Y ) and ‖Tm‖Bs
q,r →Bs

p,r
≤ CA for each s ∈ R and r ∈

[1,∞].

Taking into consideration Theorem 3.4 one can easily prove the above theorem in a
similar manner as [5, Theorem 4.3].

The following corollary provides a practical sufficient condition to check (3.20).

Lemma 3.6. Let n(1/u + 1/p − 1/q) < l ∈ N and θ ∈ [u,∞]. Ifm ∈ Cl(Rn, B(X,Y )) and

‖Dαm‖Lθ(I0) ≤ A,

(
2k−1

)n(1/q−1/p)
‖Dαmk‖Lθ(I1) ≤ A, mk(·) = m

(
2k−1·

)
,

(3.21)

for each α ∈ Nn, |α| ≤ l and k ∈ N, thenm satisfies (3.20).

Using the fact that Wl
u(R

n, B(X,Y )) ⊂ B
n(1/u+1/p−1/q)
u,1 (Rn, B(X,Y )), the above lemma

can be proven in a similar fashion as [5, Lemma 4.10].
Choosing θ = ∞ in Lemma 3.6 we get the following corollary.

Corollary 3.7 (Mikhlin’s condition). Let X and Y be Banach spaces having Fourier type u ∈ [1, 2]
and 0 ≤ 1/q − 1/p ≤ 1/u. Ifm ∈ Cl(Rn, B(X,Y )) satisfies

(1 + |t|)|α|+n(1/q−1/p)‖Dαm‖L∞(Rn,B(X,Y )) ≤ A (3.22)

for each multi-index α with |α| ≤ l = �n(1/u + 1/p − 1/q)� + 1, then m is a FM from Bs
q,r(R

n,X) to
Bs
p,r(R

n, Y ) for each s ∈ R and r ∈ [1,∞].

Proof. It is clear that for t ∈ I0

‖Dαm‖L∞(I0) ≤ (1 + |t|)|α|+n(1/q−1/p)‖Dαm‖L∞(Rn). (3.23)
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Moreover, for t ∈ I1 we have

(
2k−1

)n(1/q−1/p)‖Dαmk(t)‖B(X,Y ) =
(
2k−1

)|α|+n(1/q−1/p)∥∥
∥m(2k−1t)

∥
∥
∥
B(X,Y )

≤
∣
∣
∣2k−1t

∣
∣
∣
|α|+n(1/q−1/p)∥∥

∥m(2k−1t)
∥
∥
∥
B(X,Y )

,

(3.24)

which implies

(
2k−1

)n(1/q−1/p)
‖Dαmk‖L∞(I1) ≤ (1 + |t|)|α|+n(1/q−1/p)‖Dαm(t)‖L∞(Rn). (3.25)

Hence by Lemma 3.6, (3.22) implies assumption (3.20) of Theorem 3.5.

Remark 3.8. Corollary 3.7 particularly implies the following facts.

(a) if X and Y are arbitrary Banach spaces then l = �n(1/p + 1/q′)� + 1,

(b) if X and Y be Banach spaces having Fourier type u ∈ [1, 2] and 1/q − 1/p = 1/u
then l = 1, suffices for a function to be a FM in (Bs

q,r(R
n,X), Bs

p,r(R
n, Y )).
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