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By using the concept of Fréchet differentiability of mapping, we present the Kuhn-Tucker
optimality conditions for weakly efficient solution, Henig efficient solution, superefficient solution,
and globally efficient solution to the vector equilibrium problems with constraints.

1. Introduction

Recently, some authors have studied the optimality conditions for vector variational
inequalities. Giannessi et al. [1] turned the vector variational inequalities with constraints
into vector variational inequalities without constraints and gave sufficient conditions for the
efficient solutions and the weakly efficient solutions to the vector variational inequalities
in Rn. By using the concept of subdifferential of the function, Morgan and Romaniello [2]
gave the scalarization and Kuhn-Tucker-like conditions for the weak vector generalized
quasivariational inequalities in Hilbert space. Yang and Zheng [3] gave the optimality
conditions for approximate solutions of vector variational inequalities in Banach space. On
the other hand, some authors have derived the optimality conditions for weakly efficient
solutions to vector optimization problems (see [4–19]).

Vector variational inequality problems and vector optimization problems, as well as
several other problems, are special realizations of vector equilibrium problems (see [20, 21]);
therefore, it is important to give the optimality conditions for the solution to the vector
equilibrium problems for in this way we can turn the vector equilibrium problem with
constraints to a corresponding scalar optimization problem without constraints, and we can
then determine if the solution of the scalar optimization problem is a solution of the original
vector equilibrium problem. Under the assumption of convexity, Gong [22] investigated
optimality conditions for weakly efficient solutions, Henig solutions, superefficient solutions,
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and globally efficient solutions to vector equilibrium problems with constraints and obtained
that the weakly efficient solutions, Henig efficient solutions, globally efficient solutions, and
superefficient solutions to vector equilibrium problems with constraints are equivalent to
solution of corresponding scalar optimization problems without constraints, respectively.
Qiu [23] presented the necessary and sufficient conditions for globally efficient solution
under generalized cone-subconvexlikeness. Gong and Xiong [24] weakened the convexity
assumptions in [22] and obtained necessary and sufficient conditions for weakly efficient
solution, too.

In this paper, by using the concept of Fréchet differentiability of mapping, we study the
optimality conditions for weakly efficient solutions, Henig solutions, superefficient solutions,
and globally efficient solutions to the vector equilibrium problems. We give Kuhn-Tucker
necessary conditions to the vector equilibrium problems without convexity conditions and
Kuhn-Tucker sufficient conditions with convexity conditions.

2. Preliminaries and Definitions

Throughout this paper, let (X, ‖ · ‖X) be a real normed space, let (Y,CY , ‖ · ‖Y ) and
(Z,CZ, ‖ · ‖Z) be real partially ordered normed spaces, and let CY and CZ be closed convex
pointed cones with intCZ /= ∅, where intCZ denotes the interior of the set CZ.

Let Y ∗ and Z∗ be the topological dual spaces of Y and Z, respectively. Let

C∗
Y =

{
y∗ ∈ Y ∗ : y∗(y

) ≥ 0, ∀y ∈ CY

}
,

C∗
Z = {z∗ ∈ Z∗ : z∗(z) ≥ 0, ∀z ∈ CZ}

(2.1)

be the dual cones of CY and CZ, respectively. Denote the quasi-interior of C∗
Y by C#

Y , that is

C#
Y =

{
y∗ ∈ Y ∗ : y∗(y

)
> 0, ∀y ∈ CY \ {0}}. (2.2)

Let D be a nonempty subset of Y . The cone hull of D is defined as

cone(D) = {td : t ≥ 0, d ∈ D}. (2.3)

Denote the closure of D by clD and interior of D by intD.
A nonempty convex subset B of the convex cone CY is called a base of CY , if CY =

cone(B) and 0/∈ cl(B). It is easy to see that C#
Y /= ∅ if and only if CY has a base.

Let B be a base of CY . Set

CΔ(B) =
{
y∗ ∈ C∗

Y : there exists t > 0 such that y∗(b) ≥ t, ∀b ∈ B
}
. (2.4)

By the separation theorem of convex sets, we know CΔ(B)/= ∅.
Denote the closed unit ball of Y by U. Suppose that CY has a base B. Let δ = inf{‖b‖ :

b ∈ B}. It is clear that δ > 0. The δ will be used for the rest of the paper. For any 0 < ε < δ,
denote Cε(B) = cone(B + εU), then cl(Cε(B)) is a closed convex pointed cone, and CY \ {0} ⊂
intCε(B), for all 0 < ε < δ (see [25]).
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Let S1 ⊂ X be a nonempty open convex subset, and let F : S1 × S1 → Y , g : S1 → Z
be mappings.

We define the constraint set

S =
{
x ∈ S1 : g(x) ∈ −CZ

}
(2.5)

and consider the vector equilibrium problems with constraints (for short, VEPC): find x ∈ S
such that

F
(
x, y

)
/∈ − P \ {0}, ∀y ∈ S, (2.6)

where P is a convex cone in Y .

Definition 2.1. If intCY /= ∅, a vector x ∈ S satisfying

F
(
x, y

)
/∈ − intCY , ∀y ∈ S (2.7)

is called a weakly efficient solution to the VEPC.

For each x ∈ S, we denote

F(x, S) =
⋃

y∈S
F
(
x, y

)
. (2.8)

Definition 2.2 (see [22]). Let CY have a base B. A vector x ∈ S is called a Henig efficient
solution to the VEPC if there exists some 0 < ε < δ such that

F(x, S) ∩ (− intCε(B)) = ∅. (2.9)

Definition 2.3 (see [22]). A vector x ∈ S is called a globally efficient solution to the VEPC if
there exists a point convex cone H ⊂ Y with C \ {0} ⊂ intH such that

F(x, S) ∩ ((−H) \ {0}) = ∅. (2.10)

Definition 2.4 (see [22]). A vector x ∈ S is called a superefficient solution to the VEPC if there
exists M > 0 such that

cone(F(x, S)) ∩ (U − CY ) ⊂ MU, (2.11)

where U is closed unit ball of Y .
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Definition 2.5. Let X be a real linear space, and let Y be a real topological linear space. Let S2

be a nonempty subset of X, and let a mapping f : S2 → Y and some x ∈ S2 be given. If for
some h ∈ X the limit

f ′(x)(h) = lim
λ→ 0

1
λ

(
f(x + λh) − f(x)

)
(2.12)

exists, then f ′(x)(h) is called the Gâteaux derivative of f at x in the direction h. If this limit
exists for each direction h, the mapping f is called Gâteaux differentiable at x.

Definition 2.6. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be real normed spaces, and let D be a nonempty
open subset of X. Moreover, let a mapping f : D → Y and some x ∈ D be given. If there
exists a continuous linear mapping f ′(x) : X → Y with the property

lim
‖h‖X → 0

∥
∥f(x + h) − f(x) − f ′(x)(h)

∥
∥
Y

‖h‖X
= 0, (2.13)

then f ′(x) is called the Fréchet derivative of f at x and f is called Fréchet differentiable at x.

Remark 2.7. By [26, Lemma 2.18], we can see that if f is Fréchet differentiable at x, then f
is Gâteaux differentiable at x and the Fréchet derivative of f at x is equal to the Gâteaux
derivative of f at x in each direction h.

Definition 2.8. Let X and Y be real linear spaces, let CY be a pointed convex cone in Y , and let
A be a nonempty convex subset of X. A mapping f : A → Y is called CY -convex, if for all
x, y ∈ A and all λ ∈ [0, 1]

λf(x) + (1 − λ)f
(
y
) − f

(
λx + (1 − λ)y

) ∈ CY . (2.14)

Lemma 2.9 (see [18]). Assume that pointed convex coneCY has a base B; then one has the following.

(i) For any 0 < ε < δ, (Cε(B))
∗ \ {0Y ∗} ⊂ CΔ(B).

(ii) For any f ∈ CΔ(B), there exists some 0 < ε0 < δ with f ∈ (Cε0(B))
∗ \ {0Y ∗}.

(iii) intC∗
Y ⊂ CΔ(B), and when B is bounded and closed, then intC∗

Y = CΔ(B), where intC∗
Y

is the interior of C∗
Y in Y ∗ with respect to the norm of Y ∗.

3. Optimality Condition

In this section, we give the Kuhn-Tucker necessary conditions and Kuhn-Tucker sufficient
conditions for weakly efficient solution, Henig efficient solution, globally efficient solution,
and superefficient solution to the vector equilibrium problems with constraints.

Let x ∈ S1 be given. Denote the mapping Fx : S1 → Y by

Fx

(
y
)
= F

(
x, y

)
, y ∈ S1. (3.1)

By the proof of Theorem 2.20 in [26] or from the definition, we have the following
lemma.
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Lemma 3.1. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be real normed spaces, let A be a nonempty open convex
subset of X, and let CY be closed convex pointed cone in Y . Assume that f : A → Y is CY -convex
and f is Gâteaux differentiable at x ∈ A. Then

f(x) − f(x) − f ′(x)(x − x) ∈ CY , ∀x ∈ A. (3.2)

Theorem 3.2. Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ), and (Z, ‖ · ‖Z) be real normed spaces, and let CY and CZ be
closed convex pointed cones in Y and Z with intCY /= ∅ and intCZ /= ∅, respectively. Let F(x, x) = 0.
Assume that Fx(·) and g(·) are Fréchet differentiable at x ∈ S. Furthermore, assume that there exists
x1 ∈ S1 such that g(x)+g ′(x)(x1−x) ∈ − intCZ. If x ∈ S is a weakly efficient solution to the VEPC,
then there exist v ∈ C∗

Y \ {0Y ∗}, u ∈ C∗
Z, such that

(
v ◦ F ′

x(x) + u ◦ g ′(x)
)
(x − x) ≥ 0, ∀x ∈ S1,

u ◦ g(x) = 0.
(3.3)

Proof. Assume that x ∈ S is a weakly efficient solution to the VEPC. Define the set

M =
{(

y, z
) ∈ Y × Z : there exists x ∈ S1 such that y − F ′

x(x)(x − x) ∈ intCY ,

z − (
g(x) + g ′(x)(x − x)

) ∈ intCZ

}
.

(3.4)

Since F ′
x
(x) and g ′(x) are linear operators, we can see that M is a nonempty open

convex set. We claim that (0, 0)/∈M. If not, then there exists x0 ∈ S1 such that

F ′
x(x)(x0 − x) ∈ − intCY , g(x) + g ′(x)(x0 − x) ∈ − intCZ. (3.5)

From Remark 2.7, we obtain

F ′
x(x)(x0 − x) = lim

λ→ 0

1
λ
(Fx(x + λ(x0 − x)) − Fx(x)) ∈ − intCY ,

g(x) + g ′(x)(x0 − x) = g(x) + lim
λ→ 0

1
λ

(
g(x + λ(x0 − x)) − g(x)

) ∈ − intCZ.

(3.6)

Since − intCY and − intCZ are open sets, there exists some 0 < λ0 < 1 such that

1
λ0

(Fx(x + λ0(x0 − x)) − Fx(x)) ∈ − intCY ,

g(x) +
1
λ0

(
g(x + λ0(x0 − x)) − g(x)

) ∈ − intCZ.

(3.7)

From g(x) ∈ −CZ, F(x, x) = 0, and 1/λ0 > 1, we can see that

Fx(x + λ0(x0 − x)) ∈ − intCY , g(x + λ0(x0 − x)) ∈ − intCZ. (3.8)
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Since S1 is a convex set, x + λ0(x0 − x) ∈ S1. Thus, we get

x + λ0(x0 − x) ∈ S, F(x, x + λ0(x0 − x)) ∈ − intCY . (3.9)

This contradicts that x ∈ S is a weakly efficient solution to the VEPC. Thus (0, 0)/∈M. Noting
that M is an open set, by the separation theorem of convex sets (see [26]), there exists
(0, 0)/= (v, u) ∈ (Y × Z)∗ = Y ∗ × Z∗ such that

v
(
y
)
+ u(z) > 0, ∀(y, z) ∈ M. (3.10)

Let (y, z) ∈ M. Then there exists x ∈ S1 such that

y − F ′
x(x)(x − x) ∈ intCY , z − (

g(x) + g ′(x)(x − x)
) ∈ intCZ. (3.11)

It is clear that for every c ∈ intCY , k ∈ intCZ, t′ > 0, t′′ > 0, we have (y + t′c, z) ∈ M and
(y, z + t′′k) ∈ M. By (3.10), we have

v
(
y + t′c

)
+ u(z) > 0, ∀c ∈ intCY , t′ > 0. (3.12)

We can get

v(c) ≥ 0, ∀c ∈ intCY . (3.13)

Since CY is a closed convex cone, CY = cl(intCY ). By the continuity of v, we can see that
v(c) ≥ 0 for all c ∈ CY . That is, v ∈ C∗

Y . Similarly, we can show that u ∈ C∗
Z. We also have

v /= 0Y ∗ . In fact, if v = 0Y ∗ , from (3.10) we get

u(z) > 0, ∀(y, z) ∈ M. (3.14)

By assumption, there exists x1 ∈ S1 such that g(x) + g ′(x)(x1 − x) ∈ − intCZ; thus, we have

(
F ′
x(x)(x1 − x) + c, g(x) + g ′(x)(x1 − x) + k

) ∈ M, ∀c ∈ intCY , k ∈ intCZ. (3.15)

Hence

u
(
g(x) + g ′(x)(x1 − x) + k

)
> 0, ∀k ∈ intCZ. (3.16)

In particular, we have −(g(x) + g ′(x)(x1 − x)) ∈ intCZ, and we get u(0) = 0 > 0. This is a
contradiction. Thus, v /= 0Y ∗ . It is clear that

(
F ′
x(x)(x − x) + c, g(x) + g ′(x)(x − x) + k

) ∈ M (3.17)
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for all x ∈ S1, c ∈ intCY , k ∈ intCZ. By (3.10), we obtain

v
(
F ′
x(x)(x − x) + c

)
+ u

(
g(x) + g ′(x)(x − x) + k

)
> 0 (3.18)

for all x ∈ S1, c ∈ intCY , k ∈ intCZ.
Letting c → 0, k → 0, we get

v
(
F ′
x(x)(x − x)

)
+ u

(
g(x) + g ′(x)(x − x)

) ≥ 0, ∀x ∈ S1. (3.19)

It is clear that

(
F ′
x(x)(x − x) + t′c, g(x) + g ′(x)(x − x) + t′k

) ∈ M (3.20)

for all c ∈ intCY , k ∈ intCZ, t′ > 0. By (3.10), we have

v
(
F ′
x(x)(x − x) + t′c

)
+ u

(
g(x) + g ′(x)(x − x) + t′k

)
= t′v(c) + u

(
g(x)

)
+ t′u(k) > 0. (3.21)

Letting t′ → 0, we obtain u(g(x)) ≥ 0. Noting that g(x) ∈ −CZ and u ∈ C∗
Z, we have u(g(x)) ≤

0. Thus,

u
(
g(x)

)
= 0. (3.22)

From (3.19) and (3.22), we have

v
(
F ′
x(x)(x − x)

)
+ u

(
g ′(x)(x − x)

) ≥ 0, ∀x ∈ S1. (3.23)

Thus, we have

(
v ◦ F ′

x(x) + u ◦ g ′(x)
)
(x − x) ≥ 0, ∀x ∈ S1,

u ◦ g(x) = 0.
(3.24)

This completes the proof.

Remark 3.3. The condition that there exists x1 ∈ S1 such that g(x) + g ′(x)(x1 − x) ∈ − intCZ

is a generalized Slater constraint condition. In fact, from the proof of Theorem 3.2, we obtain
that there exists 0 < λ < 1 such that x + λ(x1 − x) ∈ S1 and g(x + λ(x1 − x)) ∈ − intCZ.

On the other hand, if g(·) is Gâteaux differentiable at x ∈ S1, and g(·) is CZ-convex
on S1, and g(x1) ∈ − intCZ, then g(x) + g ′(x)(x1 − x) ∈ − intCZ. In fact, by Lemma 3.1, there
exists k ∈ CZ such that

g(x) + g ′(x)(x1 − x) = g(x) + g(x1) − g(x) − k ∈ − intCZ. (3.25)
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Theorem 3.4. Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ), and (Z, ‖ · ‖Z) be real normed spaces, let CY ⊂ Y be a
closed convex pointed cone with intCY /= ∅, and let CZ ⊂ Z be a closed convex pointed cone with
intCZ /= ∅, and let F(x, x) = 0. Assume that Fx(·) and g(·) are Gâteaux differentiable at x ∈ S, Fx(·)
is CY -convex on S1, and g(·) is CZ-convex on S1. If there exist v ∈ C∗

Y \ {0Y ∗}, u ∈ C∗
Z such that

(
v ◦ F ′

x(x) + u ◦ g ′(x)
)
(x − x) ≥ 0, ∀x ∈ S1, (3.26)

u ◦ g(x) = 0, (3.27)

then x ∈ S is a weakly efficient solution to the VEPC.

Proof. Since the mappings Fx(·) and g(·) are Gâteaux differentiable at x ∈ S, Fx(·) is CY -
convex on S1, and g(·) is CZ-convex on S1, from Lemma 3.1, we have

F ′
x(x)(x − x) ∈ Fx(x) − Fx(x) − CY = Fx(x) − CY , ∀x ∈ S1,

g ′(x)(x − x) ∈ g(x) − g(x) − CZ, ∀x ∈ S1.
(3.28)

From v ∈ C∗
Y , u ∈ C∗

Z, and (3.26), we get

v(Fx(x)) + u
(
g(x) − g(x)

) ≥ (
v ◦ F ′

x(x) + u ◦ g ′(x)
)
(x − x) ≥ 0, ∀x ∈ S1. (3.29)

By (3.27), we have

v(Fx(x)) + u
(
g(x)

) ≥ 0, ∀x ∈ S1. (3.30)

We will show that x ∈ S is a weakly efficient solution to the VEPC. If not, then there exists
y0 ∈ S such that

F
(
x, y0

) ∈ − intCY . (3.31)

From v ∈ C∗
Y \ {0Y ∗} and the above statement, we have

v
(
F
(
x, y0

))
< 0. (3.32)

Noticing y0 ∈ S, we have g(y0) ∈ −CZ; so u(g(y0)) ≤ 0 because of u ∈ C∗
Z. Hence,

v
(
Fx

(
y0
))

+ u
(
g
(
y0
))

< 0. (3.33)

This contradicts (3.30). Hence, x ∈ S is a weakly efficient solution to the VEPC.

From Theorems 3.2 and 3.4, and Remark 2.7, we get the following corollary.
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Corollary 3.5. Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ), and (Z, ‖ · ‖Z) be real normed spaces, let CY ⊂ Y be a
closed convex pointed cone with intCY /= ∅, and let CZ ⊂ Z be a closed convex pointed cone with
intCZ /= ∅, and let F(x, x) = 0. Assume that Fx(·) and g(·) are Fréchet differentiable at x ∈ S, Fx(·)
is CY -convex on S1, and g(·) is CZ-convex on S1. Furthermore, assume that there exists x1 ∈ S1 such
that g(x) + g ′(x)(x1 − x) ∈ − intCZ. Then x ∈ S is a weakly efficient solution to the VEPC if and
only if there exist v ∈ C∗

Y \ {0Y ∗}, u ∈ C∗
Z, such that

(
v ◦ F ′

x(x) + u ◦ g ′(x)
)
(x − x) ≥ 0, ∀x ∈ S1,

u ◦ g(x) = 0.
(3.34)

The concept of weakly efficient solution to the vector equilibrium problem requires the
condition that the ordering cone has an nonempty interior. If the ordering cone has an empty
interior, we cannot discuss the property of weakly efficient solutions to the vector equilibrium
problem. However, if the ordering cone has a base, we can give necessary conditions and
sufficient conditions for Henig efficient solutions and globally efficient solutions to the vector
equilibrium problems with constraints.

Theorem 3.6. Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ), and (Z, ‖ · ‖Z) be real normed spaces, let CY be a closed
convex pointed cone in Y with a base, let CZ be a closed convex pointed cone in Z with intCZ /= ∅, and
let F(x, x) = 0. Assume that Fx(·) and g(·) are Fréchet differentiable at x ∈ S. Furthermore, Assume
that there exists x1 ∈ S1 such that g(x) + g ′(x)(x1 − x) ∈ − intCZ. If x ∈ S is a Henig efficient
solution to the VEPC, then there exist v ∈ CΔ(B), u ∈ C∗

Z such that

(
v ◦ F ′

x(x) + u ◦ g ′(x)
)
(x − x) ≥ 0, ∀x ∈ S1,

u ◦ g(x) = 0.
(3.35)

Proof. Assume that x ∈ S is a Henig efficient solution to the VEPC. By the definition, there
exists some 0 < ε < δ such that

F(x, S) ∩ (− intCε(B)) = ∅. (3.36)

Define the set

M =
{(

y, z
) ∈ Y × Z : there exists x ∈ S1 such that y − F ′

x(x)(x − x) ∈ intCε(B),

z − (
g(x) + g ′(x)(x − x)

) ∈ intCZ

}
.

(3.37)

It is clear that M is a nonempty open convex set and (0, 0)/∈M. By the separation
theorem of convex sets, there exists (0, 0)/= (v, u) ∈ (Y × Z)∗ = Y ∗ × Z∗ such that

v
(
y
)
+ u(z) > 0, ∀(y, z) ∈ M. (3.38)

Let (y, z) ∈ M. Then there exists x ∈ S1 such that

y − F ′
x(x)(x − x) ∈ intCε(B), z − (

g(x) + g ′(x)(x − x)
) ∈ intCZ. (3.39)
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Hence, for every c ∈ intCε(B), k ∈ intCZ, t′ > 0, t′′ > 0, we have (y + t′c, z) ∈ M and (y, z +
t′′k) ∈ M; this implies that v ∈ (Cε(B))

∗, u ∈ C∗
Z. In a way similar to the proof of Theorem 3.2,

we have v /= 0Y ∗ . By Lemma 2.9, we can see that v ∈ CΔ(B). It is clear that (F ′
x
(x)(x − x) +

c, g(x) + g ′(x)(x − x) + k) ∈ M for all x ∈ S1, c ∈ intCε(B), k ∈ intCZ. By (3.38), we get

v
(
F ′
x(x)(x − x)

)
+ u

(
g(x) + g ′(x)(x − x)

) ≥ 0, ∀x ∈ S1. (3.40)

In a way similar to the proof of Theorem 3.2, we have

u
(
g(x)

)
= 0. (3.41)

From (3.40) and (3.41), we have

(
v ◦ F ′

x(x) + u ◦ g ′(x)
)
(x − x) ≥ 0, ∀x ∈ S1. (3.42)

This completes the proof.

Theorem 3.7. Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ), and (Z, ‖ · ‖Z) be real normed spaces, let CY be a closed
convex pointed cone in Y with a base, let CZ be a closed convex pointed cone in Z with intCZ /= ∅, and
let F(x, x) = 0. Assume that Fx(·) and g(·) are Gâteaux differentiable at x ∈ S, Fx(·) is CY -convex
on S1, and g(·) is CZ-convex on S1. If there exist v ∈ CΔ(B), u ∈ C∗

Z such that

(
v ◦ F ′

x(x) + u ◦ g ′(x)
)
(x − x) ≥ 0, ∀x ∈ S1, (3.43)

u ◦ g(x) = 0, (3.44)

then x ∈ S is a Henig efficient solution to the VEPC.

Proof. From v ∈ CΔ(B) ⊂ C∗
Y , u ∈ C∗

Z, (3.43), and (3.44), in a way similar to the proof of
Theorem 3.4, we have

v(Fx(x)) + u
(
g(x)

) ≥ 0, ∀x ∈ S1. (3.45)

We will show that x ∈ S is a Henig efficient solution to the VEPC; that is, there exists some
0 < ε < δ such that

F(x, S) ∩ (− intCε(B)) = ∅. (3.46)

Suppose to the contrary that for any 0 < ε < δ,

Fx(S) ∩ (− intCε(B))/= ∅. (3.47)
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Then by v ∈ CΔ(B), and by Lemma 2.9, there exists some 0 < ε0 < δ such that v ∈ (Cε0(B))
∗ \

{0Y ∗}. For this 0 < ε0 < δ, we have Fx(S) ∩ (− intCε0(B))/= ∅. Thus, there exists y0 ∈ S such
that

Fx

(
y0
) ∈ − intCε0(B). (3.48)

By v ∈ (Cε0(B))
∗ \ {0Y ∗}, we have

v
(
Fx

(
y0
))

< 0. (3.49)

Notice y0 ∈ S, we have g(y0) ∈ −CZ, and thus we obtain u(g(y0)) ≤ 0 because of u ∈ C∗
Z.

Hence,

v
(
Fx

(
y0
))

+ u
(
g
(
y0
))

< 0. (3.50)

This contradicts (3.45). Hence, x ∈ S is a Henig efficient solution to the VEPC.

Corollary 3.8. Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ), and (Z, ‖ · ‖Z) be real normed spaces, and CY ⊂ Y be a
closed convex pointed cone with a base, let CZ ⊂ Z be a closed convex pointed cone with intCZ /= ∅,
and let F(x, x) = 0. Assume that Fx(·) and g(·) are Fréchet differentiable at x ∈ S, Fx(·) is CY -
convex on S1, and g(·) is CZ-convex on S1. Furthermore, assume that there exists x1 ∈ S1 such that
g(x) + g ′(x)(x1 − x) ∈ − intCZ. Then x ∈ S is a Henig efficient solution to the VEPC if and only if
there exist v ∈ CΔ(B), u ∈ C∗

Z, such that

(
v ◦ F ′

x(x) + u ◦ g ′(x)
)
(x − x) ≥ 0, ∀x ∈ S1,

u ◦ g(x) = 0.
(3.51)

Remark 3.9. If CY has a bounded closed base B, in view of Lemma 2.9, we have CΔ(B) =
intC∗

Y ; besides, x ∈ S is a superefficient solution to the VEPC if and only if x is a Henig
efficient solution to the VEPC (see [22]). Hence, by Corollary 3.8, we have the following
corollary.

Corollary 3.10. Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ), and (Z, ‖ · ‖Z) be real normed spaces, let CY ⊂ Y be
a closed convex pointed cone with a bounded closed base, let CZ ⊂ Z be a closed convex pointed
cone with intCZ /= ∅, and let F(x, x) = 0. Assume that Fx(·) and g(·) are Fréchet differentiable at
x ∈ S, Fx(·) is CY -convex on S1, and g(·) is CZ-convex on S1. Furthermore, assume that there exists
x1 ∈ S1 such that g(x) + g ′(x)(x1 − x) ∈ − intCZ. Then x ∈ S is a superefficient efficient solution
to the VEPC if and only if there exists v ∈ intC∗

Y (with respect to the norm topology of Y ∗), u ∈ C∗
Z

such that

(
v ◦ F ′

x(x) + u ◦ g ′(x)
)
(x − x) ≥ 0, ∀x ∈ S1,

u ◦ g(x) = 0.
(3.52)
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Theorem 3.11. Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ), and (Z, ‖ · ‖Z) be real normed spaces, let CY be a closed
convex pointed cone in Y with a base, let CZ be a closed convex pointed cone in Z with intCZ /= ∅,
and let F(x, x) = 0. Assume that Fx(·) and g(·) are Fréchet differentiable at x ∈ S, and there exists
x1 ∈ S1 such that g(x) + g ′(x)(x1 − x) ∈ − intCZ. If x ∈ S is a globally efficient solution to the
VEPC, then there exist v ∈ C#

Y , u ∈ C∗
Z such that

(
v ◦ F ′

x(x) + u ◦ g ′(x)
)
(x − x) ≥ 0, ∀x ∈ S1,

u ◦ g(x) = 0.
(3.53)

Proof. Assume that x ∈ S is a globally efficient solution to the VEPC. By the definition, there
exists a pointed convex cone H such that CY \ {0Y} ⊂ intH and

F(x, S) ∩ (−H \ {0Y}) = ∅. (3.54)

Define the set

M =
{(

y, z
) ∈ Y × Z : there exists x ∈ S1 such that y − F ′

x(x)(x − x) ∈ intH,

z − (
g(x) + g ′(x)(x − x)

) ∈ intCZ

}
.

(3.55)

Since H is a convex cone, we know that M is a nonempty open convex set and
(0, 0)/∈M. By the separation theorem of convex sets, there exists (0, 0)/= (v, u) ∈ (Y × Z)∗ =
Y ∗ × Z∗ such that

v
(
y
)
+ u(z) > 0, ∀(y, z) ∈ M. (3.56)

Let (y, z) ∈ M. Then there exists x ∈ S1 such that

y − F ′
x(x)(x − x) ∈ intH, z − (

g(x) + g ′(x)(x − x)
) ∈ intCZ. (3.57)

Hence, for every c ∈ intH, k ∈ intCZ, t′ > 0, t′′ > 0, we have (y + t′c, z) ∈ M and (y, z + t′′k) ∈
M. This implies that v ∈ H∗ \ {0Y ∗}, u ∈ C∗

Z, and therefore v ∈ C#
Y because of C \ {0} ⊂ intH.

It is clear that

(
F ′
x(x)(x − x) + c, g(x) + g ′(x)(x − x) + k

) ∈ M (3.58)

for all x ∈ S1, c ∈ intH, k ∈ intCZ. By (3.56), we get

v
(
F ′
x(x)(x − x) + c

)
+ u

(
g(x) + g ′(x)(x − x) + k

)
> 0 (3.59)

for all x ∈ S1, c ∈ intH, k ∈ intCZ.
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Letting c → 0, k → 0, we get

v
(
F ′
x(x)(x − x)

)
+ u

(
g(x) + g ′(x)(x − x)

) ≥ 0, ∀x ∈ S1. (3.60)

In a way similar to the proof of Theorem 3.2, we have

u
(
g(x)

)
= 0. (3.61)

From (3.60) and (3.61), we have

(
v ◦ F ′

x(x) + u ◦ g ′(x)
)
(x − x) ≥ 0, ∀x ∈ S1. (3.62)

This completes the proof.

Theorem 3.12. Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ), and (Z, ‖ · ‖Z) be real normed spaces, let CY be a closed
convex pointed cone in Y with a base, let CZ be a closed convex pointed cone in Z with intCZ /= ∅, and
let F(x, x) = 0. Assume that Fx(·) and g(·) are Gâteaux differentiable at x ∈ S, Fx(·) is CY -convex
on S1, and g(·) is CZ-convex on S1. If there exist v ∈ C#

Y , u ∈ C∗
Z such that

(
v ◦ F ′

x(x) + u ◦ g ′(x)
)
(x − x) ≥ 0, ∀x ∈ S1, (3.63)

u ◦ g(x) = 0, (3.64)

then x ∈ S is a globally efficient solution to the VEPC.

Proof. From v ∈ C#
Y ⊂ C∗

Y , u ∈ C∗
Z, (3.63), and (3.64), in a way similar to the proof of

Theorem 3.4, we have

v(Fx(x)) + u
(
g(x)

) ≥ 0, ∀x ∈ S1. (3.65)

We will show that x ∈ S is a globally efficient solution to the VEPC; that is, there exists a
pointed convex cone H ⊂ Y such that CY \ {0Y} ⊂ intH and

F(x, S) ∩ (− intH) = ∅. (3.66)

Suppose to the contrary that for any pointed convex cone H ⊂ Y with CY \ {0Y} ⊂ intH, we
have that

Fx(S) ∩ (− intH)/= ∅. (3.67)

By v ∈ C#
Y , we set

H0 =
{
y ∈ Y : v

(
y
)
> 0

} ∪ {0Y}. (3.68)
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We have CY \ {0Y} ⊂ intH0, and H0 is a pointed convex cone. By (3.67), there exists y0 ∈ S
such that

F
(
x, y0

)
= Fx

(
y0
) ∈ −H0 \ {0Y}. (3.69)

By the definition of H0, we have that v(Fx(y0)) < 0. Noticing y0 ∈ S, we have g(y0) ∈ −CZ,
and so u(g(y0)) ≤ 0 because of u ∈ C∗

Z. Hence

v
(
Fx

(
y0
))

+ u
(
g
(
y0
))

< 0. (3.70)

This contradicts (3.65). Hence, x ∈ S is a globally efficient solution to the VEPC.

Corollary 3.13. Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ), and (Z, ‖ · ‖Z) be real normed spaces, let CY ⊂ Y be a
closed convex pointed cone with a base, let CZ ⊂ Z be a closed convex pointed cone with intCZ /= ∅,
and let F(x, x) = 0. Assume that Fx(·) and g(·) are Fréchet differentiable at x ∈ S, Fx(·) is CY -
convex on S1, and g(·) is CZ-convex on S1. Furthermore, assume that there exists x1 ∈ S1 such that
g(x) + g ′(x)(x1 − x) ∈ − intCZ. Then x ∈ S is a globally efficient solution to the VEPC if and only
if there exist v ∈ C#

Y , u ∈ C∗
Z such that

(
v ◦ F ′

x(x) + u ◦ g ′(x)
)
(x − x) ≥ 0, ∀x ∈ S1,

u ◦ g(x) = 0.
(3.71)
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