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We prove the Hyers-Ulam stability of a second-order linear functional equation in single variable
(with constant coefficients) that is connected with the Fibonacci numbers and Lucas sequences. In
this way we complement, extend, and/or improve some recently published results on stability of
that equation.

1. Introduction

In this paper C, R, Z, and N stand, as usual, for the sets of complex numbers, real numbers,
integers, and positive integers, respectively. Let S be a nonempty set, ξ : S → S, X be a
Banach space over a field K ∈ {C,R}, p, q ∈ K, q /= 0, and a1, a2 denote the complex roots of
the equation

x2 − px + q = 0. (1.1)

Moreover, ξ0(x) = x, ξn+1(x) = ξ(ξn(x)), and (only for bijective ξ) ξ−n−1(x) = ξ−1(ξ−n(x)) for
x ∈ S and n ∈ N0 := N ∪ {0}.

The problem of stability of functional equations was motivated by a question of Ulam
asked in 1940 and a solution to it by Hyers published in [1]. Since then numerous papers
have been published on that subject and we refer to [2–7] for more details, some discussions
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and further references; for examples of very recent results see, for example, [8–12]. Jung has
proved in [5] (see also [13]) some results on solutions and stability of the functional equation

f(x) = pf(ξ(x)) − qf
(
ξ2(x)

)
, (1.2)

in the case where S = R and ξ(x) = x − 1 for x ∈ R. The result on stability (see [5, Theorem
3.1]) can be stated as follows.

Theorem 1.1. Let p, q ∈ R, p2 − 4q /= 0, 0 < |a2| < 1 < |a1|, a1, a2 ∈ K, ε > 0, and g : R → X
satisfy the inequality

sup
x∈R

∥∥g(x) − pg(x − 1) + qg(x − 2)
∥∥ ≤ ε. (1.3)

Then there is a unique solution f : R → X of the functional equation

f(x) = pf(x − 1) − qf(x − 2) (1.4)

with

sup
x∈R

∥∥g(x) − f(x)
∥∥ ≤ (|a1| − |a2|)ε

|a1 − a2|(|a1| − 1)(1 − |a2|) . (1.5)

If S = N0 and p, q ∈ Z, then solutions x : N0 → Z of the difference equation (1.4) are
called the Lucas sequences (see, e.g., [14]); in some special cases they are called with specific
names; for example; the Fibonacci numbers (p = 1, q = −1, x(0) = 0 and x(1) = 1), the Lucas
numbers (p = 1, q = −1, x(0) = 2 and x(1) = 1), the Pell numbers (p = 2, q = −1, x(0) = 0
and x(1) = 1), the Pell-Lucas (or companion Lucas) numbers (p = 2, q = −1, x(0) = 2 and
x(1) = 2), and the Jacobsthal numbers (p = 1, q = −2, x(0) = 0 and x(1) = 1).

For some information and further references concerning the functional equations in
single variable we refer to [15–17]; for an ample survey on stability results for those equations
see [2]. Let us mention yet that the problem of stability of functional equations is connected
to the notions of controlled chaos (see [18]) and shadowing (see [19–21]).

Remark 1.2. If ξ is bijective, then, with η := ξ−1, (1.2) can be written in the following equivalent
form:

f
(
η2(x)

)
= pf

(
η(x)

) − qf(x). (1.6)

Clearly, (1.1) is the characteristic equation of (1.6).

In view of Remark 1.2, from [22, Theorem 2] (see also [23]) the following stability
result, concerning (1.2), can be derived.
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Theorem 1.3. Let |ai|/= 1 for i = 1, 2, ξ be bijective, ε > 0, and g : S → X satisfy the inequality

sup
x∈S

∥∥∥g(x) − pg(ξ(x)) + qg
(
ξ2(x)

)∥∥∥ ≤ ε. (1.7)

Then there is a unique solution f : S → X of (1.2) with

sup
x∈S

∥∥g(x) − f(x)
∥∥ ≤ ε

|(|a1| − 1)(|a2| − 1)| . (1.8)

Theorem 1.3 appears to be much more general than Theorem 1.1 (obtained by a
different method of proof). But on the other hand, estimation (1.5) is significantly sharper
than (1.8) in numerous cases (take, e.g., a1 = 1 + 1/n and a2 = −1 + 1/n, with some large
n ∈ N). Therefore, there arises a natural question if the method applied in [5] can be modified
so as to prove a more general equivalent of Theorem 1.3, but with an estimation better than
(1.8). In this paper, we show that this is the case. Namely, we prove the following.

Theorem 1.4. Let ε > 0 and g : S → X satisfy inequality (1.7). Suppose that a1 /=a2 and one of the
following two conditions is valid:

(α) |ai| < 1 for i = 1, 2;

(β) |ai|/= 1 for i = 1, 2 and ξ is bijective.

Then there exists a solution F : S → X of (1.2) such that

sup
x∈S

∥∥g(x) − F(x)
∥∥ ≤ ε

|a1 − a2|
( |a1|
||a1| − 1| +

|a2|
||a2| − 1|

)
. (1.9)

Moreover, if condition (β) is valid, then there exists exactly one solution f : S → X of (1.2) with
supx∈S‖g(x) − f(x)‖ < ∞.

Remark 1.5. Note that, for bijective ξ, Theorem 1.4 improves estimation (1.8) in some cases
(take, e.g., a1 = 3/2, a2 = −3/2, or a1 = 1/2, a2 = −1/2); however, in some other situations
(e.g., a1 = 3, a2 = −3), estimation (1.8) is better. Theorem 1.4 also complements Theorem 1.3
because ξ can be quite arbitrary in the case of (α).

2. Proof of Theorem 1.4

Clearly, a1 + a2 = p and a1a2 = q. We start with the case K = C.
Fix i ∈ {1, 2} and first assume that |ai| < 1. Write

Ai
k(x) := ak

i

[
g
(
ξk(x)

)
− (

p − ai

)
g
(
ξk+1(x)

)]
, x ∈ S, k ∈ N0. (2.1)
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Then, for each k ∈ N0 and x ∈ S,

Ai
k(x) −Ai

k+1(x) = ak
i

[
g
(
ξk(x)

)
− (

p − ai

)
g
(
ξk+1(x)

)]

− ak+1
i

[
g
(
ξk+1(x)

)
− (

p − ai

)
g
(
ξk+2(x)

)]

= ak
i

[
g
(
ξk(x)

)
− pg

(
ξk+1(x)

)
+ qg

(
ξk+2(x)

)]
,

(2.2)

whence

∥∥∥Ai
k(x) −Ai

k+1(x)
∥∥∥ ≤ |ai|kε (2.3)

and consequently

∥∥∥Ai
k(x) −Ai

k+n(x)
∥∥∥ ≤

k+n−1∑
j=k

|ai|jε, n ∈ N0. (2.4)

This means that, for each x ∈ S, {Ai
n(x)}n∈N is a Cauchy sequence and therefore there exists

the limit Fi(x) = limn→∞Ai
n(x). Further, for every x ∈ S,

pFi(ξ(x)) − qFi

(
ξ2(x)

)
= pa−1

i lim
n→∞

Ai
n+1(x) − qa−2

i lim
n→∞

Ai
n+2(x)

= pa−1
i Fi(x) − qa−2

i Fi(x)

= Fi(x),

(2.5)

and, by (2.4) with k = 0 and n → ∞,

sup
x∈S

∥∥g(x) − (
p − ai

)
g(ξ(x)) − Fi(x)

∥∥ ≤ ε

|1 − |a1|| . (2.6)

Now, assume that |ai| > 1. This means that ξ is bijective. Let

Ai
k(x) := a−k

i

[
g
(
ξ−k(x)

)
− (

p − ai

)
g
(
ξ−k+1(x)

)]
, x ∈ S, k ∈ N0. (2.7)

Then, for each k ∈ N and x ∈ S,

Ai
k(x) −Ai

k−1(x) = a−k
i

[
g
(
ξ−k(x)

)
− (

p − ai

)
g
(
ξ−k+1(x)

)]

− a−k+1
i

[
g
(
ξ−k+1(x)

)
− (

p − ai

)
g
(
ξ−k+2(x)

)]

= a−k
i

[
g
(
ξ−k(x)

)
− pg

(
ξ−k+1(x)

)
+ qg

(
ξ−k+2(x)

)]
(2.8)
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and next, by (1.7),

∥∥∥Ai
k(x) −Ai

k−1(x)
∥∥∥ ≤ |ai|−kε. (2.9)

Hence,

∥∥∥Ai
k(x) −Ai

k+n(x)
∥∥∥ ≤

n∑
j=1

|ai|−j−kε, n ∈ N0, x ∈ S. (2.10)

So, for each x ∈ S, {Ai
n(x)}n∈N is a Cauchy sequence and consequently there exists the limit

Fi(x) = limn→∞Ai
n(x). Note that, for every x ∈ S, (2.5) holds and, by (2.10) with k = 0 and

n → ∞,

sup
x∈S

∥∥g(x) − (
p − ai

)
g(ξ(x)) − Fi(x)

∥∥ ≤ ε|ai|−1
1 − |ai|−1

=
ε

|ai| − 1
. (2.11)

Thus, we have proved that, for i = 1, 2, inequality (2.6) holds and Fi is a solution to
(1.2). Define F : S → X by

F(x) :=
a1

a1 − a2
F1(x) − a2

a1 − a2
F2(x), x ∈ S. (2.12)

Then, for x ∈ S, it follows from (2.5) that

pF(ξ(x)) − qF
(
ξ2(x)

)
=

a1

a1 − a2

[
pF1(ξ(x)) − qF1

(
ξ2(x)

)]

− a2

a1 − a2

[
pF2(ξ(x)) − qF2

(
ξ2(x)

)]

= F(x)

(2.13)

and, by (1.1) and (2.6),

∥∥g(x) − F(x)
∥∥ =

1
|a1 − a2|

∥∥(a1 − a2)g(x) − a1F1(x) + a2F2(x)
∥∥

≤ ε

|a1 − a2|
( |a1|
||a1| − 1| +

|a2|
||a2| − 1|

)
.

(2.14)

In the case where ξ is bijective, the uniqueness of F results from [22, Proposition 1], in
view of Remark 1.2.
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Now, assume that K = R. Then (see, e.g., [24, page 39], [25], or [26, 27, 1.9.6, page 66])
X2 is a complex Banach space with the linear structure and the Taylor norm ‖ · ‖T given by

(
x, y

)
+ (z,w) :=

(
x + z, y +w

)
for x, y, z,w ∈ X,

(
α + iβ

)(
x, y

)
:=

(
αx − βy, βx + αy

)
for x, y ∈ X, α, β ∈ R,

∥∥(x, y)∥∥T := sup
0≤θ≤2π

∥∥(cos θ)x + (sin θ)y
∥∥ forx, y ∈ X.

(2.15)

Clearly, max{‖x‖, ‖y‖} ≤ ‖(x, y)‖T ≤ ‖x‖ + ‖y‖ for all x, y ∈ X.
Define χ : S → X2 by χ(x) := (g(x), 0) for x ∈ S. Then,

‖χ(x) − pχ(ξ(x)) + qχ
(
ξ2(x)

)
‖T ≤ ε, x ∈ S. (2.16)

So, by the previous part of the proof, there exists a solution H : S → X2 of (1.2) such that

∥∥χ(x) −H(x)
∥∥
T ≤ ε

|a1 − a2|
( |a1|
||a1| − 1| +

|a2|
||a2| − 1|

)
, x ∈ S. (2.17)

Write pi(x1, x2) := xi for x1, x2 ∈ X, i = 1, 2. Clearly, F : S → X, given by F(x) := p1(H(x)) for
x ∈ S, is a solution of (1.2), and (1.9) holds.

It remains to prove the statement concerning uniqueness of F. So, let F0 : S → X be a
solution of (1.2) with supx∈S‖g(x) − F0(x)‖ < ∞. Let H0(x) := (F0(x), p2(H(x))) for x ∈ S. It
is easily seen that H0 is a solution of (1.2). Moreover, for every x ∈ S,

‖H(x) −H0(x)‖T = ‖F(x) − F0(x)‖ ≤ ∥∥F(x) − g(x)
∥∥ +

∥∥g(x) − F0(x)
∥∥. (2.18)

Hence, by [22, Proposition 1], H = H0, which yields F0 = F.

3. Consequences of Theorem 1.4

Now we present some consequences of Theorem 1.4 and some results from [22, 28, 29].

Theorem 3.1. Let ε > 0 and g : S → X satisfy (1.7). Suppose that one of the following three
conditions is valid:

(i) |ai| < 1 for i = 1, 2 and a1 /=a2;

(ii) |ai|/= 1 for i = 1, 2 and ξ is bijective;

(iii) (ii) holds and a1 /=a2.

Then there exists a solution F : S → X of (1.2) such that

sup
x∈S

∥∥g(x) − F(x)
∥∥ ≤ Mε, (3.1)
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where

M =

⎧
⎨
⎩
min{M1,M2}, if (i) or (iii) holds,

M2, if (ii) holds,

M1 :=
1

|a1 − a2|
( |a1|
||a1| − 1| +

|a2|
||a2| − 1|

)
,

M2 :=
1

|(|a1| − 1)(|a2| − 1)| .

(3.2)

Moreover, if |ai| < 1 for i = 1, 2, then there exists exactly one solution f : S → X of (1.2) such that
supx∈S‖g(x) − f(x)‖ < ∞.

Proof. If (i) is valid, then Theorem 1.4 yields (3.1)with M = M1. Further, by (1.7),

sup
x∈S

∥∥∥∥g
(
ξ2(x)

)
− p

q
g(ξ(x)) +

1
q
g(x)

∥∥∥∥ ≤ ε∣∣q∣∣ (3.3)

and bi := ai/q = 1/ai for i = 1, 2 are roots of the equation

x2 − p

q
x +

1
q
= 0. (3.4)

Hence, by [22, Theorem 2], there is a solution F : S → X of the functional equation

F
(
ξ2(x)

)
=

p

q
F(ξ(x)) − 1

q
F(x) (3.5)

such that

sup
x∈S

∥∥g(x) − F(x)
∥∥ ≤ ε/

∣∣q∣∣(∣∣a1/q
∣∣ − 1

)(∣∣a2/q
∣∣ − 1

) = M2ε. (3.6)

(The last equality is due to the fact that q = a1a2.) It is easily seen that F is a solution to (1.2).
Next, consider the case of (ii). Then, in view of Theorem 1.4, there is a solution F : S →

X of (1.2) satisfying (3.1)withM = M1. Further,

sup
x∈S

∥∥∥g
(
η2(x)

)
− pg

(
η(x)

)
+ qg(x)

∥∥∥ ≤ ε, (3.7)

with η := ξ−1. Hence, according to [22, Theorem 2], there exists a function F : S → X
satisfying (1.6) and inequality (3.1), with M = M2. Now, it is enough to note that F is a
solution to (1.2), as well.

Finally, if (iii) holds, then it is enough to use [22, Theorem 2] and Theorem 1.4 (the
case of (β)).
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The statement concerning uniqueness results from [22, Proposition 1].

Remark 3.2. If |ai| = 1 for some i ∈ {1, 2} (or, equivalently, |ai| = |q| for some i ∈ {1, 2}), then
(1.2) can be nonstable, by which we mean that there is a function g : S → X such that (1.7)
holds with some real ε and supx∈S‖g(x) − f(x)‖ = ∞ for each solution f : S → X of (1.2)
(see, e.g., [28], [22, Example 1], or [29]).

Remark 3.3. Note that, in the case where p, q, a1, a2 are real numbers, we have

(|a1| − 1)(|a2| − 1) =
∣∣q∣∣ + 1 − p0 (3.8)

with

p0 := |a1| + |a2| =

⎧
⎪⎨
⎪⎩

∣∣p∣∣, if q > 0,
√
p2 − 4q, if q < 0.

(3.9)

4. Some Critique and Final Remarks

Functional equation (1.2) has been patterned on difference equation (1.4). However, if we
want to apply the results of Theorems 1.1–3.1 to the Lucas sequences we come across two
obstacles. The first one concerns the domain of ξ and arises from the difference equation (1.4)
being written in “wrong” historical form, inconsistent with the general concept of functional
equations. Actually it should be written as the functional equation

f(x + 2) = pf(x + 1) − qf(x), (4.1)

which corresponds to (1.6). The second obstacle is connected with the restrictions on ai. For
some interesting cases (Fibonacci, Lucas, or Pell numbers), we have |a1| < 1 < |a2| (or, if
somebody prefers, |a2| < 1 < |a1|) and such case is not covered if ξ is not bijective (which is
the case when S = N0 and ξ(x) = x − 1 or, equivalently, η(x) = x + 1). All these obstacles can
be overcome if, instead of Theorems 1.1–3.1, we use the following result derived from [29,
Theorem 2.3].

Proposition 4.1. Let ε > 0, ai ∈ K, and |ai|/= 1 for i = 1, 2, g : S → X, and

sup
x∈S

∥∥g(x + 2) − pg(x + 1) + qg(x)
∥∥ < ε. (4.2)

Then there is a solution f : S → X of (4.1) that satisfies (1.8).

For instance, if p = 1 and q = −1 (the case of the Fibonacci and Lucas numbers), we
have the following.

Corollary 4.2. Let p = 1, q = −1, ε > 0, and {αn}n∈N0
be a sequence in X with

sup
n∈N0

∥∥αn+2 − pαn+1 + qαn

∥∥ ≤ ε. (4.3)
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Then there is a sequence {βn}n∈N0
in X such that

βn+2 = pβn+1 − qβn, n ∈ N0,

sup
n∈N0

∥∥αn − βn
∥∥ ≤

(
2 +

√
5
)
ε.

(4.4)

Proof. Note that (|a1| − 1)(|a2| − 1) = 2 − √
5. Thus, by Proposition 4.1, there is a sequence

{βn}n∈N0
in X such that (4.4) is valid.

Remark 4.3. If p = 1 and q = −2 (the case of Jacobsthal numbers), then one of the roots of
(1.1) is equal to −1 and therefore (4.1) is not stable (see [28]), by which we mean that, for
each ε > 0, there is g : S → X such that supx∈S‖g(x + 2) − pg(x + 1) + qg(x)‖ < ε and
supx∈S‖g(x) − f(x)‖ = ∞ for every solution f : S → X of (1.6); for S = N0 such function g
can be chosen with, for example, g(0) = 0 and g(1) = 1 (in [28, the proofs of Lemma 2 and
Theorem 4] take y0 := 1).
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