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We deal with the approximate controllability for the nonlinear functional differential equation
governed by the variational inequality in Hilbert spaces and present a general theorems under
which previous results easily follow. The common research direction is to find conditions on the
nonlinear term such that controllability is preserved under perturbation.

1. Introduction

Let H and V be two complex Hilbert spaces. Assume that V is a dense subspace in H and
the injection of V into H is continuous. If H is identified with its dual space, we may write
V ⊂ H ⊂ V ∗ densely and the corresponding injections are continuous. The norm on V , H,
and V ∗ will be denoted by ‖ · ‖, | · |, and ‖ · ‖∗, respectively. The duality pairing between the
element v1 of V ∗ and the element v2 of V is denoted by (v1, v2), which is the ordinary inner
product in H if v1, v2 ∈ H. For l ∈ V ∗, we denote (l, v) by the value l(v) of l at v ∈ V . We
assume that V has a stronger topology than H and, for the brevity, we may regard that

‖u‖∗ ≤ |u| ≤ ‖u‖, ∀u ∈ V. (1.1)

Let A be a continuous linear operator from V into V ∗ which is assumed to satisfy Gårding’s
inequality, and let φ : V → (−∞,+∞] be a lower semicontinuous, proper convex function,
and h : R

+ × V × U → H is a nonlinear mapping. Let U be some Hilbert space
and the controller operator B a bounded linear operator from U to H. Then we study
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the following variational inequality problem with nonlinear term:

(
x′(t) +Ax(t), x(t) − z

)
+ φ(x(t)) − φ(z)

≤
(∫ t

0
k(t − s)h(s, x(s), u(s))ds + Bu(t), x(t) − z

)

, a.e., ∀z ∈ V,

x(0) = x0.

(NDE)

Noting that the subdifferential operator ∂φ is defined by

∂φ(x) =
{
x∗ ∈ V ∗;φ(x) ≤ φ

(
y
)
+
(
x∗, x − y

)
, y ∈ V

}
, (1.2)

where (·, ·) denotes the duality pairing between V ∗ and V , the problem (NDE) is represented
by the following nonlinear functional differential problem:

x′(t) +Ax(t) + ∂φ(x(t)) �
∫ t

0
k(t − s)h(s, x(s), u(s))ds + Bu(t), 0 < t,

x(0) = x0.

(NCE)

The existence and regularity for the parabolic variational inequality in the linear case
( h ≡ 0), which was first investigated by Brézis [1, 2], have been developed as seen in Barbu
[4, Section 4.3.2] (also see [4, Section 4.3.1]). The regularity for the nonlinear variational
inequalities of semilinear parabolic type was studied in [5].

The solution (NCE) is denoted by x(T ;φ, h, u) corresponding to the nonlinear term
h and the control u. The system (NCE) is said to be approximately controllable in the time
interval [0, T], if for every given final state x1 ∈ H, T > 0, and ε > 0, there is a control
function u ∈ L2(0, T ;U) such that |x(T ;φ, h, u) − x1| < ε. Investigations of controllability of
semilinear systems found in [6, 7] have been studied by many [6–10], which is shown the
relation between the reachable set of the semilinear system and that of its corresponding.

In [7, 11], they dealt with the approximate controllability of a semilinear control system
as a particular case of sufficient conditions for the approximate solvability of semilinear
equations by assuming that

(1) S(t) is compact operator, or the embedding D(A) ⊂ V is compact;

(2) h(·, x, u) is (locally) Lipschitz continuous (or the sublinear growth condition and
limn→∞(|h(·, x, u)|/‖(x, u)‖) = 0);

(3) the corresponding linear system (NCE) in case where h ≡ 0 and φ ≡ 0 is
approximately controllable.

Yamamoto and Park [12] studied the controllability for parabolic equations with
uniformly bounded nonlinear terms instead of assumptions mentioned above. As for the
some considerations on the trajectory set of (NCE) and that of its corresponding linear system
(in case h ≡ 0) as matters connected with (3), we refer to Naito [10] and Sukavanam and
Tomar [13], and references therein. In [13] and Zhou [14], they studied the control problems
of the semilinear equations by assuming (1), (3), a Lipschitz continuity of G, and a range
condition of the controller B with an inequality constraint.
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In this paper, we no longer require the compact property in (1), the uniform
boundedness in (2), and the inequality constraint on the range condition of the controller
B, but instead we need the regularity and a variation of solutions of the given equations.
For the basis of our study, we construct the fundamental solution and establish variations of
constant formula of solutions for the linear systems.

This paper is composed of four sections. Section 2 gives assumptions and notations. In
Section 3, we introduce the single valued smoothing system corresponding to (NCE). Then
in Section 4, the relations between the reachable set of systems consisting of linear parts
and possibly nonlinear perturbations are addressed. From these results, we can obtain the
approximate controllability for (NCE), which is the extended result of [10, 13, 14] to (NCE).

2. Solvability of the Nonlinear Variational Inequality Problems

Let a(·, ·) be a bounded sesquilinear form defined in V×V and satisfying Gårding’s inequality:

Re a(u, u) ≥ ω1‖u‖2 −ω2|u|2, (2.1)

where ω1 > 0 and ω2 is a real number. Let A be the operator associated with the sesquilinear
form a(·, ·):

(Au, v) = a(u, v), u, v ∈ V. (2.2)

Then A is a bounded linear operator from V to V ∗ by the Lax-Milgram theorem. The
realization for the operator A inH which is the restriction of A to

D(A) = {u ∈ V ;Au ∈ H} (2.3)

is also denoted by A. We also assume that there exists a constant C0 such that

‖u‖ ≤ C0‖u‖1/2D(A)|u|1/2 (2.4)

for every u ∈ D(A), where

‖u‖D(A) =
(
|Au|2 + |u|2

)1/2
(2.5)

is the graph norm of D(A). Thus, in terms of the intermediate theory, we may assume that

(D(A),H)1/2,2 = V, (2.6)

where (D(A),H)1/2,2 denotes the real interpolation space between D(A) and H.
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Lemma 2.1. Let T > 0. Then

H =

{

x ∈ V ∗ :
∫T

0

∥
∥
∥AetAx

∥
∥
∥
2

∗
dt < ∞

}

. (2.7)

Proof. Put u(t) = etAx for x ∈ H. Then,

u′(t) = Au(t), u(0) = x. (2.8)

As in [15, Theorem 4.1, Chapter 4], the solution u belongs to L2(0, T ;V )∩W1,2(0, T ;V ∗); hence
we obtain that

∫T

0

∥∥∥AetAx
∥∥∥
2

∗
dt =

∫T

0

∥∥u′(s)
∥∥2
∗ds < ∞. (2.9)

Conversely, suppose that x ∈ V ∗ and
∫T
0 ‖AetAx‖2∗dt < ∞. Put u(t) = etAx. Then since A is an

isomorphism operator from V to V ∗, there exists a constant c > 0 such that

∫T

0
‖u(t)‖2dt ≤ c

∫T

0
‖Au(t)‖2∗dt = c

∫T

0

∥∥∥AetAx
∥∥∥
2

∗
dt. (2.10)

From the assumptions and u̇(t) = AetAx, it follows that

u ∈ L2(0, T ;V ) ∩W1,2(0, T ;V ∗) ⊂ C([0, T];H). (2.11)

Therefore, x = u(0) ∈ H.

By Lemma 2.1, from Butzer and Berens [16, Theorem 3.5.3], we can see that

(V, V ∗)1/2,2 = H. (2.12)

It is known that A generates an analytic semigroup S(t) in both H and V ∗. The
following Lemma is from [17, Lemma 3.6.2].

Lemma 2.2. There exists a constant M > 0 such that the following inequalities hold for all t > 0 and
every x ∈ H:

|S(t)x| ≤ M|x|, ‖S(t)x‖ ≤ Mt−1/2|x|. (2.13)
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Lemma 2.3. Suppose that k ∈ L2(0, T ;H) and x(t) =
∫ t
0S(t − s)k(s)ds for 0 ≤ t ≤ T . Then there

exists a constant C2 such that

‖x‖L2(0,T ;D(A)) ≤ C1‖k‖L2(0,T ;H), (2.14)

‖x‖L2(0,T ;H) ≤ C2T‖k‖L2(0,T ;H), (2.15)

‖x‖L2(0,T ;V ) ≤ C2
√
T‖k‖L2(0,T ;H). (2.16)

Proof. The assertion (2.14) is immediately obtained by virtue of [8, Theorem 3.3] (or [7,
Theorem 3.1]). Since

‖x‖2L2(0,T ;H) =
∫T

0

∣
∣
∣
∣∣

∫ t

0
S(t − s)k(s)ds

∣
∣
∣
∣∣

2

dt ≤ M

∫T

0

(∫ t

0
|k(s)|ds

)2

dt

≤ M

∫T

0
t

∫ t

0
|k(s)|2dsdt ≤ M

T2

2

∫T

0
|k(s)|2ds,

(2.17)

it follows that

‖x‖L2(0,T ;H) ≤ T

√
M

2
‖k‖L2(0,T ;H). (2.18)

From (2.4), (2.14), and (2.15), it holds that

‖x‖L2(0,T ;V ) ≤ C0

√
C1T

(
M

2

)1/4

‖k‖L2(0,T ;H). (2.19)

So, if we take a constant C2 > 0 such that

C2 = max

⎧
⎨

⎩

√
M

2
, C0

√
C1

(
M

2

)1/4
⎫
⎬

⎭
, (2.20)

the proof is complete.

Let h : R+ × V ×U → H be a nonlinear mapping satisfying the following:

(G1) for any x ∈ V , u ∈ U, the mapping h(·, x, u) is strongly measurable;

(G2) there exist positive constants L0, L1, L2 such that

(i) |h(t, x, u) − h(t, x̂, û)| ≤ L1‖x − x̂‖ + L2‖u − û‖U,
(ii) |h(t, 0, 0)| ≤ L0 for all t ∈ R

+, x, x̂ ∈ V , and u, û ∈ U.
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For x ∈ L2(0, T ;V ), we set

G(t, x, u) =
∫ t

0
k(t − s)h(s, x(s), u(s))ds, (2.21)

where k belongs to L2(0, T).

Lemma 2.4. Let x ∈ L2(0, T ;V ) and u ∈ L2(0, T ;U) for any T > 0. Then G(·, x, u) ∈ L2(0, T ;H)
and

‖G(·, x, u)‖L2(0,T ;H) ≤
L0‖k‖L2(0,T)T√

2
+ ‖k‖L2(0,T)

√
T
(
L1‖x‖L2(0,T ;V ) + L2‖u‖L2(0,T ;U)

)
. (2.22)

Moreover, if x, x̂ ∈ L2(0, T ;V ), then

‖G(·, x, u) −G(·, x̂, û)‖L2(0,T ;H) ≤ ‖k‖L2(0,T)

√
T
(
L1‖x − x̂‖L2(0,T ;V ) + L2‖u − û‖L2(0,T ;U)

)
. (2.23)

Proof. From (G1), (G2), and using the Hölder inequality, it is easily seen that

‖G(·, x, u)‖L2(0,T ;H) ≤ ‖G(·, 0, 0)‖ + ‖G(·, x, u) −G(·, 0, 0)‖

≤
⎛

⎝
∫T

0

∣∣∣∣∣

∫ t

0
k(t − s)h(s, 0, 0)ds

∣∣∣∣∣

2

dt

⎞

⎠

1/2

+

⎛

⎝
∫T

0

∣∣∣∣∣

∫ t

0
k(t − s){h(s, x(s), u(s)) − h(s, 0, 0)}ds

∣∣∣∣∣

2

dt

⎞

⎠

1/2

≤
L0‖k‖L2(0,T)T√

2
+ ‖k‖L2(0,T)

√
T‖h(·, x, u) − h(·, 0, 0)‖L2(0,T ;H)

≤
L0‖k‖L2(0,T)T√

2
+ ‖k‖L2(0,T)

√
T
(
L1‖x‖L2(0,T ;V ) + L2‖u‖L2(0,T ;U)

)
.

(2.24)

The proof of (2.23) is similar.

By virtue of [5, Theorems 3.1 and 3.2], we have the following result on the solvability
of (NDE) (see [3, 15] in case of corresponding to equations with h ≡ 0).

Proposition 2.5. Let the assumptions (G1) and (G2) be satisfied. Assume that (x0, u) ∈ D(φ) ×
L2(0, T ;U), where D(φ) stands for the closure in H of the set D(φ) = {u ∈ V : φ(u) < ∞}. Then,
(NDE) has a unique solution

x ∈ L2(0, T ;V ) ∩W1,2(0, T ;V ∗) ⊂ C([0, T];H), (2.25)
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and there exists a constant C3 depending on T such that

‖x‖L2∩W1,2∩C ≤ C3

(
1 + |x0| + ‖u‖L2(0,T ;U)

)
. (2.26)

3. Smoothing System Corresponding to (NDE)

For every ε > 0, define

φε(x) = inf

{∥∥x − y
∥
∥2
∗

2ε
+ φ

(
y
)
: y ∈ H

}

. (3.1)

Then the function φε is Fréchet differentiable onH, and its Fréhet differential ∂φε is Lipschitz
continuous onH with Lipschitz constant ε−1,where ∂φε = ε−1(I−(I + ε∂φ)−1) as is seen in [4,
Corollary 2.2, Chapter II]. It is also well known results that limε→ 0φε = φ and limε→ 0∂φε(x) =
(∂φ)0(x) for every x ∈ D(∂φ), where (∂φ)0 : H → H is the minimum element of ∂φ.

Now, we introduce the smoothing system corresponding to (NCE) as follows.

x′(t) +Ax(t) + ∂φε(x(t)) = G(t, x, u) + Bu(t), 0 < t ≤ T,

x(0) = x0.
(SCE)

Since A generates a semigroup S(t) on H, the mild solution of (SCE) can be represented by

xε(t) = S(t)x0 +
∫ t

0
S(t − s)

{
G(s, xε, u) + Bu(s) − ∂φε(xε(s))

}
ds. (3.2)

In virtue of Proposition 2.5, we know that if the assumptions (G1-G2) are satisfied then
for every x0 ∈ H and every u ∈ L2(0, T ;U), (SCE) has a unique solution

x ∈ L2(0, T ;V ) ∩W1,2(0, T ;V ∗) ∩ C([0, T];H), (3.3)

and there exists a constant C4 depending on T such that

‖x‖L2∩W1,2∩C ≤ C4

(
1 + |x0| + ‖u‖L2(0,T ;U)

)
. (3.4)

Now, we assume the hypothesis that V ⊂ D(∂φ) and (∂φ)0 is uniformly bounded, that
is,

∣∣∣
(
∂φ
)0
x
∣∣∣ ≤ M1, x ∈ H. (A)

Lemma 3.1. Let xε and xλ be the solutions of (SCE)with same control u. Then there exists a constant
C independent of ε and λ such that

‖xε − xλ‖C([0,T];H)∩L2(0,T ;V ) ≤ C(ε + λ), 0 < T. (3.5)
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Proof. For given ε, λ > 0, let xε and xλ be the solutions of (SCE) corresponding to ε and λ,
respectively. Then from (SCE), we have

x′
ε(t) − x′

λ(t) +A(xε(t) − xλ(t)) + ∂φε(xε(t)) − ∂φλ(xλ(t)) = G(t, xε, u) −G(t, xλ, u), (3.6)

and hence, from (2.13) and multiplying by xε(t) − xλ(t), it follows that

1
2
d

dt
|xε(t) − xλ(t)|2 +ω1‖xε(t) − xλ(t)‖2 +

(
∂φε(xε(t)) − ∂φλ(xλ(t)), xε(t) − xλ(t)

)

≤ (G(t, xε, u) −G(t, xλ, u), xε(t) − xλ(t)) +ω2|xε(t) − xλ(t)|2.
(3.7)

Let us choose a constant c > 0 such that 2ω1 − cL2
1‖k‖2L2(0,T) > 0. Then by (G1), we have

(G(t, xε, u) −G(t, xλ, u), xε(t) − xλ(t))

≤ |G(t, xε, u) −G(t, xλ, u)| · |xε(t) − xλ(t)|

≤
cL2

1‖k‖2L2(0,T)

2

∫T

0
‖xε(t) − xλ(t)‖2dt + 1

2c
|xε(t) − xλ(t)|2.

(3.8)

Integrating (3.7) over [0, T] and using the monotonicity of ∂φ, we have

1
2
|xε(t) − xλ(t)|2 +

⎛

⎝ω1 −
cL2

1‖k‖2L2(0,T)

2

⎞

⎠
∫T

0
‖xε(t) − xλ(t)‖2dt

≤
∫T

0

(
∂φε(xε(t)) − ∂φλ(xλ(t)), λ∂φλ

(
xλ(t) − ε∂φε(xε(t))

))
dt

+
(

1
2c

+ω2

)∫T

0
|xε(t) − xλ(t)|2dt.

(3.9)

Here, we used

∂φε(xε(t)) = ε−1
(
xε(t) −

(
I + ε∂φ

)−1
xε(t)

)
. (3.10)

Since |∂φε(x)| ≤ |(∂φ)0x| for every x ∈ D(∂φ), it follows from (A) and using Gronwall’s
inequality that

‖xε − xλ‖C([0,T];H)∩L2(0,T ;V ) ≤ C(ε + λ), 0 < T. (3.11)

Theorem 3.2. Let the assumptions (G1-G2) and (A) be satisfied. Then x = limε→xε in L2(0, T ;V )∩
C([0, T];H) is a solution of (NCE), where xε is the solution of (SCE).
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Proof. In virtue of Lemma 3.1, there exists x(·) ∈ L2(0, T ;V ) such that

xε(·) −→ x(·) in L2(0, T ;V ) ∩ C([0, T];H). (3.12)

From (G1-G2), it follows that

G(·, xε, ·) −→ G(·, x, ·), strongly in L2(0, T ;H),

Axn −→ Ax, strongly in L2(0, T ;V ∗).
(3.13)

Since ∂φε(xε) are uniformly bounded by assumption (A), from (3.13)we have that

d

dt
xε −→ d

dt
x, weakly in L2(0, T ;V ∗), (3.14)

therefore,

∂φε(xε) −→ G(·, x, ·) + k − x′ −Ax, weakly in L2(0, T ;V ∗). (3.15)

Note that ∂φε(xε) = ε−1(I − (I + ε∂φ)−1)(xε). Since (I + ε∂φ)−1 xε → x strongly and ∂φ is
demiclosed, we have that

G(·, x, ·) + k − x′ −Ax ∈ ∂φ(x), in L2(0, T ;V ∗). (3.16)

Thus we have proved that x(t) satisfies a.e. on (0, T) (NCE).

4. Controllability of the Nonlinear Variational Inequality Problems

Let x(T ;φ, g, u) be a state value of the system (SCE) at time T corresponding to the function
φ, the nonlinear term g, and the control u. We define the reachable sets for the system (SCE)
as follows:

RT (h) =
{
x
(
T ;φ, h, u

)
: u ∈ L2(0, T ;U)

}
,

RT (0) =
{
x
(
T ;φ, 0, u

)
: u ∈ L2(0, T ;U)

}
,

LT (0) =
{
x(T ; 0, 0, u) : u ∈ L2(0, T ;U)

}
.

(4.1)

Definition 4.1. The system (NCE) is said to be approximately controllable in the time interval
[0, T] if for every desired final state x1 ∈ H and ε > 0, there exists a control function u ∈
L2(0, T ;U) such that the solution x(T ;φ, h, u) of (NCE) satisfies |x(T ;φ, h, u) − x1| < ε, that
is, if RT (h) = H, where RT (h) is the closure of RT (h) in H, then the system (NCE) is called
approximately controllable at time T .
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We need the following hypothesis:
for any ε > 0 and p ∈ L2(0, T ;H), there exists a u ∈ L2(0, T ;U) such that

∣
∣
∣Ŝp − ŜBu

∣
∣
∣ < ε,

‖Bu‖L2(0,t;H) ≤ q1
∥
∥p
∥
∥
L2(0,t;H), 0 ≤ t ≤ T,

(B)

where q1 is a constant independent of p.
As seen in [18], we obtain the following results.

Proposition 4.2. Under the assumptions (G1-G2), (A), and (B), the following system

y′(t) +Ay(t) + ∂φε

(
y(t)

)
= Bu(t), 0 < t ≤ T,

y(0) = x0.
(4.2)

is approximately controllable on [0, T], that is, RT (0) = H.

Let u ∈ L1(0, T ;U). Then it is well-known that

lim
h→ 0

h−1
∫h

0
‖u(t + s) − u(t)‖Uds = 0 (4.3)

for almost all point of t ∈ (0, T).

Definition 4.3. The point t which permits (4.3) to hold is called the Lebesgue point of u.

Let xε(T ;φ, h, u) be a solution of (SCE) such that x(T ;φ, h, u) = limε→xε(T ;φ, h, u)
in L2(0, T ;V ) ∩ W1,2(0, T ;V ∗) ⊂ C([0, T];H) is a solution of (NCE). First we consider the
approximate controllability of the system (SCE) in case where the controller B is the identity
operator on H under the Lipschitz conditions (G1-G2) on the nonlinear operator h in
Proposition 4.2. So, H = U obviously.

Proposition 4.4. Let y(t) be solution of (4.2) corresponding to a control u. Then there exists a v ∈
L2(0, T ;H) such that

v(t) = u(t) −G
(
t, y, v

)
, 0 < t ≤ T

v(0) = u(0).
(4.4)

Proof. Let T0 be a Lebesgue point of u, v so that

L2
√
T0‖k‖L2(0,T0) < 1. (4.5)
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For a given u ∈ L2(0, T ;H), we define a mapping

Y : L2(0, T ;H) −→ L2(0, T ;H) (4.6)

by

(Yv)(t) = u(t) −G
(
t, y(t), v(t)

)
, 0 < t ≤ T0. (4.7)

It follows readily from definition of W and Lemma 2.4 that

‖Yv1 − Yv2‖L2(0,T0;H) =
∥∥G

(·, y, v2
) −G

(·, y, v1
)∥∥

L2(0,T0;H)

≤ L2
√
T0‖k‖L2(0,T0)‖v2 − v1‖L2(0,T0;H).

(4.8)

By a well-known contraction mapping principle, Y has a unique fixed point v in
L2(0, T0;H) if the condition (4.5) is satisfied. Let

v(t) = u(t) −G
(
t, y(t), v(t)

)
. (4.9)

Then from (G1-G2), Lemma 2.4, and Proposition 2.5, it follows that

‖v‖L2(0,T0;H) ≤
∥∥G

(·, y, v) + u
∥∥
L2(0,T0;H)

≤
√
T0‖k‖L2(0,T0)

(
L1
∥∥y

∥∥
L2(0,T0;V ) + L2‖v‖L2(0,T0;H)

)

+ ‖G(·, 0, 0) + u‖L2(0,T0;H)

≤
√
T0‖k‖L2(0,T0)

{
L1C3

(
|x0| + ‖u‖L2(0,T0;U)

)

+L2‖v‖L2(0,T0;H)

}
+ ‖G(·, 0, 0) + u‖L2(0,T0;H).

(4.10)

Thus, from which, we have

‖v‖L2(0,T0;H) ≤
(
1 − L2

√
T0‖k‖L2(0,T0)

)−1{√
T0‖k‖L2(0,T0)L1C3

(
|x0| + ‖u‖L2(0,T ;U)

)

+‖G(·, 0, 0) + u‖L2(0,T0;H)

}
.

(4.11)
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And we obtain

|v(T0)| =
∣
∣G
(
T0, y(T0), v(T0)

) − u(T0)
∣
∣

≤
∣
∣
∣
∣
∣

∫T0

0
k(T0 − s)

{
h
(
s, y(s), v(s) − h(s, 0, 0)

)}
ds

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫T0

0
k(T0 − s)h(s, 0, 0)ds + u(T0)

∣
∣
∣
∣
∣

≤ ‖k‖L2(0,T0)

∥
∥h
(·, y, v) − h(·, 0, 0)∥∥L2(0,T0;H) + L0‖k‖L2(0,T0)

√
T0 + |u(T0)|

≤ ‖k‖L2(0,T0)

(
L1
∥
∥y

∥
∥
L2(0,T0;V ) + L2‖v‖L2(0,T0;H) + L0

√
T0
)
+ |u(T0)|.

(4.12)

If 2T0 is a Lebesgue point of u, v, then we can solve the equation in [T0, 2T0] with the initial
value v(T0) and obtain an analogous estimate to (4.10) and (4.12). If not, we can choose T1 ∈
[T0, 2T0] to be a Lebesgue point of u, v. Since the condition (4.5) is independent of initial
values, the solution can be extended to the interval [T1, T1 + T0], and so we have showed that
there exists a v ∈ L2(0, T ;H) such that v(t) = u(t) −G(t, y(t), v(t)).

Now, we consider the approximate controllability for the following semilinear control
system in case where B is the identity operator,

z′(t) +Az(t) + ∂φε(z(t)) = G(t, z, v) + v(t), 0 < t ≤ T,

z(0) = x0.
(4.13)

Let us define the reachable sets for the system (4.13) as follows:

rT (h) =
{
z
(
T ;φ, h, u

)
: u ∈ L2(0, T ;U)

}
,

rT (0) =
{
z
(
T ;φ, 0, u

)
: u ∈ L2(0, T ;U)

}
.

(4.14)

Theorem 4.5. Under the assumptions (G1-G2), (A), and (B), we have

rT (0) ⊂ rT (h). (4.15)

Therefore, if the system (4.2) with h = 0 is approximately controllable, then so is the semilinear system
(4.13).

Proof. Let v(t) = u(t) − G(t, y(t), v(t)) and let y = z(T ;φ, 0, u) be a solution of (4.2)
corresponding to a control u. Consider the following semilinear system:

z′(t) +Az(t) + ∂φε(z(t)) = G(t, z(t), v(t)) + u(t) −G
(
t, y(t), v(t)

)
, 0 < t ≤ T,

z(0) = x0.
(4.16)
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The solution of (4.2) and (4.16), respectively, can be written as

y(t) = S(t)x0 +
∫ t

0
S(t − s)

{
u(s) − ∂φε(z(s))

}
ds,

z(t) = S(t)x0 +
∫ t

0
S(t − s)

{
u(s) − ∂φε(z(s))

}
ds

+
∫ t

0
S(t − s)

{
G(s, z(s), v(s)) −G

(
s, y(s), v(s)

)}
ds.

(4.17)

Then from Proposition 2.5, it is easily seen that z(·) ∈ C([0, T];H), that is, z(s) → z(t) as
s → t inH. Let δ > 0 be given. For δ ≤ t, set

zδ(t) = S(t)x0 +
∫ t−δ

0
S(t − s)

{
u(s) − ∂φε

(
zδ(s)

)}
ds

+
∫ t−δ

0
S(t − s)

{
G
(
s, zδ(s), v(s)

)
−G

(
s, y(s), v(s)

)}
ds.

(4.18)

Then we have

z(t) − zδ(t) =
∫ t

t−δ
S(t − s)

{
u(s) − ∂φε(z(s))

}
ds −

∫ t

t−δ
S(t − s)G

(
s, y(s), v(s)

)
ds

+
∫ t

t−δ
S(t − s)G(s, z(s), v(s))ds

+
∫ t−δ

0
S(t − s)

{
∂φε(z(s)) − ∂φε

(
zδ(s)

)}
ds

+
∫ t−δ

0
S(t − s)

{
G(s, z(s), v(s)) −G

(
s, zδ(s), v(s)

)}
ds.

(4.19)

So, for fixing ε > 0, we choose some constant T1 > 0 satisfying

C2

√
T1
(
L1‖k‖L2(0,T) + ε−1

)
< 1, (4.20)

and from (2.13), or (2.16) it follows that

∥∥∥z − zδ
∥∥∥
L2(0,T1;V )

≤ C2

√
δ
(
M1 + ‖u‖L2(0,T1;H)

)
+ C2L1

√
δ‖k‖L2(0,T)

∥∥z − y
∥∥
L2(0,T1;V )

+ C2

√
T1
(
L1‖k‖L2(0,T) + ε−1

)∥∥∥z − zδ
∥∥∥
L2(0,T1;V )

.

(4.21)
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Thus, we know that zδ → z as δ → 0 in L2(0, T1;V ) for δ < t < T1. Noting that

zδ(t) − y(t) = −
∫ t

t−δ
S(t − s)

{
u − ∂φε(z(s))

}
ds

+
∫ t

t−δ
S(t − s)

{
∂φε(z(s)) − ∂φε

(
zδ(s)

)}
ds

+
∫ t−δ

0
S(t − s)

{
G
(
s, zδ(s), v(s)

)
−G

(
s, y(s), v(s)

)}
ds,

(4.22)

from (2.13), or (2.16), it follows that

∥
∥
∥zδ − y

∥
∥
∥
L2(0,T1;V )

= C2

√
δ
∥
∥u − ∂φε(z)

∥
∥
L2(0,T1;H) + C2

√
δε−1

∥
∥
∥z − zδ

∥
∥
∥
L2(0,T1;V )

+ C2

√
T1L1‖k‖L2(0,T)

∥∥∥zδ − y
∥∥∥
L2(0,T1;V )

.

(4.23)

Since the condition (4.20) is independent of δ, by the step by stem method, we get zδ → y as
δ → 0 in L2(0, T ;V ), for all δ < t < T . Therefore, noting that z(·), y(·) ∈ C([0, T ;H]), every
solution of the linear system with control u is also a solution of the semilinear system with
control v, that is, we have that rT (0) ⊂ rT (h) in case where B = I.

From now on, we consider the initial value problem for the semilinear parabolic
equation (SCE). Let U be some Banach space and let the controller operator B /= I be a
bounded linear operator fromU toH.

Theorem 4.6. Let us assume that there exists a constant β > 0 such that

‖Bu‖ ≥ β‖u‖ ∀u ∈ L2(0, T ;U), R(G) ⊂ R(B). (B1)

Assume that assumptions (G1-G2), (A), and (B) are satisfied. Then we have

RT (0) ⊂ RT (h), (4.24)

that is, the system (SCE) is approximately controllable on [0, T].

Proof. Let x be a solution of the smoothing system (SCE) corresponding to (NCE). Set v(t) =
u(t)−B−1G(t, y, v)where y is a solution of (4.2) corresponding to a control u. Then as seen in
Theorem 4.5, we know that v ∈ L2(0, T ;U). Consider the following semilinear system:

x′(t) +Ax(t) + ∂φε(x(t)) = G(t, x, v) + Bv(t)

= G(t, x, v) + Bu(t) −G
(
t, y, v

)
, 0 < t ≤ T,

z(0) = x0.

(4.25)
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If we define xδ as in proof of Theorem 3.2, then we get

xδ(t) − y(t) = −
∫ t

t−δ
S(t − s)

{
u − ∂φε(x(s))

}
ds

+
∫ t

t−δ
S(t − s)

{
∂φε(x(s)) − ∂φε

(
xδ(s)

)}
ds

+
∫ t−δ

0
S(t − s)

{
G
(
s, xδ, v(s)

)
−G

(
s, y, v(s)

)}
ds.

(4.26)

So, as similar to the proof of Theorem 3.2, we obtain that RT (0) ⊂ RT (h).

From Theorems 3.2 and 4.6, we obtain the following results.

Theorem 4.7. Under the assumptions (G1-G2), (A), (B), and (B1), the system (NCE) is approxi-
mately controllable on [0, T].
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