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We deal with the approximate controllability for the nonlinear functional differential equation
governed by the variational inequality in Hilbert spaces and present a general theorems under
which previous results easily follow. The common research direction is to find conditions on the
nonlinear term such that controllability is preserved under perturbation.

1. Introduction

Let H and V be two complex Hilbert spaces. Assume that V is a dense subspace in H and
the injection of V into H is continuous. If H is identified with its dual space, we may write
V ¢ H C V* densely and the corresponding injections are continuous. The norm on V, H,
and V* will be denoted by || - ||, | - |, and || - ||, respectively. The duality pairing between the
element v; of V* and the element v, of V is denoted by (v, v2), which is the ordinary inner
product in H if v1,v, € H. For I € V*, we denote (I, v) by the value I[(v) of l atv € V. We
assume that V has a stronger topology than H and, for the brevity, we may regard that

l[ull, < ul <lull, YueV. (1.1)

Let A be a continuous linear operator from V into V* which is assumed to satisfy Gérding’s
inequality, and let ¢ : V' — (—o0,+o0] be a lower semicontinuous, proper convex function,
and h : R* x V xU — H is a nonlinear mapping. Let U be some Hilbert space
and the controller operator B a bounded linear operator from U to H. Then we study
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the following variational inequality problem with nonlinear term:
(X&) + Ax(t), x(t) — z) + p(x(t)) - P(2)
< <J‘;k(t —s)h(s,x(s),u(s))ds + Bu(t), x(t) - z>, ae., VzeV, (NDE)
x(0) = xo.
Noting that the subdifferential operator d¢ is defined by
0p(x) = {x" € V5 9p(x) < dp(y) + (x",x-y), y €V}, (1.2)

where (-, -) denotes the duality pairing between V* and V, the problem (NDE) is represented
by the following nonlinear functional differential problem:

x'(t) + Ax(t) + 0(x(t)) 2 f;k(t —s)h(s,x(s),u(s))ds + Bu(t), 0<t, (NCE)

x(0) = xo.

The existence and regularity for the parabolic variational inequality in the linear case
( h = 0), which was first investigated by Brézis [1, 2], have been developed as seen in Barbu
[4, Section 4.3.2] (also see [4, Section 4.3.1]). The regularity for the nonlinear variational
inequalities of semilinear parabolic type was studied in [5].

The solution (NCE) is denoted by x(T; ¢, h, u) corresponding to the nonlinear term
h and the control u. The system (NCE) is said to be approximately controllable in the time
interval [0,T], if for every given final state x; € H, T > 0, and ¢ > 0, there is a control
function u € L?(0, T;U) such that |x(T; ¢, h,u) — x1| < e. Investigations of controllability of
semilinear systems found in [6, 7] have been studied by many [6-10], which is shown the
relation between the reachable set of the semilinear system and that of its corresponding.

In [7,11], they dealt with the approximate controllability of a semilinear control system
as a particular case of sufficient conditions for the approximate solvability of semilinear
equations by assuming that

(1) S(t) is compact operator, or the embedding D(A) C V is compact;

(2) h(-,x,u) is (locally) Lipschitz continuous (or the sublinear growth condition and
limy, . o (R (-, 2, 1) | /(| (x, 1) [[) = 0);

(3) the corresponding linear system (NCE) in case where h = 0 and ¢ = 0 is
approximately controllable.

Yamamoto and Park [12] studied the controllability for parabolic equations with
uniformly bounded nonlinear terms instead of assumptions mentioned above. As for the
some considerations on the trajectory set of (NCE) and that of its corresponding linear system
(in case h = 0) as matters connected with (3), we refer to Naito [10] and Sukavanam and
Tomar [13], and references therein. In [13] and Zhou [14], they studied the control problems
of the semilinear equations by assuming (1), (3), a Lipschitz continuity of G, and a range
condition of the controller B with an inequality constraint.
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In this paper, we no longer require the compact property in (1), the uniform
boundedness in (2), and the inequality constraint on the range condition of the controller
B, but instead we need the regularity and a variation of solutions of the given equations.
For the basis of our study, we construct the fundamental solution and establish variations of
constant formula of solutions for the linear systems.

This paper is composed of four sections. Section 2 gives assumptions and notations. In
Section 3, we introduce the single valued smoothing system corresponding to (NCE). Then
in Section 4, the relations between the reachable set of systems consisting of linear parts
and possibly nonlinear perturbations are addressed. From these results, we can obtain the
approximate controllability for (NCE), which is the extended result of [10, 13, 14] to (NCE).

2. Solvability of the Nonlinear Variational Inequality Problems

Let a(-,-) be abounded sesquilinear form defined in V' xV and satisfying Garding’s inequality:
Re a(u,u) > wi|ul* - waluf, (21)

where w; > 0 and w; is a real number. Let A be the operator associated with the sesquilinear
form a(-,-):

(Au,v) = a(u,v), wuveVv. (2.2)

Then A is a bounded linear operator from V to V* by the Lax-Milgram theorem. The
realization for the operator A in H which is the restriction of A to

D(A)={ueV;Aue H} (2.3)

is also denoted by A. We also assume that there exists a constant Cy such that

lull < Colluall iyl (2.4)
for every u € D(A), where
1/2
Il = (1AuP + jul’) (2.5)

is the graph norm of D(A). Thus, in terms of the intermediate theory, we may assume that

(D(A)/ H)1/2,2 =V, (2~6)

where (D(A), H), /,, denotes the real interpolation space between D(A) and H.
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Lemma 2.1. Let T > 0. Then

T 2
H= {xEV*:I ”Aemx dt<oo}. 2.7)
0 *

Proof. Put u(t) = e"Ax for x € H. Then,
u'(t) = Au(t), u(0)=x. (2.8)

Asin [15, Theorem 4.1, Chapter 4], the solution u belongs to L?(0, T; V)NW2(0, T; V*); hence
we obtain that

T 5 T
,[o ”AetAx”*dt = J‘o || (s) 2ds < 0. (2.9)

Conversely, suppose that x € V* and fgllAetAx||fdt < oo. Put u(t) = e"*x. Then since A is an
isomorphism operator from V to V*, there exists a constant ¢ > 0 such that

T T T 2
f||u(t)||2dtgcf ||Au(t)||fdt=cf ”Aefo dt. (2.10)
0 0 0 *

From the assumptions and i(t) = Ae'x, it follows that
u e L*(0,T;V)nW(0,T; V*) c C([0,T]; H). (2.11)

Therefore, x = u(0) € H. O

By Lemma 2.1, from Butzer and Berens [16, Theorem 3.5.3], we can see that

(V, V)15, = H. (2.12)

It is known that A generates an analytic semigroup S(t) in both H and V*. The
following Lemma is from [17, Lemma 3.6.2].

Lemma 2.2. There exists a constant M > 0 such that the following inequalities hold for all t > 0 and
every x € H:

|S(Hx| < Mix|,  [IS(t)x]| < Mt™?[x]. (2.13)
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Lemma 2.3. Suppose that k € L?(0,T; H) and x(t) = fgS(t —5)k(s)ds for 0 <t < T. Then there
exists a constant Cy such that

1112 0,7:00a)) < Callkllz20,780)/ (2.14)
%l 20,70y < CoT Mk 20,730y, (2.15)
¢l 20,70y < C2ﬁ|lk”L2(O,T;H)‘ (2.16)

Proof. The assertion (2.14) is immediately obtained by virtue of [8, Theorem 3.3] (or [7,

Theorem 3.1]). Since
2 T / o 2
dt < Mf <f |k(s)|ds> dt
0\Jo

T At TZ T
squmwwﬁmsm—fmwﬁm
0Jo 2 0

T
0

ItS(t— s)k(s)ds
0

elisorn = [
(2.17)

it follows that

M
%l 2076y < T V 7||k||L2(o,T;H)- (2.18)

From (2.4), (2.14), and (2.15), it holds that

M 1/4
Il < CoVET(% ) Ielisora: (219)

So, if we take a constant C, > 0 such that

1/4
C, = max{\/g, Co\/a<%> }, (2.20)

the proof is complete. O
Leth:R* xV xU — H be a nonlinear mapping satisfying the following:
(G1) for any x € V, u € U, the mapping h(-, x, u) is strongly measurable;
(G2) there exist positive constants Ly, L1, L, such that
(i) |h(t, x,u) = h(t, X, )| < Lallx = X|| + Lalju = ully,
(ii) |h(t,0,0)| < Lo forallt e R*, x,x € V,and u, i € U.
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For x € L?(0,T; V), we set

t

G(t,x,u) = f K(t - s)h(s, x(s), u(s))ds, (2.21)
0

where k belongs to L?(0, T).

Lemma 2.4. Let x € L*>(0,T; V) and u € L*(0,T;U) for any T > 0. Then G(-,x,u) € L*(0,T; H)
and

Lollkl 20, T
IGC, 2, W) 2070y < v + ||k||L2(o,T)\/T(L1||x||L2(o,T,-V) + L2||u”L2(0,T;U)>- (2.22)

Moreover, if x,x € L*(0,T; V), then
G, x,u) - G('/k\/ﬁ)”LZ(O,T;H) < ||k||L2(0,T)ﬁ<L1||x - 3AC||L2(O,T;V) + Loflu— a||L2(0,T;u)>- (2.23)

Proof. From (G1), (G2), and using the Holder inequality, it is easily seen that

IGC, %, w2010y S NG 0,00 + G, x, u) = G(,0,0)|

; ) N\ 12
(| @
0

T t
s <j f K(t - 5) (s, x(s),u(s)) - h(s,0,0)}ds
0 0

- Lollkll 20,y T
a V2
B Lollkll 20y T
a V2

’[tk(t —s)h(s,0,0)ds
0

y 1/2
dt> (2.24)

+ 1kl 2oy VT IR, x, 1) = B+, 0,0l 20710

+ ||k||L2(O,T)ﬁ<L1”xHLZ(O,T;V) + L2||”||L2(0,T,-u)>-

The proof of (2.23) is similar. O

By virtue of [5, Theorems 3.1 and 3.2], we have the following result on the solvability
of (NDE) (see [3, 15] in case of corresponding to equations with h = 0).

Proposition 2.5. Let the assumptions (G1) and (G2) be satisfied. Assume that (xo,u) € D(¢) x
L%(0,T; U), where D(¢) stands for the closure in H of the set D(¢) = {u € V : ¢(u) < oo}. Then,
(NDE) has a unique solution

x € L*(0,T; V) nW'(0,T; V*) c C([0,T]; H), (2.25)
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and there exists a constant Cz depending on T such that

Il 2ewi2ne < Cs (1 + |xo| + ||u||L2<o,T;U)>- (2.26)

3. Smoothing System Corresponding to (NDE)

For every € > 0, define

2
$e(x) :inf{@+¢(y) :yeH}. (3.1)

Then the function ¢, is Fréchet differentiable on H, and its Fréhet differential 0¢, is Lipschitz
continuous on H with Lipschitz constant e™!, where 0¢. = e} (I- (I + ea(i))_l) asisseenin [4,
Corollary 2.2, Chapter II]. It is also well known results that lim,_,g¢. = ¢ and lim._,0¢p(x) =
(09)°(x) for every x € D(0¢), where (8¢)° : H — H is the minimum element of d¢.

Now, we introduce the smoothing system corresponding to (NCE) as follows.

x'(t) + Ax(t) + 0 (x(t)) = G(t, x,u) + Bu(t), 0<t<T,
(SCE)
x(0) = xo.

Since A generates a semigroup S(t) on H, the mild solution of (SCE) can be represented by
t
xe(t) = S(t)x + f S(t - s){G(s, xe,u) + Bu(s) — 0 (xc(s)) }ds. (3.2)
0

In virtue of Proposition 2.5, we know that if the assumptions (G1-G2) are satisfied then
for every xo € H and every u € L*(0,T;U), (SCE) has a unique solution

x € L*(0,T; V)NnWY(0,T; V*)nC([0,T]; H), (3.3)
and there exists a constant C4 depending on T such that

el zerzne < Ca(1+ 1ol + el 2o ) (3.4)

Now, we assume the hypothesis that V ¢ D(d¢) and (3¢)" is uniformly bounded, that
is,

|(a¢)°x| <M, xeH. (A)

Lemma 3.1. Let x. and x, be the solutions of (SCE) with same control u. Then there exists a constant
C independent of € and \ such that

||x€ - xl\”c([O,T];H)ﬂLZ(O,T;V) S C(€ + )L), 0 < T (35)
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Proof. For given €,1 > 0, let x, and x, be the solutions of (SCE) corresponding to € and .,
respectively. Then from (SCE), we have

X, (1) — '\ (1) + A(xe(t) = x2(F)) + Ode (xe(£)) — O (x1(F)) = G(t, xe, u) — G(t, xy,u),  (3.6)

and hence, from (2.13) and multiplying by x.(t) — x,(¢), it follows that

3 el =5 (OF + w1l = x O + (0 (xe(8) = O (1 (B), xe(6) ~ 311 )
< (Gt xe,u) = Gt 23, 1), xe() = 22(D) +w2lxe () = 22D
Let us choose a constant ¢ > 0 such that 2w, — cL%||k||%2(0,T) > 0. Then by (G1), we have
(G(tr Xe, u) - G(tr X\, u)/ Xe (t) - X)L(t))
<Gt xe,u) = G(t, x1,u)| - |xe(F) = x4 (8)] (3.8)
cL3||k||7.
< —“”)f Ie(t) =2 (1Pt + o) ~ 2 ()
Integrating (3.7) over [0, T] and using the monotonicity of 0¢, we have
L2||k||7.
Se(® - x (O + <wl - M>[ e (t) - 1 8) Pt
! (39)
< | 0t ~ 0151 (0), 1001 (320 — e 0) ) '
T
+ <21_C + w2>f0 |xe(t) — x) (t)dt.
Here, we used
dpe(xe(t)) = €71 <x€(t) —(I+ ea(ﬁ)_lxe(t)). (3.10)

Since |0¢. (x)| < |(0¢) x| for every x € D(d¢), it follows from (A) and using Gronwall’s
inequality that

lxe = xallco ez orvy S Cle+4), 0<T. (3.11)

O

Theorem 3.2. Let the assumptions (G1-G2) and (A) be satisfied. Then x = lim,_, x. in L>(0,T; V)N
C([0,T]; H) is a solution of (NCE), where x. is the solution of (SCE).
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Proof. In virtue of Lemma 3.1, there exists x(-) € L2(0, T; V) such that
xe(-) — x(-) in L*(0,T; V) nC([0,T]; H). (3.12)
From (G1-G2), it follows that

G(-, x¢,7) — G(+,x,+), strongly in L2(O, T;H),

(3.13)
Ax, — Ax, strongly in L2(0,T; V*).
Since 0¢, (x.) are uniformly bounded by assumption (A), from (3.13) we have that
ixs — ix weakly in L?(0,T; V*) (3.14)
dt dt 4 4 7 7
therefore,
O¢e(xe) — G(-,x,) +k—x' - Ax, weakly in L*(0,T; V*). (3.15)

Note that d¢,.(x.) = € (I — (I +€dp)")(x.). Since (I +€dp)™" x. — x strongly and d¢ is
demiclosed, we have that

G(,x,) +k—-x'— Ax € 0¢(x), in L*(0,T; V™). (3.16)

Thus we have proved that x(t) satisfies a.e. on (0,T) (NCE). O

4. Controllability of the Nonlinear Variational Inequality Problems

Let x(T; ¢, g, u) be a state value of the system (SCE) at time T corresponding to the function
¢, the nonlinear term g, and the control u. We define the reachable sets for the system (SCE)
as follows:

Rr(h) = {x(T;ci), hou):uc L2(0,T;LI)},
Rr(0) = {x(T;¢,0,u) ‘ue LZ(O,T;U)}, (4.1)

Lr(0) = {x(:r;o,o,u) cu e LX0,T; U)}.

Definition 4.1. The system (NCE) is said to be approximately controllable in the time interval
[0, T] if for every desired final state x; € H and € > 0, there exists a control function u €
L?(0,T;U) such that the solution x(T; ¢, h,u) of (NCE) satisfies |x(T; ¢, h,u) — x1| < €, that
is, if Rr(h) = H, where Rr(h) is the closure of Rr(h) in H, then the system (NCE) is called
approximately controllable at time T.
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We need the following hypothesis:
forany e > 0and p € L*(0, T; H), there exists a u € L?(0, T; U) such that

|§p - §Bu| <g,
(B)
”Bu“LZ(O,t;H) < 1 ”P”Lz(o,t;H)/ 0<t< T/
where g, is a constant independent of p.
As seen in [18], we obtain the following results.
Proposition 4.2. Under the assumptions (G1-G2), (A), and (B), the following system
y'(t) + Ay(t) + 0 (y(t)) = Bu(t), 0<t<T,
(4.2)
y(0) = xo.
is approximately controllable on [0, T], that is, Rr(0) = H.
Let u € L'(0, T; U). Then it is well-known that
h
}llirr})hflj‘ llu(t +s) —u(t)||;ds =0 (4.3)
- 0

for almost all point of t € (0,T).
Definition 4.3. The point t which permits (4.3) to hold is called the Lebesgue point of u.

Let x.(T; ¢, h,u) be a solution of (SCE) such that x(T; ¢, h,u) = lim._ . (T;$, h,u)
in L2(0,T; V) n W2(0,T; V*) ¢ C([0,T]; H) is a solution of (NCE). First we consider the
approximate controllability of the system (SCE) in case where the controller B is the identity
operator on H under the Lipschitz conditions (G1-G2) on the nonlinear operator h in
Proposition 4.2. So, H = U obviously.

Proposition 4.4. Let y(t) be solution of (4.2) corresponding to a control u. Then there exists a v €
L%(0,T; H) such that
o(t) =u(t) - G(t,y,v), 0<t<T
v(0) = u(0).

(4.4)

Proof. Let Ty be a Lebesgue point of u, v so that

L2 \V TOHk”LZ(O,T[)) < 1. (4.5)
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For a given u € L?(0,T; H), we define a mapping

Y :L*(0,T; H) — L*(0,T; H) (4.6)

(Yo)(t) =u(t) - G(t y(t),v()), 0<t<T,. 4.7)
It follows readily from definition of W and Lemma 2.4 that

Y01 = Yoall 2oy = IGCo v, 02) = GGy, 00) | 2010

< LoV Tollkll 20, 192 = 01l 120,10 -

(4.8)

By a well-known contraction mapping principle, Y has a unique fixed point v in
L%(0,Ty; H) if the condition (4.5) is satisfied. Let

v(t) = u(t) - G(t, y (), 0(t)). (4.9)
Then from (G1-G2), Lemma 2.4, and Proposition 2.5, it follows that

100l 20,m60) < NG Gy 0) +ull 2o 1y
< \/]TOHk”LZ(O,Tg)<L1”y”L2(O,T0;V) + L2||U||L2(0,T0;H)>

+1G(-,0,0) + ull 20,131 (4.10)
< VTollkllzz 0. { 11 Ca (1ol + 1l 2o ) )

Lol 20 | +1GC,0,0) + wll 200
Thus, from which, we have

-1
ol < (1= LaVTollkllony)  {VTollkl o LiCa (1%l + Il o)
(4.11)

+G(-,0,0) + ull 20,131 }
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And we obtain
lo(To)| = |G(To, y(To), v(To)) — u(To)|

To
< k(To - s){h(s,y(s),v(s) — h(s,0,0)) }ds
0

(4.12)

To
+ J k(To — s)h(s,0,0)ds + u(Ty)
0

<lkll20m) 11 (v, 0) = 1, 0,0 2o 7y + LollKll 20,1V To + [1(To)|

< Iz 0 (LYl 2oy * Lalolizio o) + Lov/To) + [u(Ty)l.

If 2Ty is a Lebesgue point of u, v, then we can solve the equation in [Ty, 2T,] with the initial
value v(T) and obtain an analogous estimate to (4.10) and (4.12). If not, we can choose T; €
[To,2Tp] to be a Lebesgue point of u,v. Since the condition (4.5) is independent of initial
values, the solution can be extended to the interval [Ty, T; + Tg], and so we have showed that
there exists a v € L?(0, T; H) such that o(t) = u(t) — G(t, y(t), v(t)). O

Now, we consider the approximate controllability for the following semilinear control
system in case where B is the identity operator,

Z'(t) + Az(t) + 09 (z(1)) = G(t, z,0v) +v(t), 0<t<T,

(4.13)
z(0) = xg.
Let us define the reachable sets for the system (4.13) as follows:
rr(h) = {z(T;<;I>, hou):ue L2(O,T;LI)},
(4.14)
rr(0) = {Z(T;¢,0,u) ‘u€ LZ(O,T;LI)}.
Theorem 4.5. Under the assumptions (G1-G2), (A), and (B), we have
rr(0) C rr(h). (4.15)

Therefore, if the system (4.2) with h = 0 is approximately controllable, then so is the semilinear system
(4.13).

Proof. Let v(t) = u(t) — G(t,y(t),v()) and let y = z(T;¢,0,u) be a solution of (4.2)
corresponding to a control u. Consider the following semilinear system:

zZ/(t) + Az(t) + 0 (z(1)) = G(t, z(t), v(t)) + u(t) - G(ty(t),v(t)), O0<t<T, A
16
z(0) = xo. (+10)
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The solution of (4.2) and (4.16), respectively, can be written as
y(t) = S(H)xo + foS(t —s){u(s) — 0de(z(s))}ds,
z(t) = S(t)xg + ’[tS(t —s){u(s) — 0de(z(s))}ds (4.17)
0

t
s fosa —$){G(s,2(5),0(5)) — G(5,y(5), v(5)) }ds.

Then from Proposition 2.5, it is easily seen that z(-) € C([0,T]; H), that is, z(s) — z(t) as
s — tin H. Let 6 > 0 be given. For 6 < t, set

t-6
5 _ _ _ 9]
25(t) = S(t)xp + J'O S(t s){u(s) d¢be (z (s)) }ds
g (4.18)
S(t-s){1G(s,2°(s), - G(s,y(s), ds.
+JO (t s){ <s z°(s) v(s)> (s, y(s) v(s))} s
Then we have
t t
z(t) - 2%(t) = f S(t - s){u(s) — 0¢e(z(s)) }ds - I S(t-13)G(s,y(s),v(s))ds
t-6 t=6
t
+ J‘ S(t-15)G(s,z(s),v(s))ds
t-6
(4.19)
t-6 ] .
S(t—s){ 0e — O¢pe
«f S5 {0pz(e0) - 00 (7)) Jas
+ J‘t_ﬁs(t - s){G(s z(s),v(s)) - G(s 2%(s) v(s)) }ds.
0 7 7 7 4
So, for fixing € > 0, we choose some constant T; > 0 satisfying
CoVT (Lallkllzory +€7) < 1, (4.20)
and from (2.13), or (2.16) it follows that
1222 gy < C2VE(M + Willizoren) + CalaVBlIKlom 12 = Wiz wan)

+ CZ\/ITl<L1”k”L2(0,T) + €_l) “Z - 2°

2(0,1;v)
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Thus, we know that z° — zas 6 — 0in L2(0,T;; V) for 6 <t < Tj. Noting that

t
20(t) —y(t) = - L_éS(t - 5){u - 0¢(z(s)) }ds

+ f S(t - s) {ad)e(z(s)) — O <z5(s)> }ds (4.22)

t-6

+ ft_ﬁs(t —-5) {G(s, 28(s), v(s)) - G(s,y(s),v(s)) }ds,

0

from (2.13), or (2.16), it follows that

|-

= C2\/5||u — 0e(z) ||L2(0,T1;H) +Cy\V/6e™! ”z - 20

L2(0,Tv;V L2(0,T1;V)

(4.23)
+ Cz\/ﬁLlnkHLZ(o,T) ”26 -y

2(0,1;v)’

Since the condition (4.20) is independent of &, by the step by stem method, we get z° — y as
6 — 0in L?(0,T; V), for all 6 < t < T. Therefore, noting that z(-), y(-) € C([0,T; H]), every
solution of the linear system with control u is also a solution of the semilinear system with
control v, that is, we have that rr(0) C m in case where B = I. O

From now on, we consider the initial value problem for the semilinear parabolic
equation (SCE). Let U be some Banach space and let the controller operator B#1I be a
bounded linear operator from U to H.

Theorem 4.6. Let us assume that there exists a constant 3 > 0 such that
|Bu|| > llull Yue€L*0,T;U), R(G)cCR(B). (B1)
Assume that assumptions (G1-G2), (A), and (B) are satisfied. Then we have
Rr(0) ¢ Rr(h), (4.24)

that is, the system (SCE) is approximately controllable on [0, T].

Proof. Let x be a solution of the smoothing system (SCE) corresponding to (NCE). Set v(t) =
u(t) - B'G(t,y, v) where vy is a solution of (4.2) corresponding to a control u. Then as seen in
Theorem 4.5, we know that v € L?(0, T; U). Consider the following semilinear system:
xX'(t) + Ax(t) + 0 (x(t)) = G(t, x,v) + Bo(t)
=G(t,x,v) + Bu(t) - G(t,y,v), 0<t<T, (4.25)
z(0) = xo.
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If we define x° as in proof of Theorem 3.2, then we get

t
xO(t) - y(t) = —jtﬁs(t —5){u—0¢c(x(s))}ds

t
+ f S(t—s) {agbs(x(s)) — 0. <x5(5)> }ds (4.26)
t-6
t-6
+ S(t—s){G(s,x'S,v(s)> —G(s,y,v(s))}ds.
0
So, as similar to the proof of Theorem 3.2, we obtain that Rr(0) C Rr(h). O

From Theorems 3.2 and 4.6, we obtain the following results.

Theorem 4.7. Under the assumptions (G1-G2), (A), (B), and (B1), the system (NCE) is approxi-
mately controllable on [0, T1].
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