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We introduce a new iterative scheme for finding the common element of the set of solutions of the
generalized equilibrium problems, the set of fixed points of an infinite family of nonexpansive
mappings, and the set of solutions of the variational inequality problems for a relaxed (u,v)-
cocoercive and ¢-Lipschitz continuous mapping in a real Hilbert space. Then, we prove the strong
convergence of a common element of the above three sets under some suitable conditions. Our
result can be considered as an improvement and refinement of the previously known results.

1. Introduction

Variational inequalities introduced by Stampacchia [1] in the early sixties have had a great
impact and influence in the development of almost all branches of pure and applied sciences.
It is well known that the variational inequalities are equivalent to the fixed point problems.
This alternative equivalent formulation has been used to suggest and analyze in variational
inequalities. In particular, the solution of the variational inequalities can be computed using
the iterative projection methods. It is well known that the convergence of a projection method
requires the operator to be strongly monotone and Lipschitz continuous. Gabay [2] has
shown that the convergence of a projection method can be proved for cocoercive operators.
Note that cocoercivity is a weaker condition than strong monotonicity.

Equilibrium problem theory provides a novel and unified treatment of a wide class of
problems which arise in economics, finance, image reconstruction, ecology, transportation,
network, elasticity, and optimization which has been extended and generalized in many
directions using novel and innovative technique; see [3, 4]. Related to the equilibrium
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problems, we also have the problem of finding the fixed points of the nonexpansive
mappings. It is natural to construct a unified approach for these problems. In this direction,
several authors have introduced some iterative schemes for finding a common element of
a set of the solutions of the equilibrium problems and a set of the fixed points of infinitely
(finitely) many nonexpansive mappings; see [5-7] and the references therein. In this paper,
we suggest and analyze a new iterative method for finding a common element of a set of the
solutions of generalized equilibrium problems and a set of fixed points of an infinite family
of nonexpansive mappings and the set solution of the variational inequality problems for a
relaxed (u, v)-cocoercive mapping in a real Hilbert space.

Let H be a real Hilbert space and let E be a nonempty closed convex subset of H and
Pt is the metric projection of H onto E. Recall that a mapping f : E — E is contraction on E if
there exists a constant a € (0,1) such that || f(x) - f(y)|| < a||x-y|| for all x, y € E. A mapping
S of E into itself is called nonexpansive if ||Sx — Sy|| < ||x — y|| for all x,y € E. We denote
by F(S) the set of fixed points of S, thatis, F(S) = {x € E : Sx = x}. If E C H is nonempty,
bounded, closed, and convex and S is a nonexpansive mapping of E into itself, then F(S) is
nonempty; see, for example, [8]. We recalled some definitions as follows.

Definition 1.1. Let B: E — H be a mapping. Then one has the following.

(1) Bis called monotone if (Bx — By, x—y) >0, forall x,y € E.

(2) B is called v-strongly monotone if there exists a positive real number v such that

> Vx,yeE. (1.1)

(Bx-By,x-y)>v|x-y

(3) B is called ¢-Lipschitz continuous if there exists a positive real number ¢ such that

|Bx —By|| <¢lx -y

, VYx,y€eE. (1.2)

(4) B is called n-inverse-strongly monotone, [9, 10] if there exists a positive real number
71 such that

(Bx - By,x - y) >7||Bx - By|’, Vx,y€E. (1.3)

If n = 1, we say that B is firmly nonexpansive. It is obvious that any #-inverse-
strongly monotone mapping B is monotone and (1/17)-Lipschitz continuous.

(5) Bis called relaxed (u, v)-cocoercive if there exists a positive real number u, v such that
(Bx —By,x-y) > (-u)||Bx - By||2 +o||x - y||2, Vx,y € E. (1.4)

For u = 0, B is v-strongly monotone. This class of maps is more general than
the class of strongly monotone maps. It is easy to see that we have the following
implication: v-strongly monotonicity = relaxed (u, v)-cocoercivity.



Journal of Inequalities and Applications 3

(6) A set-valued mapping T : H — 2! is called monotone if for all x,y € H, f € Tx and
g € Ty imply (x—y, f — g) > 0. A monotone mapping T : H — 2 is maximal if the
graph of G(T) of T is not properly contained in the graph of any other monotone
mapping. It is known that a monotone mapping T is maximal if and only if for
(x,f)e HxH,(x-y, f-g)>0forevery (y,g) € G(T) implies f € Tx.

Let B be a monotone mapping of E into H and let Nrw; be the normal cone to E at
w; € E, that is,

Nrwy ={we H: (d-w,w) >0, V& € E}. (1.5)

Define

(1.6)

Bwy + Ngw;q, if wq € E,
Tw1 =
(D, if w1¢E

Then T is the maximal monotone and 0 € Tw; if and only if w; € VI(E, B); see [11, 12]

In addition, let D : E — H be a inverse-strongly monotone mapping. Let F be a
bifunction of E x E into R, where R is the set of real numbers. The generalized equilibrium
problem for F : E x E — R s to find x € E such that

F(x,y)+(Dx,y-x) >0, VYy€ekE. (1.7)
The set of such x € E is denoted by EP(F, D), that is,
EP(F,D) = {x€E:F(x,y) +(Dx,y-x) >0, Vy € E}. (1.8)
Special Cases
(I) If D = 0 (:the zero mapping), then the problem (1.7) is reduced to the equilibrium problem:

Find x € E such that F(x,y) >0, Vye€E. (1.9)

The set of solutions of (1.9) is denoted by EP(F), that is,
EP(F)={x€E:F(x,y) >0, Yy € E}. (1.10)
(I) If F =0, the problem (1.7) is reduced to the variational inequality problem:
Find x € E such that (Dx,y —x) >0, Vye€E. (1.11)
The set of solutions of (1.11) is denoted by VI(E, D), that is,

VI(E,D) = {x€E:(Dx,y—x)>0, Vy € E}. (1.12)
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The generalized equilibrium problem (1.7) is very general in the sense that it includes,
as special case, some optimization, variational inequalities, minimax problems, the Nash
equilibrium problem in noncooperative games, economics, and others (see, e.g., [4, 13]).
Some methods have been proposed to solve the equilibrium problem and the generalized
equilibrium problem; see, for instance, [5, 14-28]. Recently, Combettes and Hirstoaga [29]
introduced an iterative scheme of finding the best approximation to the initial data when
EP(F) is nonempty and proved a strong convergence theorem. Very recently, Moudafi [24]
introduced an itertive method for finding an element of EP(F, D) N F(S), where D : E — H
is an inverse-strongly monotone mapping and then proved a weak convergence theorem.

For finding a common element of the set of fixed points of a nonexpansive mapping
and the set of solutions of variational inequality problem for an 7-inverse-strongly monotone,
Takahashi and Toyoda [30] introduced the following iterative scheme:

Xo € E chosen arbitrary,
(1.13)
Xni1 = Xy + (1 — a,)SPE(x, — T,Bx,), Yn>0,

where B is an g-inverse-strongly monotone mapping, {a,} is a sequence in (0, 1), and {7,}
is a sequence in (0,27). They showed that if F(S) N VI(E, B) is nonempty, then the sequence
{x,} generated by (1.13) converges weakly to some z € F(S) N VI(E, B). On the other hand,
Shang et al. [31] introduced a new iterative process for finding a common element of the set of
fixed points of a nonexpansive mapping and the set of solutions of the variational inequality
problem for a relaxed (u,v)-cocoercive mapping in a real Hilbert space. Let S : E — E
be a nonexpansive mapping. Starting with arbitrary initial x; € E, defined sequences {x,}
recursively by

Xn1 = Onf (Xn) + PnXn + ¥nSPe(I — T, B)x,, Vn>1. (1.14)

They proved that under certain appropriate conditions imposed on {a,}, {f.}, {y}, and {7,},
the sequence {x,} converges strongly to z € F(S) N VI(E, B), where z = Pr(s)nvi(g,B) f (2)-

In 2008, S. Takahashi and W. Takahashi [27] introduced the following iterative scheme
for finding an element of F(S) N EF(F, D) under some mild conditions. Let E be a nonempty
closed convex subset of a real Hilbert space H. Let D be an #-inverse-strongly monotone
mapping of E into H and let S be a nonexpansive mapping of E into itself such that F(S) N
EP(F,D) #0. Suppose x1 = 0 € E and let {u,}, {y,}, and {x,} by sequences generated by

F(un,y) + (Dxy,y — up) + %(y— U, U —Xn) >0, Yy eC,

Yn = 0,0+ (1 —a,)uy,, (1.15)

Xn+l = ,ﬁnxn + (1 - ﬁn)s]/nr

where {a,} C [0,1], {B.} C [0,1], and {r,} C [0,27] satisfy some parameters controlling
conditions. They proved that the sequence {x,} defined by (1.15) converges strongly to a
common element of F(S) N EF(F, D).

On the other hand, iterative methods for nonexpansive mappings have recently
been applied to solve convex minimization problems; see, for example, [32-35] and the
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references therein. Convex minimization problems have a great impact and influence in the
development of almost all branches of pure and applied sciences.

A typical problem is to minimize a quadratic function over the set of the fixed points
a nonexpansive mapping in a real Hilbert space H:

r}(’?g{%(Ax,x) - (x,b)}, (1.16)

where E is the fixed point set of a nonexpansive mapping S on H and b is a given point in H.
Assume that A is a strongly positive bounded linear operator on H; that is, there exists a constant
¥ > 0 such that

(Ax,x) >Yl|lx|>, VYxeH. (1.17)

In 2006, Marino and Xu [36] considered the following iterative method:

Xn+1 = EnY f(xn) + (1 — €,A)Sx,, Vn>0. (1.18)

They proved that if the sequence {e,} of parameters satisfies appropriate conditions, then
the sequence {x,} generated by (1.18) converges strongly to the unique of the variational
inequality

((A-yf)z,x-z) >0, VxeF(S), (1.19)

which is the optimality condition for the minimization problem

1
xrenFi(rSl){§<Ax,x> —h(x)}, (1.20)

where h is a potential function for yf (i.e., I'(x) = yf(x) for x € H).
In 2008, Qin et al. [26] proposed the following iterative algorithm:

F(un,y) + l<y—un,un -x,) >0, VyeH,
Tn (1.21)

Xn+1 = €nY f(xn) + (I — €, A)SPE(I — T, B)uy,

where A is a strongly positive linear bounded operator and B is a relaxed cocoercive mapping
of E into H. They prove that if the sequences {e,}, {7,}, and {r,} of parameters satisfy
appropriate condition, then the sequences {x,} and {u, } both converge to the unique solution
z of the variational inequality

((A-yf)z,x-z) >0, VxeF(S)nVI(E,B)nEP(F), (1.22)
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which is the optimality condition for the minimization problem

{%(Ax,x) - h(x)}, (1.23)

min
x€F(S)NVI(E,B)NEP(F)

where h is a potential function for yf (i.e., I'(x) = yf(x) for x € H).

Furthermore, for finding approximate common fixed points of an infinite family of
nonexpansive mappings {1} under very mild conditions on the parameters, we need the
following definition.

Definition 1.2 (see [37]). Let {T,},~; be a sequence of nonexpansive mappings of E into itself
and let {p,},-; be a sequence of nonnegative numbers in [0,1]. For each n > 1, define a
mapping W, of E into itself as follows:
un,n+1 = I/
un,n = /lnTnun,rHl + (1 - ,un)I/
un,n—l = #n—lTn—l un,n + (1 - #n—l)I/

Ui = Tl jsr + (1 - pie) I, (1.24)

U1 = 1 TieeaUn i + (1 — piea) 1,

Upp = oo,z + (1 - o)1,
Wn = Un,l = lellln,z + (l - ‘ul)I

Such a mappings W, is called the W-mapping generated by Ty, 1>, ..., T, and p1, pa, . . ., pin. It
is obvious that W,, is nonexpansive, and if x = Ty,x, then x = U,k = Wpx.

On the other hand, Yao et al. [38] introduced and considered an iterative scheme for
finding a common element of the set of solutions of the equilibrium problem and the set of
common fixed points of an infinite family of nonexpansive mappings on E. Starting with an
arbitrary initial x; € H, define sequences {x,} and {u,} recursively by

F(un,y) + l(y— Un, Uy —Xy) >0, Vye€H,
n (1.25)

X1 = EnY f (Xn) + Puxn + (1= Bn)I — €, A)Wyu,, VYn2>1,

where {e,} is a sequence in (0, 1). It is proved [38] that under certain appropriate conditions
imposed on {e,} and {r,}, the sequence {x,} generated by (1.25) converges strongly to
z = Pn=, rrrep(F) (I = A + yf)z. Very recently, Qin et al. [6] introduced an iterative scheme
for finding a common fixed points of a finite family of nonexpansive mappings, the set of
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solutions of the variational inequality problem for a relaxed cocoercive mapping, and the set
of solutions of the equilibrium problems in a real Hilbert space. Starting with an arbitrary
initial x; € H, define sequences {x,} and {u,} recursively by

F(un,y) + l(y— Un, Un —Xn) >0, Vye€H,
Tn (1.26)

Xn+1 = €Y f(Wixy) + (I — €,A)W,Pe(I — 7, B)u,, Vn>1,

where B is a relaxed (u, v)-cocoercive mapping and A is a strongly positive linear bounded
operator. They proved that under certain appropriate conditions imposed on {e,}, {74}, and
{rn}, the sequences {x,} and {u,} generated by (1.26) converge strongly to some point z €
Nyeq F(T,) NEP(F) N VI(E, B), which is a unique solution of the variation inequality:

((A=yf)z,x-2)>0, Vxe ﬁP(Tn) NEP(F) N VI(E, B) (1.27)

n=1

and is also the optimality for some minimization problems.

In this paper, motivated by iterative schemes considered in (1.15), (1.25), and (1.26)
we will introduce a new iterative process (3.4) below for finding a common element of the
set of fixed points of an infinite family of nonexpansive mappings, the set of solutions of the
generalized equilibrium problem, and the set of solutions of variational inequality problem
for a relaxed (u, v)-cocoercive mapping in a real Hilbert space. The results obtained in this
paper improve and extend the recent ones announced by Yao et al. [38], S. Takahashi and W.
Takahashi [27], and Qin et al. [6] and many others.

2. Preliminaries

Let H be a real Hilbert space with inner product (:,-) and norm || - ||. Let E be a nonempty
closed convex subset of H. We denote weak convergence and strong convergence by
notations — and —, respectively. Recall that the (nearest point) projection Pr from H to
E assigns each x € H the unique point in Pgx € E satisfying the property

e = Pex]] = min||x ~ . 2.1)

The following characterizes the projection Pk.
We need some facts tools in a real Hilbert space H which are listed as follows.

Lemma 2.1. Foranyx € H,z € E,

z=Ppx = (x-zz-y)>0, YyeE. (2.2)
It is well known that Pg is a firmly nonexpansive mapping of H onto E and satisfies

|| Pex - P;gy”2 <(Pgx-Ppy,x-y), VYx,y€H. (2.3)
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Moreover, Pgx is characterized by the following properties: Pex € E and forall x €e H,y € E,

(x = Pgx,y — Pgx) <0. (2.4)

Lemma 2.2 (see [39]). Let H be a Hilbert space, let E be a nonempty closed convex subset of H, and
let B be a mapping of E into H. Let p € E. Then for A > 0,

p € VI(E,B) & p = Pc(p - ABp), (2.5)

where Pg is the metric projection of H onto E.

It is clear from Lemma 2.2 that variational inequality and fixed point problem are
equivalent. This alternative equivalent formulation has played a significant role in the studies
of the variational inequalities and related optimization problems.

Lemma 2.3 (see [40]). Each Hilbert space H satisfies Opials condition; that is, for any sequence

{xn} C H with x, — x, the inequality

lim inf||x,, — x|| < im inf||x, - y|| (2.6)

holds for each y € H with y # x.

Lemma 2.4 (see [36]). Assume that A is a strongly positive linear bounded operator on H with
coefficient y > 0 and 0 < p < ||A[|™L. Then ||I — pA|| <1 - py.

For solving the equilibrium problem for a bifunction F : ExE — R, let us assume that
F satisfies the following conditions:

(A1) F(x,x) =0, for all x € E;

(A2) F is monotone, thatis, F(x,y) + F(y,x) <0, forall x,y € E;

(A3) limypF(tz+ (1 -t)x,y) < F(x,y), forall x,y,z € E;

(A4) for each x € E, y — F(x,y) is convex and lower semicontinuous.
The following lemma appears implicitly in [4].

Lemma 2.5 (see [4]). Let E be a nonempty closed convex subset of H and let F be a bifunction of
E x E into R satisfying (A1)—(A4). Let r > 0 and x € H. Then, there exists z € E such that

F(Z,y)+%(y—z,z—x>20, Vy € E. (2.7)

The following lemma was also given in [5].
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Lemma 2.6 (see [5]). Assume that F : Ex E — R satisfies (A1)-(A4). For r > 0 and x € H, define
a mapping T, : H — E as follows:

Tr(x)={ZEE:F(Z,y)+%<y—Z,z—x>20, VyEE}, (2.8)

or all z € H. Then, the following holds:
8
(1) T, is single-valued;
(2) T, is firmly nonexpansive, that is, for any x,y € H,

ITox - Toy|)* < (T,x - Ty, x - y); (2.9)

(3) F(T;) = EP(F);
(4) EP(F) is closed and convex.

Remark 2.7. Replacing x with x —rDx € H in (2.7), then there exists z € E, such that
F(Z/y)+<Dx,y—Z>+%<y—z,z—x>zo, Yy € E. (2.10)

Lemma 2.8 (see [41]). Let E be a nonempty closed convex subset of a real Hilbert space H. Let
Ty, Ty, ... be nonexpansive mappings of E into itself such that (\;oy F(T,) is nonempty, and let
U1, M2, ... be real numbers such that 0 < p, < b < 1 for every n > 1. Then, for every x € E and
k € N, the limit lim,, _, .U, k. x exists.

Using Lemma 2.8, one can define a mapping W of E into itself as follows:

Wx = lim W,x = lim U1 x, (2.11)

n—oo n—oo

for every x € E. Such a W is called the W-mapping generated by T1,T5,... and pi, ya, .. ..
Throughout this paper, we will assume that 0 < p, < b <1 for every n > 1. Then, we have the
following results.

Lemma 2.9 (see [41]). Let E be a nonempty closed convex subset of a real Hilbert space H. Let
Ty, Ty, . .. be nonexpansive mappings of E into itself such that (\;-, F(T,) is nonempty, let p1, s, . . .
be real numbers such that 0 < p, <b <1 for every n > 1. Then, F(W) = (2, F(Ty).

Lemma 2.10 (see [7]). If {x,} is a bounded sequence in E, then lim,, _, o ||Wx, — Wy, = 0.

Lemma 2.11 (see [42]). Let {x,} and {z,} be bounded sequences in a Banach space X and let {3} be
a sequence in [0,1] with 0 < liminf, _, B, <limsup, B, < 1. Suppose xps1 = (1= Pn)zn + PnXn
for all integers n > 0 and lim Supn—>oo(||zn+1 = zn|| = [|%n+1 = xnl) < 0. Then, limy, -, oo||zn — x| = 0.

Lemma 2.12. Let H be a real Hilbert space. Then the following inequality holds:

@) llx +ylI* < [lxl? + 2y, x + ),
@) llx +ylI? 2 llx ]l + 2(y, x)

orall x,y € H.
f y
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Lemma 2.13 (see [43]). Assume that {a,} is a sequence of nonnegative real numbers such that

an1 < (1-1ly)an+0,, Vn2>0, (2.12)

where {1,,} is a sequence in (0,1) and {o,} is a sequence in R such that

(1) Z;‘f:l ln = 0o,
(2) limsup,, _, (0,/1,) <0o0r 3721 |0n| < o0.

Then lim,, _, ,a,, = 0.

3. Main Results

In this section, we prove a strong convergence theorem of a new iterative method (3.4) for an
infinite family of nonexpansive mappings and relaxed (u, v)-cocoercive mappings in a real
Hilbert space.

We first prove the following lemmas.

Lemma 3.1. Let H be a real Hilbert space, let E be a nonempty closed convex subset of H, and let
D : E — H be n-inverse-strongly monotone. It 0 < r, < 21, then I —r,D is a nonexpansive mapping
in H.

Proof. Forall x,y € Eand 0 < r, < 277, we have
(T = r.D)x = (I = r,D)y|* = || (x = y) = ra(Dx - DY) ||’
=||x- ]/||2 - 2ry(x -y, Dx - Dy) + rﬁ”Dx - Dy”2
< ||lx = y||* - 2run|| Dx - Dy|| + r3||Dx - Dy||* (3.1)
= |lx = y|I* + ra (r - 21) | Dx - Dy |*

2
S

So, I —r,D is a nonexpansive mapping of E into H. O

Lemma 3.2. Let H be a real Hilbert space, let E be a nonempty closed convex subset of H, and let
B : E — H be a relaxed (u,v)-cocoercive and ¢-Lipschitz continuous. If 0 < 7, < 2(v — ug?)/¢?,
v > ug?, then I - 7, B is a nonexpansive mapping in H.

Putting r = 1 + 27,,u¢? — 27,0 + T2¢%, we obtain

Proof. For any x,y € E and 7, < 2(v — ué?) /&, v > ué?.

Tnﬂ”g_;‘éz)

= 1,82 +2ud? - 20 <0

= 128 + 21 ué’ - 21,0 < 0 (32)

=1+ T,Egz + ZTnu(jz -2r,v <1,
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that is, r < 1. It follows that
11 = 7:B)x = (I = 2By ||* = || (x = y) - 7u(Bx ~ By) ||’
= [|x = yl* - 27(x - y, Bx - By) + 73| Bx - By|’
< lx = yI” - 25 { ~ul|Bx - Byl + ol|x ~y| } + 77| Bx - By
< lx =yl + 2 |lx - y|* - 20l - y || + gl -y

= (1 + 2T, ud? — 2T, + T5§2> || - y||2

2
=r|lx-yll
2
< lx-vll"
(3.3)
forall x,y € E. Thus ||(I - 7,B)x — (I - t,B)y|| < [[x - y||.
So, I — 7,B is a nonexpansive mapping of E into H. O

Now, we prove the following main theorem.

Theorem 3.3. Let E be a nonempty closed convex subset of a real Hilbert space H, and let F : EXE —
R be a bifunction satisfying (A1)—(A4). Let

(1) {T,} be an infinite family of nonexpansive mappings of E into E;
(2) D be an n-inverse strongly monotone mappings of E into H;

(3) B be relaxed (u, v)-cocoercive and &-Lipschitz continuous mappings of E into H.

Assume that © := ;2 F(T,,) N\EP(F,D) N VI(E, B) #0. Let f : E — E be a contraction mapping
with 0 < a < 1 and let A be a strongly positive linear bounded operator on H with coefficient y > 0
and 0 <y <y/a. Let {x,}, {ya}, {kn}, and {u,} be sequences generated by

x1 € E chosen arbitrary,

F(un,y) + (Dxyp,y — un) + rl(y—un,un -x,)>0, VyeeE,

Yn = Pnln + (1 - ‘Pn)WnPE(un - 6,Buy,), (34)

kn = apXy t+ (1 - an)WnPE (yn - )LnB]/n)/
X1 = EnY f Wixn) + Buxn + ((1 = Bu)I — €,A)W,, Pg(ky, — T,Bky), VYn>1,
where {W,} is the sequence generated by (1.24) and {e,}, {a,}, {¢n}, and {B,} are sequences in
(0, 1) satisfy the following conditions:

(C1) limy €0 =0, X521 €y = 00,

(C2) limy, -, iy, = limy, 009, =0,
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(C3) 0 < liminf, ., p, < limsup, , B <1,

(C4) liminf, _, 1, > 0and lim,, _, |rp1 — 14| =0,

(C5) limy — ool dn1 = An| = limy - o[On1 = On| = limy - o[ a1 — 7| = 0,

(C6) {7}, {An}, {60} C [a,b] for some a,bwith0<a<b<2(v-u?) /& v>u?
(C7) {rn} C [c,d] for some ¢,d with 0 < ¢ < d < 21.

Then, {x,} and {u,} converge strongly to a point z € ©, where z = Po(I — A +y f)(z), which solves
the variational inequality

((A-yf)z,x-z)>0, VxeO, (3.5)

which is the optimality condition fot the minimization problem

mig{%(Ax,x) —h(x)}, (3.6)

XE

where h is a potential function for y f (i.e., W'(x) = yf(x) for x € H).
Proof. Since lim,, €, = 0 by the condition (C1) and limsup, _, f, < 1, we may assume,

without loss of generality, that €, < (1 — f,)||A||"!. Since A is a strongly positive bounded
linear operator on H, then

[All = sup{[{Ax, x)[ : x € H, [|x|| = 1}. (3.7)

Observe that

((1=Pu)I-eA)x,x) =1 - P — e, (Ax, x)
>1-pn— el All (3.8)

20,

that is to say (1 — f3,)I — €, A is positive. It follows that

[ (1= Bu)T - enA|| = sup{[(((1 = fu)] - enA)x,x)| : x € H, ||x]| = 1}
=sup{l-f, —en(Ax,x): x € H, x| = 1} (3.9)

Sl_ﬂn_en?-

We will divide the proof of Theorem 3.3 into six steps.

Step 1. We prove that there exists z € E such that z = Pn=, r(r,)ner(E,D)nvIEB) (I = A + Y f)z.
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Let 3 = Pn=, r1,)nEP(ED)VI(E,B)- Note that f is a contraction mapping of E into itself
with coefficient a € (0,1). Then, we have

[3(I-A+yf)(x) =3I -A+yfY W <[ T-A+yf)(x) - (T -A+yf) ()|
<= Allllx =yl + [l fx) - FW)]
<@-Dlx-yll +yallx-yl
=(1-F-an)lx-yll, YxyeH

(3.10)

Therefore, J(I — A + yf) is a contraction mapping of E into itself. Therefore by the Banach
Contraction Mapping Principle guarantee that J(I — A + yf) has a unique fixed point, say
z € E. Thatis, z = j(I -A+ )’f) (Z) = Pn:le F(TH)QEP(F,D)QVI(E,B)(I - A+ Yf) (Z)

Step 2. We prove that {x,} is bounded.

Since

F(un,y) + (Dxp, y — upn) + rl(y — Uy, Uy —Xn) >0, Vy€E, (3.11)
n

we obtain

F(un,y) + %(y —Up, Uy — (I —1,D)x,) >0, Vy€eE. (3.12)

From Lemma 2.6, we have u,, = T;, (x, — r,Dxy), for all n € N.
For any p € © := >, F(T,) NEP(F, D) N VI(E, B), it follows from p € EP(F, D) that

F(p,y)+(y-p,Dp) >0, VyeE. (3.13)

So, we have
1
P(p,y)+;<y—P,P—(P—rnDP)>20/ Vy € E. (3.14)

By Lemma 2.6 again, we have p = T, (p — r,Dp), for all n € N. If follows that

”un - p” = ”Trn (xn - Tann) - Trn (p - r”Dp) ”
< || (e = D) = (p = raDp) || (3.15)

= ||(T = raD)xy = (I = raD)p|| < [J2n = p||-



14 Journal of Inequalities and Applications
If we applied Lemma 3.2, we get I — 1,,B and I — 6, B are nonexpansive. Since p € VI(E, B)
and W, is a nonexpansive, we have p = W, Pc(p — A,Bp) = W, Pe(p — 6,Bp), and we have
5 =PIl < @ullun =pll + (1= @n) [[WaPe (n = 8:Buun) = WaPe(p — 6,Bp) |
< @ul[un =pll + (1 = ¢n) | un = 6xButn) = (p ~ 6:Bp) |
= @ulun - p|| + (1 = @) || - 6,B)uy - (I - 5,B)p| (3.16)
< @ullun = pll + (1= pu) [Jun =

< fun = pll < |20 = pl|-
It follows that

l[kn =PIl < anlxn = pl| + (1 = @) [[WaPe(yn = AnByn) = WaPe(p = AuBp) ||
< ap|on = pl| + (1= @) | (yn = 1uByn) = (p = 1uBp) ||
= ay||xn = p|| + (1= @)[|(I = LuB)yn — (I - L,B)p|| (3.17)
< an|2n = pll + (1 = ) lyn —p

< anflxn = pll+ @ = an)[lxa - pll = [lxu - P,
which yields that

21 = Il = llen(yf (xn) = AP) + u(xu = p) + (1= Bu)T = € A) (W Pr(ky = TuBks) = p) |
< (1= B —en?)||Pe(I = TuB)kn = p|| + Pul|2cn = p|| + €nllyf (xa) - Ap|
< (1= Bu—enY)|kn = pl| + Bullxn =PIl + nly f (xn) = Ap||
< (1= B = end) |0 = pll + Pullxn = pl| +enllyf (xn) - Ap||
< (1=exp)||xa —pll + eny | f(xa) = fF(P) || +enlly f (p) = Ap|l
< (1=eny)[lxn = pl| + envallxn —pl| + ey f (p) - Ap|
(- - ap)en)la ol + (7 - an)e, WD =220
(3.18)

This in turn implies that

(3.19)

- A
|,||Yf£P) P||}, o
Y- ay

=l Smax{nxl ol
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Therefore, {x,} is bounded. We also obtain that {u,}, {k.}, {yx}, {Bu.}, {Bk.}, {By.},
(Whuy}, {(Wiky ), {(Wnys}, and { f(Wyx,)} are all bounded.

Step 3. We claim that lim,, _, oo ||Xp+1 — x| = 0 and limy, _, - || W,,0,, — x4 = 0.
From Lemma 2.6, we have u,, = T}, (x,, — r,Dxy,) and w11 = Ty, (Xp41 — Tne1Dxpi1). Let

Wy = Xp — 1y Dxy, we get uy, = Ty, @y, ty1 = Ty, ,@ne1, and so

F(u,y) + %(y —Up, Uy —w@y) >0, Vy€E, (3.20)

1
F(upa,y) + r—1<y = Ups1, Uns1 — @ni1) 20, Vy €E. (3.21)
n+
Putting v = 1,41 in (3.20) and y = u,, in (3.21), we have

1
F(up, tpi) + r_<un+1 —Un,Un — Wn> >0,
n

(3.22)
1
F(ups1,un) + (Un = Uns1, Uns1 — Tpi1) 2 0.
T+l
So, from the monotonicity of F, we get
Uy — Wy  Upyl — W,
<un+1 —u,, n n _ Hn+l n+1> > 0’ (3'23)
Tn Tn+1
and hence
r
<un+1 —Up, Up — Upyl + Upil — Wy — ; nl (Upa1 = wn+1)> > 0. (3.24)
n+

Without loss of generality, let us assume that there exists a real number c such that r,, > ¢ >0
for all n € N. Then, we have

r
”un+1 - un”2 < <un+1 —Up, Wp1 — Wy + (1 - » nl > (Uns1 — wn+1)>
n+

(3.25)

1-In
T,

n+1

< lttnns —un||{||wn+1 |+ . —Wn+1||},
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and hence
1
||un+1 - un” < ||w'n+1 - w'n” + Z|rn+1 - rn|||un+1 - wn+1||

1
= ||xp41 = 1 DXpar — (xn — 1o Dxy) || + E|rn+1 = | ||tns1 — @ ||

< ||xn+1 = Tne1 DXy — (x5 — rn+1Dxn)” + |rn+1 - rn”len”
(3.26)

1
+ Z|rn+1 - rn|||un+1 - wn+1||
1
SHxne1 = Xull + [Tt — 70l D] + Elrnﬂ — Tn||[ttns1 — T ||

< ||xn+1 - xn” + Mllrn+1 - rnlr

where M = sup{||Dx,|| + (1/¢)||n+1 — @ns1|| : 1 € N}.
Put 6, = Pg(k, — 7,Bky), ¢n = Pe(yn — \nByy), and ¢, = Pe(u, — 6,Bu,). Since I — 7,B,
I-A,B, and I — 6,B are nonexpansive, then we have the following some estimates:

||‘Ifn+1 - (Fn” < ||PE(un+1 - 6n+1Bun+1) - PE(un - 6nBun)||
< ”(un+l = Op1Bupi1) = (u, — 6,,Bu,,)||

= ||(un+1 - 6n+1Bun+1) - (un - 6n+1Bun) + (611 - 6n+1)Bun”

(3.27)
< ”(un+1 — O0p1Bupir) = (1, — 6n+1Bun)|| + |6n - 6n+1|||Bun”
= |[(I = 6ps1 Bty — (I = 6541 B)uy || + |65 — St ||| But ||
< ”un+1 - un” + |6n - 6n+1|“Bun”'
Similarly, we can prove that
l[@ne1 = bull < ymer = yall + [An = A ||| By, (3.28)
161 = Oull < llkni1 = kull + 170 — Tt |l| Bk |- (3.29)

Since T; and U,,; are nonexpansive, we deduce that, for eachn <1,

(Was1¢sn = Waga|| = || Til s 2980 = pr TilL 2|
< U1 290 — U ppn||
= p || 2 Tol i1 3¢50 — po Tl 340 |
< || Unir 3¢n = Unsin|
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n
< Hﬂi”unﬂ,nﬂ(ﬁn = Upn1¢n ”
i=1

n
< MzH#i,
i=1

(3.30)

where M; > 0 is a constant such that ||U 41, n+1¢n — Upnr1@nl| < Mp forall n > 0.
Similarly, we can obtain that there exist nonnegative numbers M3, My such that

||un+1,n+1(/’n - un,n+1(,0n ” < Ms, ||un+1,n+19n - un,n+16n|| < My, (3-31)
and so are
”Wn+1¢n - Wn‘i)n” < M3Hﬂir ||Wn+19n - Wnen” < M4l__[[/li- (332)
i=1 i=1
Observing that
Yn = PpUy + (1 - (Pn)wn(Pnr
(3.33)
Ynel = Ppi1lUns1 + (1 - (Pn+1)Wn+1(Ifn+1/
we obtain

Yn —Ynel = Pn (un - un+1) + (1 - (/’n) (Wn(,un - Wn+1‘l’n+1) + (Wn+1(lfn+1 - un+1) (‘Pn+1 - (Pn)/
(3.34)

which yields that

lvn = ynsa || < @ullttn = tiwall + (1= @00) [Was1@nsr = Watsn|| + [@ns1 = @u| [|[Wasr@pnar = tnaa ||
S @ulltn — 1 | + (1= @) { W1t = Woaa@gu|| + | W — Wi || }
+ | @net = @l [[Wasr ¢t = st |
< @ulln = tnarll + (1= @) {|gmer = gull + [[Wasrgpn = Wagsa [}
+ |@nit = Q||| Was1¢na1 — ttnan ||
< @ulltn = tna | + (1= @) [|gner = gull + (Wi n = W |

+ |(Pn+1 - (Pnl ||Wn+1(lfn+1 —Ups1 ”
(3.35)
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Substitution of (3.27) and (3.30) into (3.35) yields that

”]/n - yn+1” < (Pn”un - un+l” + (1 - ‘Pn){”unﬂ - un” + |6n - 6n+1|||Bun”}

+ MZH,ui + |(Pn+1 - (Pnl ||Wn+1(Pn+l — Un+1 ||

i=1

= n—Upst| + (1= @n 6n_6n+ Bu,
It = 1l + (1= 01)16 = G Bt 56)

n
+ MzH,ui + | W na = tnia ||| @nr — @n|
i=1

<y — U || + M5(|6n — Ops1| + |(Pn+1 - (Pn|> + Mznﬂi,

i=1

where M5 is an appropriate constant such that Ms = max{sup, . [|Bux||, sup,; [Wantpn — unl|}-
Observing that

kn = anx, + (1 — )Wy,
(3.37)
kn+1 = Ap+1Xn+1 + (1 - “n+1)Wn¢n+lr

we obtain

kn = kpi = an(xp — xp41) + (1 - ay) (Wnd)n - Wn+1¢n+1) + (Wn+1¢n+1 - xn+1) (ans1 —an),
(3.38)

which yields that

Ik = kst ll < ullxcn = 2nst | + (1 = @) [|[ W = Wi dan || + [atnst = al || Wis1 st — X |
< |y — Xl + (1= ) { | W1t = Waaa@ul| + [|[Wai @ — Wadpa ||}
+ |an1 = anl||[WasiPnir = Xnaa ||
< tullx = Xnor ||+ (1= @) | Bt = bul| + Wi = Wb

+ |ans - an|”Wn+1¢n+1 - xn+1”~
(3.39)
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Substitution of (3.28) and (3.32) into (3.39) yields that
||kn - kn+1|| < an”xn - xn+1|| + (1 - “n){”ynﬂ - yn” + |)‘n - /\n+1|”Byn” }

n
+ MSHIH + |ans1 — anl ||Wn+1¢n+1 — Xn+1 ”
i=1
= ap||x, = Xpa|| + (1 - dn)||]/n+1 - yn” + (1 —an)|An - ~)‘n+1|”Byn”

. (3.40)
+ M3H#i + i1 — Al || Wis1Pnir — Xnaa ||
i=1

n
< @l = Xt ||+ (1= ) || Yt = | + M s
i=1

+ Mo (A = Apat | + |1 — anl),

where Mg is an appropriate constant such that M = max{sup, ., [|Byx|, sup,s; [[Wndn — xull}-
Substituting (3.26) and (3.36) into (3.40), we obtain

”kn - kn+1” < “n”xn - xn+1”+(1 - an) {”un - un+1|| + M5(|6n - 6n+1| + |‘Pn+1 - (Pnl) + M2H/41}

i=1
+ MsH#i + Mo (|l = st | + a1 — anl)
i=1
= “n”xn - xn+1” + (1 - an)”un - un+1|| + (1 - “n)M5(|6n - 6n+1| + |(Pn+1 - (Pnl)

+(1- an)MZH,ui + M3H#i + Me(|An = Apia| + |ans1 — )

i=1 i=1
< an”xn - xn+1” + (1 - ‘Xn){”xnﬂ - xn” + Mllrn+1 - rnl}

+ (1 - ap)Ms(|65 = Epa1| + |1 — @) + (1 - an)MZH,Hi

i=1
n
+ M3H,ui + Mo (|l = st | + |@ne1 — anl)
i=1
= an”xn - xn+1” + (1 - an)||xn+1 - xn” + (1 - an)Mllr‘rHl - rnl

n
+(1- “n)M5(|6n - 6n+1| + |‘Pn+1 - (Pn|) +(1- “n)MZH//li

i=1

n
+ Ms] T + Mg (IAn = Lpar| + [atnir — )
i-1

< lxn = Xnaa [l + Ma[rpar — 1l + leillﬂi + M31£1[,ui
i= i=
+ M5(|6n — Ops1| + |‘Pn+1 - (Pn|) + Mg (|An = Ansa| + |ans1 — anl)
<l = Xpaa || + lell[,ui + Msllllﬂi
i= i=
+ K1(|rn+1 - rn| + |6n - 6n+1| + |(Pn+1 - ‘Pn| + |)Ln - )ln+1| + |an+1 - tX-,ll),
(3.41)

where K; is an appropriate constant such that K7 = max{M;, Ms, Ms}.
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Substituting (3.41) into (3.29), we obtain

||6n+1 - Gn” < “kn+1 - kn” + |Tn - 7-n+1|||Bkn”
n n
< lotn = e || + Mo Jpi + Ma] [
i=1 i=1

+ K1(|Tn+1 - Tnl + |6n - 6n+1| + |(Pn+1 - (Pnl + |~)‘n - )‘n+l| + |an+1 - an|)

+|Tn = Tuna ||| BKa |
n n
< lotn = x| + Mo [ + Ms] Jp
i-1 i-1

+ K2(|Tn+1 — | + |6y = Opi1| + |(Pn+l - (Pnl + A = Lt | + @i — au| + |70 — Tn+1|)/

(3.42)
where K3 is an appropriate constant such that Ky = max{sup,,, [|Bka||, K1 }.
Define
Xpe1 = (1= Pu)zn + Puxn, n>1 (3.43)
Observe that from the definition z,,, we obtain
€n+1Yf(Wn+1xn+1) + ((1 - ﬂn+l)I - €n+1A) Wn+16n+l
Zpyl —Zp =
1- pn+1
eny f Whyxn) + (1= Bu)I — e,A)W,,0,
1-pn
€n+1 €n
= 1 Yf(wn+lxn+1) - 1—Yf(ann) + Wii10ne1 — W0,
= Prn =P (3.44)
€n €n+l
+ 1= ﬁn AWnen - 1= an AWn+19n+1

€n n
= ﬁ(}ff(wnﬂxnﬂ) - AWn+19n+1) + ﬁ(AWnen - Yf(ann))

+ Wn+16n+1 - Wn+19n + Wn+19n - Wnew
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It follows from (3.32), (3.42), and (3.44) that
1zn1 = Znll = %51 = Xl
En+
< 1- ﬂl (||Yf(Wn+1xn+1)" + ||AWn+19n+1||) +

+ ”Wn+19n+1 - Wn+19n” + ||Wn+19n - Wnen” - ||xn+1 - xn”

(IIAW Oull + |ly f (W) )

€n
< 1- [;1 (||Yf(wn+1xn+l)” + ”AWn+16n+1||) +

+10n+1 = Onll + IWis10n — Wo0n || = || xns1 — x|

5 (1AWl + [ f Wae) )

< T2 (I f Wt + AWl + 72

n n n
+ MzH#i + M3H#i + M4H#i
i=1 i=1 i=1

5, (IAWO Il + [lyf (Waxa) )

+ K2(|Tn+1 - rn| + |6n - 6n+1| + |‘Pn+1 - (Pnl + |~)Ln - )ln+1| + |“n+1 - anl + |Tn - Tn+1|)

< Tyt Wl AWl +

+ 3Kll[//tl
i=1

g, (AWBll+ Iy f (W]

+ K2(|rn+1 = T + 16y = Ops1| + |(Pn+1 - (Pn| + A = At | + @ — au| + |70 — Tn+1|)/
(3.45)

where K is an appropriate constant such that K = max{M,, M3, M4}.
It follows from conditions (C1), (C2), (C3), (C4), (C5),and 0 < p; <b <1, foralli>1

tim sup (| zus1 — Zall et ~ xall) <O. (3.46)

n—oo
Hence, by Lemma 2.11, we obtain
Him [z = x[| = 0. (347)
It follows that

Ji_I)I;OHan — x| = nh_{rc}o(l - ﬂn)”zn = xull = 0. (3.48)
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Applying (3.48) and conditions in Theorem 3.3 to (3.26), (3.41), and (3.42), we obtain that
T (1 = 2l = 1 [enss = Kol = 1im 8,1 - 6, = 0. (3.49)
From (3.49), (C2), (C5),and 0 < y; < b < 1, foralli > 1, we also have
Tim [y = yul| = 0. (3.50)
Since X411 = €nY f (Wyxy) + Puxn + (1 - pn)I — €,A)W,,0,, we have

”xn - Wnen” < ”xn - xn+1|| + ”xn+1 - Wnen”

= |ln — Xna1ll + ||€ny f Wanxn) + Buxn + (1= Bu) I — €2 A) W6, — W05 ||

(3.51)
= % — Xpaa || + ||€n (Yf(ann) - AWnQn) + P (xy — W,60,) ”
< “xn - xn+l|| + en(”Yf(ann) ” + ||AWn6n||) + ﬂn”xn - Wn8n||/
that is,
1 €n
00 = Wabnll < gl = waall + 35 (ly fWara) [ + 1AW (3.52)
By (C1), (C3), and (3.48) it follows that
nlifc}o”W"G" — X,/ =0. (3.53)

Step 4. We claim that the following statements hold:
(i) imy, — ool|un — 641l = 0;
(ii) limy — oo |20 — tn| = 0;

(iii) limy, - o ||[W36, — 65|l = 0.

Since B is relaxed (u, v)-cocoercive and ¢-Lipschitz continuous mappings, by the assumptions
imposed on {7,} for any p € © := >, F(T,) NEP(F, D) N VI(E, B), we have
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W = pII* < || Pe (ks = 7uBKy) = Pe(p - 2Bp) |
< || (ka = 7Bky) = (p - 7uBp) ||
= ||k = p) ~ (Bl ~ Bp) I
< |lkn = pII* = 27 (ku ~ p, Bky ~ Bp) + 7, | Bk, ~ Bp |

< ||% = p|I* = 27 (kn — p, Bkn = Bp) + 72| Bk - Bp|’

(3.54)
< |lxn = pII* = 27 { ~ul| Bks = Bp||* + 0|k = p|*} + 72| Bks - Bp|*
< |z = plI* + 27| B ~ Bp||* ~ 270 || ko ~ p||* + 7| BRw ~ Bp||*
2T, v
< |z = plI* + 27| B ~ Bp|* - 2 1Bk ~ Bp||* + 73| B — Bp||”
2 2 2T 2
=||xn—p||” + ( 2T0n + 75 - Z || Bk — Bp||"
Similarly, we have
2 2 s 200 2
Wapn = pII" < flen = p 1"+ (2w + 4 = =5 ) [ Byn = Bp [,
” (3.55)
0
Wit = < Nl I+ (26, 83 - 2322 ) 1B = Bp -

Observe that

201 =PI = (1= Bu)T = €4 A) Wiy = p) + (= p) + €y f (Waxa) = Ap) |I®

= [|((1 = Bu)] = €nA) (Wb = p) + Pulxtn — )| + €2[|y f Waxn) — Ap|®
+2fnen(xn = p, v f (Waxn) = Ap)
+2€0(((1 - Pu) I — €nA) (Wi = p), v f (Wax) — Ap)

< (1= Pu = ) Wi = pl + Bullxa = p11)” + enllyf Waxi) - Ap|
+2pnen(xn = p, Y f Wan) = Ap)
+2en(((1= fu)T = enA) (Wabr = p), v f (Wnxn) = Ap)

< (1= o= D) Wi = pll + Bullxn = pII)* + e

< (1= Pu - &)’ [[Wabs ~ p|* + Bollxn — p||*
+2(1= Bu =€) Pul|Wabn = p|| |20 = p[| + cn

< (1= pu=ea?) [[Wabu = p|I* + Brllxn — p|I°

+ (1= o= e)Pu (Wi = p|* + = pII”) +
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= [(1-eF)* =201 = &) + B2] [Wnbn - pII” + B2l n I

+ (e = ) (Wi = pI + Il pI”) +

= [ =eP)® = (1= e ] Wb = pII* + (1 = eaF)Bullxn = pI* +

= (1= €aT) (1= Bu = €a¥) | W = p|I” + (1 = €07 Bu|xn = P + cus

where

cn = |y f(n) = Ap||* + 2Buenttn - p, ¥ f () - Ap)
+ 264 (((1= )] — e A) (Wb —p), Y f (x0) — Ap).

It follows from condition (C1) that

lim ¢, = 0.

n—oo

Substituting (3.54) into (3.56), and using condition (C6), we have

(3.56)

(3.57)

(3.58)

_ _ 27,0
s =l < (=) (1= =) I = I+ (2e 72 = 22 ) B~ B}

gZ
+ (1= ea?)Pullxn = pII” +cu

= (1-ea)’[ln = p|* + (1 - ) (1 = Bu — )

2T, 0

§2

x <2Tnu+’r§— >||Bkn—Bp||2+cn

< ||xn —;9||2 + <27'nu +72 - 2§;U> || Bk — Bp||2 +Cp.
(3.59)
It follows that
2av » 2 27,0 2 2
7 - 2bu - b* )||Bk, - Bp||” < z - 21,u -7, )|| Bk, - Bp||
< |lxn = plI* = s = pI* + e
= (llxn = pIl = [lxne1 = pID (2w = I + |41 = pII) + cn

< 12w = xnaall([|20 = Pl + {201 = 1) + cn

(3.60)
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Since ¢, — 0asn — oo and (3.48), we obtain

Jim [| Bk, — Bp|| = 0. (3.61)

Note that

lln = pII* < anllxa = pll + (1~ @) [ W ~ p|*

2 2 20,0 2
< anf|xn - p|| +(1—an){||xn—p|| +<2J\nu+)a,21— ; )”Byn—Bp” } 56
21,0
5||xn—p||2+(1—an)<2Anu+)Li— . )”Byn—Bp”z,

v = pII* < @ullin = pl| + (1= @u) |Wagpn - p|?

26,0

<o =pl = (=) { o =pI = (260 8- 282 ) B = By} 365
2 26,0 2
< [ - 7| +(1_¢n)<25nu+55_ ; >||Bu,,—Bp||.

Using (3.56) again, we have

a1 = plI* < (1 =€) (1= o = &) [Wabu = pII” + (1 = ea?) Pl = p||” +
< (1-exF) (1= fu— &) [|0n = p|I> + (1 = €Tl - p|I* + cn (3.64)

< (1-en¥) (1= Bu—en¥) k= Pl + (1 = &) Bullxn = p|| + cn-

Substituting (3.62) into (3.64) and using condition (C2) and (C6), we have

_ _ 21,0
s =l < (1= e) (1= =)l =l + (1 =) (20000403 - 25 ) By ~ B}

+ (1= en)Pulln = plI* +

21,0
22

= (1= ) (1 fu = enF) (1 - ) <2)Lnu F12 ) 1By - Bp||”

+ (=€)’ [|xn = plI* + cn
21,0
22

< xn—p|P+(1- an)@nu P12 >||Byn ~Bp|* +cn

(3.65)
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It follows that

( —an)<2g—2” —2bu - b2> |By. - Bp||> < (1 —an)<27§'—gv - 27,u —ﬁ) | By.. - Bp||?
<l = pIF = N - pI + o (360
< laen = xnaall(f|xn = p| + |1 = pI|) + cn-
Since ¢, — 0asn — oo and (3.48), we obtain
lim || By, - Bp|| = 0. (3.67)
In a similar way, we can prove
Jim [|Bu, — Bp]| = 0. (3.68)

By (2.3), we also have

16 = pII* = || Pe (kn = TuBk) = Pe(p - .Bp) |
= ||Pe(I - 7,B)ky, - Pe(I - 7, B)p||°

<{I-1uB)kn— (I _TnB)P/Gn _P>
1
- E{ (I = 7B)kn — (I - :B)p||* + 16w - pI’

~|[(T = 7uB)kn ~ (1= 7uB)p = (0~ p) I}

1
< 5 llkn = pII* + 116 = pII* = |Gk ~ 62) = 7 (Bks ~ Bp)||”
1
<5 Ul =PI+ 100 = plI* = llkn = 6al1* = 21| Blew = Bp||” + 27 (ks — 6, Bk — Bp)),
(3.69)
which yields that

16x —p||2 | [E p||2 = |lkn = 01> + 274l ks — B,ll|| Bk, — Bp||. (3.70)
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Substituting (3.70) into (3.56), we have

01 = plI* < (1= €x¥) (1= B = eaT) [|Wbs = plI* + (1 = ¥ Bullxn = I* + 2
< (1= ea¥) (1= fu—exl) [0 = pII” + (1 = &) Bull 0 = p|I* + ca
< (1= e07) (1= B = &) { 1w = pII* = llen = all* + 270 = O] || B — Bp| }
+ (1= e¥)Bullxn — || + cn
= (1= &)l ~ I = (1 = eF) (1= i~ ea) s~ O
+2(1 =€) (1 = Bu — €a¥) Tullkn = Bl || Bkn — Bp|| + cn
<l =plI* = (1= €7) (1 = B = €a¥) lln = 6

+2(1 = €4Y) (1 = P — €aY) Tullkn = Oull|| Bkn — Bp|| + cn.
3.71)

It follows that
(1= ) (1= Bu = e lIkn = Oall” < [l2n = pII* = |01 = pI°
+2(1 =€) (1 = Bu — €a¥) Tullkn = Oull|| Bk — Bp|| + cn
< “xn _xn+1||(||xn _P” + ||xn+1 _P”)

+2(1 - €e,y) (1= B — €nY) Tullkn = Onll|| Bk — Bp|| + cu-
3.72)

Applying ||xp1 — x4]| = O, ||Bk, — Bp|| — Oand ¢, — 0asn — oo to the last inequality, we
have

Jlim [k, = 6, = 0. (3.73)
On the other hand, we have
W06, - p||* < ||Pe(kn = 7Bkn) = Pe(p - 7.Bp) ||’

= ||Pe(I - 7uB)ky - Pe(I - T, B)p)|?

< -mB)kn, - (I~ TnB)Pr W,0, —P>
1
- E{ (I = 7uB)kn — (I = 2 B)p||” + [|[Wibs - p||’

~[|(I = 7B)ky — (I = 7:B)p = (W,8, = p) ||}
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< = lku = pII7 + [[Wabs = p|I” = || ke = W) — T (B — Bp) ||

1

-2
1

< {1l =PI + W, pIF = ks~ W,

“TilBs ~ Bp* + 27, (ks ~ Wi, Bk~ Bp) },

(3.74)
which yields that
Wb = p|I* < 1% = PII” = kn = WiBl* + 271K — W65l || Bk — Bp || (3.75)
Similarly, we can prove
[Wadn =plI* < [l =PI = 1y = Wadpull” + 24a [y = Waul| | By~ Bpll,  (3.76)
1Wagpn =PI < [ =PI = 1t ~ Wotsal + 260 1t ~ Wl [ Bun - Bpll. - (377)
Substituting (3.75) into (3.56), we have
Feues = pII* < (1= eaF) (1= B = ea) [[Wabh = pII* + (1~ ea?) Bullxa = pII* +
< (1-e)(1-pu—eny)
X { ”xn - pllz - ”kn - Wn9n||2 + 2Tn”kn - WnenH ”Bkn - BP”}
+ (1_€n?)ﬁ"”x”_p”2+cn (378)

= (1= ea?)’[lxn = plI* = (1= €a¥) (1 = B = eV lkn = Wbl
+2(1 = €,7) (1 = Bu — €7 Tullkn — Wil || Bk — Bp|| + ca
< [lxn = pI* = (1 = &) (1 = Bu = €)1k = Wi
+2(1 = x¥) (1= B — €nT) Tullkn = Waball|| B = Bp|| + cn,

which yields that

(1 - €n7) (1 —Pn - €n7)”kn - WHG‘VIHZ
<l =pI” = e = PI” +2(1 = €2F) (1= B = €07 Tullks = WaBal|[| Bk = Bp|| + cx
< 12w = xnaall(f|l2n = p| + [l20ne2 = pI])

+2(1 = ea¥) (1= Bu — €nT) Tullkn = Wuul || Bk — Bp)|| + cn.
(3.79)
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Applying (3.48) and (3.61) to the last inequality, we have

Tim [k, = Wy, ]| = 0. (3.80)

Using (3.64) again, we have

[lewer = pII” <

IN

IN

<

(1= ea?) (1= Bu = ea?) [lkn = pII* + (1 =€) Pullxa = p||” +

(1= eF) (1= B~ ea?) { ltuCew = p) + (1= @) (Wops ~ P}

+ (1 =€) Bullxn =PI +

(1= &) (1= Bu = &) {@ulla = pII* + (1 = ) [Wad = p|I*}

+ (1= eaf)Bull =l + o

(1 =€) (1= Bu — €n¥)tu || xn = p||*

+ (1= ea)) (1= o= ) (1= @) [[Wathn = p||” + (1 = ea?)Bullxn = pII* + e
(1= €a?) (1= P = ea?)atul | = pl|” + (1 = €a7) (1 = fu — €a7) (1 - @)
{112 =PI = 1yn = Waball” + 24|y = Waha || By — Bp|| }

+ (L= e)ullxn = pIl” +

(1= ea¥) (1 = Bu - &) || ||

+ (1= ef) (1= Pu— ea7) (1 = ) 20— p||°

— (1= &) (1= Bu = &) (1 = @) ||y = Wadhs

+ (1= &) (1= fu = &) (1 - )2 |y~ Wadha || By - B

+ (1=l pl +c,

(1= €¥) (1= B = &) |2 - p||”

— (1= ea?) (1= o= ea?) (1 = @) [y = Wagha|”

+ (1= e7) (1= fu = &) (1 - )2l g~ Wadhal| [ By - B

+ (L= e)ullxn = pII” +

(1= &) ?|lxn = plI* = (1= €a7) (1= = €a7) (1 = @) [[yn = WahuI®
+ (1= eny) (1= B = €a¥) (1 = an)2An [l yn = Wahu ||| Byn - Bp|| + cu

26 =PI = (1= €aF) (1 = B = &aT) (1 = ) |y = Wahu ||

+ (1= eny) (1= Pu — €n¥) (1 — )20 yn = Wapu | [| Byn — Bp|| + cn,
(3.81)
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which implies that

(1= enF) (1= B = €xF) (1 = @) |y = Waha
<l =pl* = lxwa —pl°
+2(1 = en) (1= Pu — €x¥) (1 = @) Au||yn = Wapu || || Byn = Bp|| + cn (3.82)
< lloen = xnall (|| 20 = p| + || 2001 = |l

+2(1 = eny) (1= Pu = €a¥) (1 = &) Aul|y = Waha ||| By — Bp| + en.
From (3.48) and (3.67), we obtain
i [|y = Wad| = 0. (3.83)
By using the same argument, we can prove that
Jim ||y = Wagsa|| = 0. (3.84)

Note that

kn - Wn¢n = “n(xn - Wn(,bn)r

(3.85)
Yn — Wn(lfn = Wn (un - Wn‘l’n)‘
Since a, — O0and ¢, — 0asn — oo, respectively, we also have
Tim [k = Wagpn|| = Hm ||y = Wags || = 0. (3.86)

On the other hand, we observe

||un - Qn“ S ”un - Wn‘l’n” + ”Wn(lfn - yn” + ”yn - Wnd)n” + ”Wn(i)n - kn” + ||kn - 6n” )
(3.87

Applying (3.73), (3.83), (3.84), and (3.86), we have

Jim fJuy =6, = 0. (3.88)
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On the other hand, we have

1k = pII* < aullen = plI” + (1 - @) [[Wahn ~ p|°
< allxn = plI* + (1= ) | fn — p|I°
< aulxn = pl* + (= )|y - pI°
< anllxn = pl + (1= @) {@ullun = plI* + (1= 90) [ Wapa = p||}
< | =plI* + (= ) {@ullun = pI* + (1= 9a) g = pl }
< anllxn = > + (1 = @) {@ullun = pl* + (1 = @) 1w - pIl} (3.89)
= al|lx = plI* + (1 = ) [ - p*
= @yl = p||* + (1 = @) | T, (I = ru D), = p||*
< a2 = p|I* + (1 = &) || (2 = raD)xs = p||°
<l pl+ (- an) {2~ pI* - a2 72) [ D0 - D)

= [lu = pII* = (1 = @u)ru(2 = 72) || D = Dp|.
Substituting (3.89) into (3.64) and using conditions (C2) and (C7), we have

%01 =plI* < (1 =€) (1= Bu = exT) lkn = pII” + (1 = €7) Bullxn = PII* + €2
< (1-ed) (1= o= ea?) { xn = pII* = (0 = a)ru(2 = 1) | D — Dp|*}

+ (1= ead)Pullxn = pII” +

(3.90)
= (1= ) (1= fn — ) (1 = )7 (29 = 1) | Dx, = Dp||*
+(1=ed)’xn —pl* +
< |lxa = pII* = (1 = a)ra (27 = 72) | Dx = Dp||-
This implies that
(1= @u)ru (21 = 1) [|Dxw = Dp|| < [|xa = p[|” = |01 = pI” + € (391)

In view of the restrictions (C2) and (C7), we obtain that

lim || Dx, - Dp|| = 0. (3.92)
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Letp € © := N, F(T,) N EP(F, D) N VI(E, B). Since u,, = T,,(x, — r,Dx,) and T, is firmly

nonexpansive (Lemma 2.6), then we obtain

”un - p”2 = ”Trn (xn - rann) - Trn (P - rnDP) ”2
< (T}, (xp — nDxy,) = Ty, (p — raDp), un — p)

= (xy — tyDx, — (p = r,Dp), u, — p)
1
= 5{ Il = raDxa) = (p = ruDp) I + [fun ~ p I
_”(xn _rann) - (p _r"Dp) - (u" _p)HZ}

< {1 =PI + lfwn = pII* = |0 =100 = 7 (D = Dp) ||}

Nl—= N

{110 = pII* + [0 = PI* = 12 = nlP + 27X = s, D, = Dp)
2 2
~r2||Dx, - Dp||*}.
So, we obtain
[t = pI|* < [l = pI|* = 1% = t2all® + 27l — wal|| Dax — Dp||-

Therefore, we have

lnsr = pll* = (1= ) (1 = = en?) W = pII” + (1= ea?)Bulln = pI* +

< (1-e¥) (1= Pu =) |0 =PI + (1 = €V ullxn =PI + e

(3.93)

(3.94)

= (1 - €n7) (1 _ﬂn - €n7)||(9n - un) + (un _P)Hz + (1 - 6”7)16"”3(" _p”2 *Cn

<(1-eny)(1=Pu- eﬁ){ll@n — | + ||2n — ]a||2 +2(0, — up, uy — p)}

+ (1= ) ullxn = plI” + ca
< (1 - en?) (1 _ﬁn - en?)Hen - un”Z + (1 - en?) (1 - en?_ﬁn) ”un _P”2

+2(1 = &) (1= Bu = €)1 = talll| 1t = pl| + (1 = €aT) Bl = p||” +

< (1 =€) (1= Pu = €n?)l10n — ual®

+ (1 - €n?) (1 _ﬂn - En?){”xn _P”Z = |lxn - un||2 +21n||x, - unH”Dxn - DP“}

+2(1 = €a7) (1= fu =€) 16~ wnll|en ~ pll + (1= &) ulla = p|I” + ¢
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IN

It follows that

(1= ) (1= Bu = a?) 100 = tal + (1 =€) (1 = B — €7 |2 — ||’
— (1 =€) (1 = B — € |0 — 1t

+ (1= €nY) (1 = B — €4Y) 27|l xn — un|||| Dx, — Dp||

+2(1=e,¥) (1= Bu = ea?) 16 =l [J1tn = p| + (1 = €7 fullxn — pI* + cs
(1= ) [l2n = pII* = (1= €a7) (1 = B = €aT) I = 11l

+ (1= €nY) (1 = Bu = €¥) 1160 — uall?

+ (1= €nY) (1 = B — €4Y) 27|l xn — un|||| Dx, — Dp||

+2(1 = €7) (1= Bu = €716 = tnll|| 10 = p| + cn

(12647 + (ea)?) I1xa =PI = (1= €2F) (1 = B = ) I = wal®

+ (1= e7) (1= Bu = €a7) 10 — hn?

+ (1= &) (1~ Bu — &aT)27all s — ]| Dt~ Dp]|

+2(1 =€) (1= Bu — €a7) 1600 — unll|| 1t — p|| + cn

120 = P11 + (ex¥)*[l20n = pII* + (1 = €47) (1 = B = €aT) 116 —

— (1= €nY) (1 = Bu =€) l|xn — un]?

+ (1= €a) (1= Bu =€) 27l — ||| D, — Dp]|

+ 2(1 - €n?) (1 —Pn - €n?) 16, — uall ”u" - P” * Cn

(1 =€) (1 = Bu =€) 120 — ]
< lxn =l = l1xne1 = pI* + (ea?) 0 = pII”
+ (1= ex7) (1= Bu = €aT) 160 — tall* + (1 = €7) (1 = B = €a7) 27nll2 — | Dx = Dp|
+2(1 =€) (1= P =€) 100 = ttall | ttn = p| + cn

< Nt = x| ([10 =PIl + 11 = PI) + (ea7)* %0 =PI
+ (1 - €n?) (1 - ﬁn - €n7)”9n - un||2 + (1 - Gn?) (1 - ﬁn - €n?)2rn||xn - un””Dxn - DP”

+ 2(1 — en?) (1 - ,Bn - en?)”Gn - un””u" - P” + Cn.

Using e, — 0,

¢, — 0asn — oo, (3.48), (3.88), and (3.92), we obtain

lim ||x;,, — u,|| = 0.
n—oo

33

(3.95)

(3.96)

(3.97)
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Since liminf,, _, .7, > 0, we obtain

tim [ 2= || = tim L, — ] = 0. (3.98)
n—owl|l 7, n—oty
Note that
126 = Onll < |20 — tn| + |[ttn — Bnll, (3.99)
and thus from (3.88) and (3.97), we have
im lac, = 0 = 0. (3.100)
Observe that
WO = Onl| < [[WnBp — x| + |20 — On|- (3.101)
Applying (3.53) and (3.100), we obtain
lim [|W,,6, — 0| = 0. (3.102)

Let W be the mapping defined by (2.11). Since {0, } is bounded, applying Lemma 2.10 and
(3.102), we have

W6, = 0,l] < W8, — WyBil| + [[WinBs — ]l — 0 as n — co. (3.103)

Step 5. We claim that limsup, , _ ((A -yf)z,z - x,) <0, where z is the unique solution of
the variational inequality ((A -y f)z,x —z) >0, forall x € ©.

Since z = Po(I — A + yf)(2) is a unique solution of the variational inequality (3.5), to
show this inequality, we choose a subsequence {6,,} of {0,} such that

lim ((A-yf)z,z=6y) = limsup((A-yf)z,z = 6y). (3.104)

n—oo

Since {0,,} is bounded, there exists a subsequence { Gni]_ } of {6,,} which converges weakly to
w € E. Without loss of generality, we can assume that 6,, — w. From [|W8,, — 0,|| — 0, we
obtain W6,, — w. Next, We show that w € ©, where © := N>, F(T,,) NEP(F, D) N VI(E, B).
(a) First, we prove w € EP(F, D).
Since u, = T;, (x, — r,Dx;), we know that

F(un,y) + (Dxp,y — un) + rl(y — Uy, Uy —Xn) >0, Vy€E. (3.105)
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From (A2), we also have
1
(DX, y = tn) + =y = n, thn = Xn) 2 =F (un, y) 2 F(y, tn).- (3.106)

Replacing n by n;, we have

Up; — Xp;

(Dxn,, v — U, ) + <y - Uy, > > F(y, un,). (3.107)

ni

Forany twithO<t<landy € E,let¢; =ty +(1-t)z.Since y € E and z € E, we have ¢; € E.
So, from (3.107) we have

Up, — X,

i

<(Pt - uﬂi'D(Pt> 2 <(Pt - uni'D‘Pt> - <Dxnir‘Pt - uni> - <‘Pt — Un,, > + F((Pt'uﬂi)

ni

> (@ — Uy, Doy — Duy,, ) + (@4 — Uy, Duy,, — Dxp,)

Uy — Xy,
— (¢t — Un,, "’r ") + F(opr, ).

ni

(3.108)
Since D is Lipschitz continuous, from (3.97), we have ||Du,, — Dx,,|| — 0asi — oo.
Further, from the monotonicity of D, we get that
(@t = tn,, Doy — Duy, ) > 0. (3.109)
It follows from (A4) and (3.108) that
(¢r = z,Dyr) > F(gy, z). (3.110)

From (A1), (A4), and (3.110), we also have

0=F(¢t, ) <tF(pr,y) + (1 - )F (g1, 2)
<tF(pny) + (1= ) {1 — z,Dpy) (3.111)

=tF (g, y) + (1= Hi(y - 2, Dyy),
and hence

F(yp,y) + (1 -t)(y -z, Dy;) > 0. (3.112)
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Letting t — oo in the above inequality, we have, for each y € E,
F(z,y) +(y—-z,Dz) >0. (3.113)

Thus z € EP(F, D).

(b) Next, we show that w € N;2; F(T,).

By Lemma 2.9, we have F(W) = (2, F(T,). Assume w ¢ F(W). Since ||x, — 04| —
0, we know that 0,, — w (i — o) and w# Ww, and it follows by the Opial’s condition
(Lemma 2.3) that

lim inf||0,, — w|| < liminf||6,, - Ww||
< im inf([|0, = WOy || + WOy, — Wrol) (3.114)

< liminf||6,, — w||,
1— 00

that is a contradiction. Thus, we have w € F(W) = (", F(T,).
(c) Finally, Now we prove that w € VI(E, B). Define,

Bwy + Npwq, if wi €E,
Tw, = (3.115)

@, if w1 ¢ E.
Since B is relaxed (u, v)-cocoercive and condition (C6), we have
(Bx - By, x - y) > (-u)||Bx - By|* + v||x - y||* > (v - u§2> lx-v|>>0, (3.116)

which yields that B is monotone. Then, T is maximal monotone. Let (w1, w,) € G(T). Since
w, — Bwy € Npw; and 6, € E, we have (w; — 0,,, w, — Bw;) > 0. On the other hand, from
0, = Pr(k, — 7,Bk,), we have

(wy = 6y,0, — (ky, — 7,Bky)) >0, (3.117)
and hence

Gm-emg£§&ﬁ+3@>zo. (3.118)
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Therefore, we have
(w1 = Oy, w) > (w1 — 6y, Bwy)

> <w1 - eni/Bw1> - <w1 - en,-/ M + Bkn,->

ni

- <w1 ~0,, Bw - Bky, - M>
Ty,
On, — kn,
= <wl — Qni,BU — BQni) + (w1 - Gni,BGni — Bkm) — <w1 — 6”;” (‘7_—1)>
0, — ku,
> (w1 — 0y, BO,, — Bky,) — <w1 -0y, g)
l (3.119)
which implies that
(w1 —w,wy) > 0. (3.120)

Since T is maximal monotone, we have w € T~!'0 and hence w € VI(E,B). Thatis, w € O,
where © := ;2; F(T,,) NEP(F, D) N VI(E, B). Since z = Po(I - A + yf)(z), it follows that

limsup((A-yf)z,z-x,) =limsup((A-yf)z,z-06,)

= ‘liém((A -yf)z,z—0n) (3.121)
=((A-yf)zz-w) <0.

On the other hand, we have

<(A—Yf)Z,Z—Wn9n> = <(A_Yf)zlxn_wn9n> + ((A—Yf)z,z—xn>

(3.122)
< (A=yf)z|[llxn = Wabull + (A=Y f)z, 2 = x5).
From (3.53) and (3.121), we obtain that
limsup(yf(z) - Az, W,,0,, — z) <0. (3.123)

n— oo

Step 6. Finally, we show that {x,} and {u,} converge strongly to z = Po(I - A+ yf)(2).
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Indeed, from (3.4) and Lemma 2.4, we obtain
%41 = 27 = || €y f (Wadn) + Bun + (1 = Bu)] = €4 AYW,u0, — z||°
= [[((1 = B)] = €nA) Wiy — 2) + Pu(n — 2) + en(y f (Waxy) — Az) ||
= [[((1 = Bu)T = en A) (Wi, — 2) + P (tn — 2)||* + €]y f (Wax) — Az|®
+ 2Bnen(xy — 2,7 f Wayxy) — Az)
+2€,( (1= Pu)] — €nA) (Wb — 2), v f (Wyxy) — Az)
(1= Bu = V) Wby = zll + Bullxn = 2II)* + €|y f Waxn) — Az|]®
+ 2Bneny (Xn = Z, f(WnXn) = f(2)) + 2Buen(xn - 2,y f(2) - Az)
+2(1 = Bu)yen(Wubn — z, f Waxn) - f(2))
+2(1= Bu)en{ Wb — 2,7 (2) — Az) — 2e2( A(W,0, - 2), Y f (2) - Az),

IN

IN

(1= P = a?) Wby = 2l + Pulln — 21))” + €|y f (Wax) - Az

+ 2BnenyllxXn — Z|| || f Waxn) = f(2)|| + 2Bnen{xn — 2,7 f(2) - Az)

+2(1 = Bo) Yeul Wb — zll[| f Won) - £(2)

+2(1 = Bn)en(Wiby — 2,1 f(2) — Az) =262 (A(W,0, — 2), 1 f(2) — Az),

IN

(1= Bu = en)10n = 2l + ullcn = 2I1)* + €3[|y f (W) - Az]|?

+ 2Bneny X0 = 2| || f (Wixn) = f(2)|| +2Bn€n{xn = 2,7 f (2) = Az)

+2(1 = Bu)yenlBn = 2l || f Waxn) = f(2)|| +2(1 = Pn) €n{Wnby — 2,y f (2) - Az)
-262(A(W,.0, - 2),Yf(z) — Az)

(1= Bu = en)llxn = 2l + Bullxn = 21)° + R lly f (Wax) - Az|”

+ 2Bnenyalxn = z|* + 2Buen(xn - 2,y f (2) - Az)

+2(1 - Bu)yenatllxn - z|I°

+2(1 = Bn)en(Wub — 2,7 f(2) — Az) = 265 ( A(W,0, - 2),Yf (z) — Az)

IN

= [(1 - e,,?)2 +2Bpenya+2(1- ﬂn)yenzx] o, — z||* + efl”yf(ann) - Az||2
+ 2Bnen(xn — 2,7 f(2) — Az) +2(1 = Bp) €2 (Wnby — 2,y f (z) — Az)

—2e2(A(W,.0, - z),yf(z) - Az)

IN

[1- 205 - ay)enllin - 2 + Pl - 2l + [y f W) - Az
+2Pnen(xn —z,7f(2) — Az) + 2(1 - ﬁn)€n<wn6n -z,7f(z) - Az)
22 AW,6, - 2|y (=) - Az
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= [1 - 2(? - “Y)en] “xn - Z||2
+ enfen(Pllcn = 22 + Iy f Waxa) - Az||* + 2| AWa8, - )|y £ (=) - Az]))

2 (30— 2,7 (2) — AZ) +2(1 - B) (Wi, — 2,7 (2) - Az)}.  (3.124)
Since {x,}, { f(Wnxy)}, and {W,0,} are bounded, we can take a constant M > 0 such that
Plloen = 2l + ||y f W) = Az||> + 2| AWW0, - 2) |||y f(2) - Az|| < M (3.125)
for all n > 0. It then follows that
Ixer = 2I2 < (1= ln) s = 211 + €0, (3.126)
where

L =2(y — ay)en,

(3.127)
On = €nM + 2B, (xy — 2,7 f(2) — Az) + 2(1 = Bp) (WO — 2,7 f (2) — Az).

Using (C1), (3.121), and (3.123), we get I, — 0, X211, = oo and limsup,_,_ (0,/1,) < 0.
Applying Lemma 2.13 to (3.126), we conclude that x, — z in norm. Finally, noticing ||, —
z|| = T}, (xn — tuDxy) — Ty, (z — r,D2z)|| < ||xn — z||, we also conclude that #, — z in norm.
This completes the proof. O

Corollary 3.4. Let E be a nonempty closed convex subset of a real Hilbert space H. Let F : EXE — R
be a bifunction satisfying (A1)-(A4), let B : E — H be relaxed (u,v)-cocoercive and &-Lipschitz
continuous mappings, and let {T,} be an infinite family of nonexpansive mappings of E into itself
such that © := (2, F(T,) N EP(F) N VI(E, B) #0. Let f be a contraction mapping of E into itself
with a € (0,1). Let {x,}, {yn}, {kn}, and {u,} be sequences generated by

x1 € E chosen arbitrary,

1
F(tn,y) + —(y = thn,ttn = x) 20, Vy€E,

3.128
Yn = @uttn + (1~ @) Wi Pe (it — 5,Bitn), (3.128)

kn = apXy t (1 - an)WnPE(yn - )LnByn)r
X1 = €nf Waxn) + Buxn + YynWinPg(ky — T,Bky), V¥n>1,
where {W,,} is the sequence generated by (1.24) and {e,}, {a,}, {¢n}, and {p,} are sequences in
(0,1) and {r,} is a real sequence in (0, oo) satisfying the following conditions:

(C1) e, +ﬂn tYn = 1,

(C2) limy o€, =0, Xprg €y = 00,
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(C4) limy, —, ey, = limy, o9, =0,
(C5) 0 < liminf, . ,p, <limsup, ,_f. <1,
(C6) limy, o[ A1 = An| = limy 0[O i1 = Ol = limyy . oo | T = 7| = 0,
(C7) {7}, {Xu}), {60} C [a,b] for some a,bwith0 < a<b<2(v-ug?)/&, v>ud
Then, {x,} and {u,} converge strongly to a point z € ©, where z = Po f (z).
Proof. Put A=1,y=1,y, = 1-€,—pn, D = 0 (:the zero mapping) and {e,} = 0in Theorem 3.3.

Then y, = v, = u,, and for any 7 > 0, we see that

(Dx - Dy, Vx,y € E. (3.129)

obtain the desired conclusion easily from Theorem 3.3. O

Let {r,} be a sequence satisfying the restriction: ¢ < r, < d, where ¢, d € (0, ). Then we can

Corollary 3.5. Let E be a nonempty closed convex subset of a real Hilbert space H. Let {T,} be an
infinite family of nonexpansive mappings of E into itself and let B : E — H be relaxed (u,v)-
cocoercive and ¢-Lipschitz continuous mappings such that © := (2, F(T,,) N VI(E, B) #0. Let f :
E — E be a contraction mapping with 0 < a < 1 and let A be a strongly positive linear bounded
operator on H with coefficient y > 0 and 0 < y < y/a. Let {x,},{y,}, and {k,} be sequences
generated by

x1 € E chosen arbitrary,
Yn = PnXn + (1 - (P")W"PE(x" = 6nBxy),
(3.130)
kn = anxy + (1 — an) W, Pg (]/n - ’\"By")’

X1 = EnY f Wixn) + Buxn + ((1 = Bu)I - e,A)W, Pg(ky, — 7,Bky,), Vn>1,

where {W,,} is the sequence generated by (1.24) and {e,}, {a,}, {¢n}, and {B,} are sequences in
(0,1) satisfying the following conditions:

(C1) limy—, o€ =0, X071 €4 = o0,

(C2) limy, -, ety = limy, o9, =0,

(C3) 0 < liminf, , ,p, < limsup,_, pfn <1,

(C4) limy— oo dpe1 = An| = limy o |6n41 = Op| = limy 0| T1 = 7| = 0,

(C5) {7n}, {An), {6a) C [a,b] for some a,bwith0< a <b <2(v - ul?)/&, v > ui.

Then, {x,} converges strongly to a point z € ©, where z = Po(I — A + yf)(z), which solves the
variational inequality

((A-yf)z,x-2z)>0, Vxe€O, (3.131)
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which is the optimality condition fot the minimization problem

min{ %(Ax,x) — h(x) }, (3.132)

x€O©

where h is a potential function for y f (i.e., W' (x) = yf(x) for x € H).

Proof. Put D =0, F(x,y) =0forall x,y € E and r, = 1 for all n € N in Theorem 3.3. Then, we
have u, = Pcx, = x,. So, by Theorem 3.3, we can conclude the desired conclusion easily. [
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