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We obtain global weighted Caccioppoli-type and Poincaré inequalities in terms of Orlicz norms
for solutions to the nonhomogeneous A-harmonic equation d�A(x, dω) = B(x, dω).

1. Introduction

The Lp-theory of solutions of the homogeneous A-harmonic equation d�A(x, dω) = 0 for
differential forms has been very well developed in recent years. Many Lp-norm estimates
and inequalities, including the Hardy-Littlewood inequalities, Poincaré inequalities,
Caccioppoli-type estimates, and Sobolev imbedding inequalities, for solutions of the
homogeneous A-harmonic equation have been established; see [1–11]. Among these results,
the Caccioppoli-type inequalities and the Poincaré inequalities for differential forms have
become more and more important tools in analysis and related fields, including partial
differential equations and potential theory. However, the study of the nonhomogeneous
A-harmonic equation d�A(x, dω) = B(x, dω) just began [4, 6]. Roughly, the Caccioppoli-type
inequalities or estimates provide upper bounds for the norms of ∇u or du in terms of the
corresponding norm of u or u−c, where u is a differential form or a function satisfying certain
conditions. For example, u may be a solution of an A-harmonic equation or a minimizer of a
functional, and c is some constant if u is a function or a closed form if u is a differential form.
Different versions of the Caccioppoli-type inequalities and the Poincaré inequalities have
been established during the past several decades. For instance, Sbordone proved in [12] the
following version of the Caccioppoli-type inequality:

−
∫
BR/2

A(|du|)dx ≤ C−
∫
BR

A

( |u − uR|
R

)
dx (1.1)
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for a quasiminimizer u of the functional F(Ω;v) =
∫
Ω A(|dv|)dx, where A is a continuous,

convex, and strictly increasing function satisfying the so-calledΔ2-condition, BR is a ball with
radius R > 0, and uR = −

∫
BR
u dx; see [12]. Using the above Caccioppoli-type inequality, Fusco

and Sbordone obtained in [13] the higher integrability result

−
∫
BR/2

Ar(|du|)dx ≤ C

(
−
∫
BR

A(|du|)dx
)r

(1.2)

for the gradient of minimizers of the functional I(Ω;v), where r > 1 is some constant. In
[14], Greco et al. studied the variational integrals whose integrand grows almost linearly
with respect to the gradient and the related equation divA(x, f +∇u) = 0, where A is slowly
increasing to ∞. For instance, A(t) = logα(1 + t), α > 0, or A(t) = log log(e + t). They proved
that the minimizer u subject to the Dirichlet data v satisfies the estimate

∫
Ω
|∇u|A1±ε(|∇u|)dx ≤ C

∫
Ω
|∇v|A1±ε(|∇v|)dx (1.3)

at least for some small ε > 0. In [15], Cianchi and Fusco investigated the higher integrability
properties of the gradient of local minimizers of an integral functional of the form J(u,Ω) =∫
Ω f(x, u, du)dx, where Ω is an open subset of Rn, n ≥ 2, and f is a Carathodory function
defined in Ω × R

N × R
nNsatisfying some growth conditions. Using a new form of the

Caccioppoli inequality and some other tools, such as the Sobolev inequality and a generalized
version of the Gehring lemma, they proved that if u is a local minimizer of J(u,Ω), for
Ω0 ⊂⊂ Ω there exists δ > 0 such that

∫
Ω0

A(|du|)
(
A(|du|)
|du|

)δ

dx < ∞, (1.4)

where A satisfies the so-called Δ2-condition. However, all versions of the Caccioppoli-type
inequality developed or used in [12–15] are about the minimizer u of some functional. In this
paper, we will prove the Caccioppoli-type inequalities and the Poincaré inequalities with the
Ls(logL)α-norm for differential forms satisfying the nonhomogeneousA-harmonic equation.
The method developed in this paper could be used to establish other Ls(logL)α-norm
inequalities for solutions of the homogeneousA-harmonic equation or the nonhomogeneous
A-harmonic equation.

Throughout this paper, we always assume thatΩ is an open subset of Rn, n ≥ 2. The n-
dimensional Lebesgue measure of a set E ⊆ R

n is denoted by |E|. We say that w is a weight if
w ∈ L1

loc(R
n) and w > 0 a.e. For 0 < p < ∞, we denote the weighted Lp-norm of a measurable

function f over E by ‖f‖p,E,wα = (
∫
E |f(x)|pwα(x)dx)1/p, where α is a real number. We write

‖f‖p,E = ‖f‖p,E,wα if w = 1. A continuously increasing function ϕ : [0,∞) → [0,∞) with
ϕ(0) = 0 and ϕ(∞) = ∞ is called an Orlicz function. The Orlicz space Lϕ(Ω) consists of all
measurable functions f on Ω such that

∫
Ω
ϕ

(∣∣f∣∣
k

)
dx < ∞ (1.5)
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for some k = k(f) > 0. Lϕ(Ω) is equipped with the nonlinear Luxemburg functional

∥∥f∥∥ϕ = inf

{
k > 0 :

1
|Ω|

∫
Ω
ϕ

(∣∣f∣∣
k

)
dx ≤ 1

}
. (1.6)

A convex Orlicz function ϕ is often called a Young function. If ϕ is a Young function, then
‖ · ‖ϕ defines a norm in Lϕ(Ω), which is called the Luxemburg norm or Orlicz norm. The
Orlicz space Lψ(Ω) with ψ(t) = tplogα(e + t/c) will be denoted by Lp(logL)α(Ω) and the
corresponding norm will be denoted by ‖f‖Lp(logL)α(Ω), where 1 ≤ p < ∞, α ≥ 0, and c > 0
are constants. The spaces Lp(logL)0(Ω) and L1(logL)1(Ω) are usually referred as Lp(Ω) and
L logL(Ω), respectively. From [16], we have the equivalence

∥∥f∥∥Lp(logL)α(Ω) ≈
(∫

Ω

∣∣f∣∣plogα
(
e +

∣∣f∣∣∥∥f∥∥p,Ω

)
dx

)1/p

. (1.7)

Similarly, we have

∥∥f∥∥Lp(logL)α(Ω,μ) ≈
(∫

Ω

∣∣f∣∣plogα
(
e +

∣∣f∣∣∥∥f∥∥p,Ω

)
dμ

)1/p

, (1.8)

where μ is a measure defined by dμ = w(x)dx andw(x) is a weight. In this paper, we simply
write

∥∥f∥∥Lp(logL)α(E,wα) =

(∫
E

|f |plogα
(
e +

∣∣f∣∣∥∥f∥∥p,E

)
wαdx

)1/p

, (1.9)

and ‖f‖Lp(logL)α(E) = ‖f‖Lp(logL)α(E,1), where w is a weight.
We keep using the traditional notations related to differential forms in this paper. Let

Λ	 = Λ	(Rn) be the linear space of the 	-covectors on R
n, 	 = 1, 2, . . . , n. It is a normed space

of dimension
(

n

	

)
. A differential 	-form ω on Ω is a Schwartz distribution on Ω with values

in Λ	(Rn). We write D′(Ω,Λ	) for the space of all differential 	-forms and Lp(Ω,Λ	) for all
	-forms ω(x) =

∑
I ωI(x)dxI =

∑
ωi1i2···i	 (x)dxi1 ∧ dxi2 ∧ · · · ∧ dxi	 with ωI ∈ Lp(Ω,R) for all

ordered 	-tuples I. Thus, Lp(Ω,Λ	) is a Banach space with norm

‖ω‖p,Ω =
(∫

Ω
|ω(x)|pdx

)1/p

=

⎛
⎝

∫
Ω

(∑
I

|ωI(x)|2
)p/2

dx

⎞
⎠

1/p

. (1.10)

We use Lp(logL)α(Ω,Λ	) to denote the space of all differential 	-forms u on Ω with

‖u‖Lp(logL)α(Ω) =

(∫
Ω
|u|plogα

(
e +

|u|
‖u‖p,Ω

)
dx

)1/p

< ∞. (1.11)
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We use d : D′(Ω,Λ	) → D′(Ω,Λ	+1) to denote the differential operator and d� :
D′(Ω,Λ	+1) → D′(Ω,Λ	) to denote the Hodge codifferential operator given by d� = (−1)nl+1 �
d� on D′(Ω,∧l+1), 	 = 0, 1, . . . , n. Here � is the well-known Hodge star operator. We use B to
denote a ball and σB, σ > 0, is the ball with the same center as B andwith diameter σ diam(B).
A differential form u is called closed if du = 0 and a differential form v is called coclosed if
d�v = 0.

Definition 1.1. LetA : Ω×Λ	(Rn) → Λ	(Rn) and B : Ω×Λ	(Rn) → Λ	−1(Rn) be two operators
satisfying the conditions:

|A(x, ξ)| ≤ a|ξ|p−1, A(x, ξ) · ξ ≥ |ξ|p, |B(x, ξ)| ≤ b|ξ|p−1 (1.12)

for almost every x ∈ Ω and all ξ ∈ Λ	(Rn). Then the nonlinear elliptic equation

d�A(x, dω) = B(x, dω) (1.13)

is called the nonhomogeneous A-harmonic equation for differential forms. Here a, b > 0 are
constants and 1 < p < ∞ is a fixed exponent associated with (1.13).

We should notice that if the operator B equals 0 in (1.13), then (1.13) reduces to the
following homogeneous A-harmonic equation, or the A-harmonic equation:

d�A(x, dω) = 0, (1.14)

which has received much investigation during the recent years; see [3, 5, 7–11]. A solution to
(1.13) is an element of the Sobolev space W1,p

loc (Ω,Λ	−1) such that

∫
Ω
A(x, dω) · dϕ + B(x, dω) · ϕ = 0 (1.15)

for all ϕ ∈ W
1,p
loc (Ω,Λ	−1) with compact support. The solutions of the A-harmonic equation

are called A-harmonic tensors. For any differential form ω defined in a bounded and convex
domain D, there is a decomposition

ω = d(Tω) + T(dω). (1.16)

Using the operator T , we can define the l-form ωD ∈ D′(D,Λ	) by

ωD = |D|−1
∫
D

ω
(
y
)
dy, 	 = 0, and ωD = d(Tω), 	 = 1, 2, . . . , n, (1.17)

for all ω ∈ Lp(D,Λ	), 1 ≤ p < ∞. It is known that uD is a closed form. Hence, u − uD is still a
solution of (1.13) whenever u is a solution of (1.13).
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2. Preliminaries

The purpose of this section is to establish some preliminary results that will be used in the
proof of our main theorems. In [6], the weighted Poincaré inequality for solutions of the
nonhomogeneous A-harmonic equation was established. From [7], we have the following
local Poincaré inequality.

Lemma 2.1. Let u ∈ D′(Ω,∧	) be a differential form in a domain Ω ⊂ R
n and du ∈ Ls(Ω,∧	+1),

	 = 0, 1, . . . , n. Assume that 1 < s < ∞. Then

‖u − uB‖s,B ≤ C|B|1/n‖du‖s,σB (2.1)

for all balls B with σB ⊂ Ω. Here C is a constant independent of u and σ > 1 is some constant.

From [7], we have the following local Caccioppoli-type inequality.

Lemma 2.2. Let u ∈ D′(Ω,Λl), l = 0, 1, . . . , n, be a solution of the nonhomogeneous A-harmonic
equation (1.13) in a domainΩ ⊂ R

n and let ρ > 1 be some constant. Assume that 1 < s < ∞ is a fixed
exponent associated with theA-harmonic equation (1.13). Then there exists a constantC, independent
of u, such that

‖du‖s,B ≤ C|B|−1/n‖u − c‖s,ρB (2.2)

for all balls B with ρB ⊂ Ω and all closed forms c.

The following weak reverse Hölder inequality appears in [7].

Lemma 2.3. Let u be a solution of (1.13) in Ω and 0 < s, t < ∞. Then there exists a constant C,
independent of u, such that

‖u‖s,B ≤ C|B|(t−s)/st‖u‖t,σB (2.3)

for all balls or cubes B with σB ⊂ Ω for some σ > 1.

Now, we prove the following local Orlicz norm estimates.

Proposition 2.4. Let u be a solution of (1.13) in Ω, α > 0, σ > 1, and 1 < p < ∞. Then there exists
a constant C, independent of u, such that

‖uB‖Lp(logL)α(B) ≤ C‖u‖Lp(logL)α(σB), (2.4)

‖u − uB‖Lp(logL)α(B) ≤ C‖u − c‖Lp(logL)α(σB) (2.5)

for all balls B with σB ⊂ Ω and diam(B) ≥ d0. Here d0 > 0 is a constant and c is any closed form.
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Proof. Let B ⊂ Ω be a ball with diam(B) ≥ d0 > 0. Choose ε > 0 small enough and a constant
M large enough such that |B|−ε/p2 ≤ M. From Lemma 2.3, we have

‖uB‖p+ε,B ≤ C1|B|(p−(p+ε))/p(p+ε)‖uB‖p,σB (2.6)

for some σ > 1. Similar to (3.4) in the proof of Theorem 3.1, we may assume that
|uB|/‖uB‖p,B ≥ 1 on B. For above ε > 0, there exists C2 > 0 such that

logα
(
e +

|uB|
‖uB‖p,B

)
≤ C2

(
|uB|

‖uB‖p,σB

)ε

. (2.7)

From (2.6) and (2.7), it follows that

‖uB‖Lp(logL)α(B) =

(∫
B

|uB|plogα
(
e +

|uB|
‖uB‖p,B

)
dx

)1/p

≤ C3

(
1

‖uB‖εp,σB

∫
B

|uB|p+εdx
)1/p

≤ C3

‖uB‖ε/pp,σB

((∫
B

|uB|p+εdx
)1/(p+ε)

)(p+ε)/p

≤ C4

‖uB‖ε/pp,σB

(
|B|(p−(p+ε))/p(p+ε)‖uB‖p,σB

)(p+ε)/p

≤ C5|B|−ε/p
2‖uB‖p,σB.

(2.8)

From [17], we know that

‖uB‖p,σB ≤ C6‖u‖p,σB. (2.9)

Putting (2.9) into (2.8) and noting that

logα
(
e +

|u|
‖u‖p,σB

)
≥ 1 (2.10)

for α > 0, we obtain

‖uB‖Lp(logL)α(B) ≤ C7‖u‖p,σB ≤ C8‖u‖Lp(logL)α(σB). (2.11)

This ends the proof of inequality (2.4). If c is a closed differential form, from (1.16) and (1.17),
we find that

c = dT(c) + T(dc) = dT(c) = cB. (2.12)
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Applying triangle inequality and (2.4), we conclude that

‖u − uB‖Lp(logL)α(B) = ‖(u − c) − (uB − cB)‖Lp(logL)α(B)

= ‖(u − c) − (u − c)B‖Lp(logL)α(B)

≤ ‖u − c‖Lp(logL)α(B) + ‖(u − c)B‖Lp(logL)α(B)

≤ ‖u − c‖Lp(logL)α(B) + C9‖u − c‖Lp(logL)α(σB)

≤ C10‖u − c‖Lp(logL)α(σB)

(2.13)

for any closed form c. The proof of Proposition 2.4 has been completed.

Next, extend the weak reverse Hölder inequality above to the case of Orlicz norms.

Lemma 2.5. Let u be a solution of (1.13) in Ω, σ > 1, and 0 < s, t < ∞. Then there exists a constant
C, independent of u, such that

‖u‖Ls(logL)α(B) ≤ C|B|(t−s)/st‖u‖Lt(logL)β(σB) (2.14)

for any constants α > 0 and β > 0, and all balls B with σB ⊂ Ω and diam(B) ≥ d0 > 0, where d0 is a
fixed constant.

The proof of Lemma 2.5 is similar to that of Proposition 2.4. For completeness, we
prove Lemma 2.5 as follows.

Proof. For any ball B ⊂ Ω with diam(B) ≥ d0 > 0, we may choose ε > 0 small enough and a
constant C1 such that

|B|−ε/st ≤ C1. (2.15)

From Lemma 2.3, we have

‖u‖s+ε,B ≤ C2|B|(t−(s+ε))/t(s+ε)‖u‖t,σB (2.16)

for some σ > 1. Similar to (3.5) in the proof of Theorem 3.1, wemay assume that |u|/‖u‖t,B ≥ 1
on B. For above ε > 0, there exists C3 > 0 such that

logα
(
e +

|u|
‖u‖s,B

)
≤ C3

(
|u|

‖u‖t,σB

)ε

. (2.17)
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From (2.16) and (2.17), we have

‖u‖Ls(logL)α(B) =

(∫
B

|u|slogα
(
e +

|u|
‖u‖s,B

)
dx

)1/s

≤ C4

(
1

‖u‖εt,σB

∫
B

|u|(s+ε)dx
)1/s

≤ C4

‖u‖ε/st,σB

((∫
B

|u|s+εdx
)1/(s+ε)

)(s+ε)/s

≤ C5

‖u‖ε/st,σB

(
|B|(t−(s+ε))/t(s+ε)‖u‖t,σB

)(s+ε)/s

≤ C6|B|(t−s−ε)/st‖u‖t,σB.

(2.18)

From (2.15) and (2.18) and using logβ(e + |u|/‖u‖t,σB) ≥ 1, β > 0, we obtain

‖u‖Ls(logL)α(B) ≤ C6|B|(t−s−ε)/st‖u‖t,σB

≤ C7|B|(t−s−ε)/st
(∫

σB

|u|tlogβ
(
e +

|u|
‖u‖t,σB

)
dx

)1/t

≤ C7|B|(t−s−ε)/st‖u‖Lt(logL)β(σB)

≤ C8|B|(t−s)/st‖u‖Lt(logL)β(σB).

(2.19)

This ends the proof of Lemma 2.5.

Using a similar method developed in the proof of Lemma 2.5 and from Lemma 2.9 in
[6], we can prove the following version of the weak reverse Hölder inequality with Orlicz
norms. Note that the following version of the weak reverse Hölder inequality cannot be
obtained by replacing u by du in Lemma 2.5 since dumay not be a solution of (1.13).

Lemma 2.6. Let u be a solution of (1.13) inΩ, σ > 1, and 0 < s, t < ∞. Then there exists a constant
C, independent of u, such that

‖du‖Ls(logL)α(B) ≤ C|B|(t−s)/st‖du‖Lt(logL)β(σB) (2.20)

for all balls B with σB ⊂ Ω and diam(B) ≥ d0 > 0. Here d0 is a fixed constant, and α > 0 and β > 0
are any constants.
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It is easy to see that for any constant k, there exist constants m > 0 and M > 0, such
that

m log(e + t) ≤ log
(
e +

t

k

)
≤ M log(e + t), t > 0. (2.21)

From the weak reverse Hölder inequality (Lemma 2.3), we know that the norms ‖u‖s,B and
‖u‖t,B are comparable when 0 < d1 ≤ diam(B) ≤ d2 < ∞. Hence, we may assume that 0 <
m1 ≤ ‖u‖s,B ≤ M1 < ∞ and 0 < m2 ≤ ‖u‖t,B ≤ M2 < ∞ for some constants mi and Mi, i = 1, 2.
Thus, we have

C1 log(e + |u|) ≤ log

(
e +

|u|
‖u‖s,B

)
≤ C2 log(e + |u|),

C3 log(e + |u|) ≤ log

(
e +

|u|
‖u‖t,B

)
≤ C4 log(e + |u|)

(2.22)

for any s > 0 and t > 0, where Ci is a constant, i = 1, 2, 3, 4. Using (2.22), we obtain

C5

(∫
B

|u|slogα
(
e +

|u|
‖u‖t,B

)
dx

)1/s

≤ ‖u‖Ls(logL)α(B) ≤ C6

(∫
B

|u|slogα
(
e +

|u|
‖u‖t,B

)
dx

)1/s

,

(2.23)

C7‖u‖Lt(logL)α(B) ≤
(∫

B

|u|tlogα
(
e +

|u|
‖u‖s,B

)
dx

)1/t

≤ C8‖u‖Lt(logL)α(B) (2.24)

for any ball B and any s > 0, t > 0, and α > 0. Consequently, we see that ‖u‖Ls(logL)α(B) < ∞ if
and only if

(∫
B

|u|slogα
(
e +

|u|
‖u‖t,B

)
dx

)1/s

< ∞. (2.25)

We recall the Muckenhoupt weights as follows. More properties and applications of
Muckenhoupt weights can be found in [1].

Definition 2.7. A weight w(x) is called an Ar(E) weight in a set E ⊂ R
n for r > 1, write

w ∈ Ar(E), if

sup
B

(
1
|B|

∫
B

w dx

)(
1
|B|

∫
B

(
1
w

)1/(r−1)
dx

)(r−1)
< ∞ (2.26)

for any ball B ⊂ E.
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We will need the following reverse Hölder inequality for Ar(E)-weights.

Lemma 2.8. If w ∈ Ar(E), r > 1, then there exist constants k > 1 and C, independent of w, such
that

‖w‖k,Q ≤ C
∣∣q∣∣(1−k)/k‖w‖1,Q (2.27)

for all balls or cubes Q ⊂ E.

3. Caccioppoli-Type Estimates

In recent years different versions of Caccioppoli-type estimates have been established; see
[1, 2, 4, 12–15, 17–19]. The Caccioppoli-type estimates have become powerful tools in analysis
and related fields. The purpose of this section is to prove the following Caccioppoli-type
estimates with Lp(logL)α-norms for solutions to the nonhomogeneousA-harmonic equation.

Theorem 3.1. Let u ∈ Lp(logL)α(Ω,Λ	), 	 = 0, 1, . . . , n − 1, be a solution to the nonhomogeneous
A-harmonic equation (1.13) in Ω ⊂ R

n. Then, there exists a constant C, independent of u, such that

‖du‖Lp(logL)α(B) ≤ C|B|−1/n‖u − c‖Lp(logL)α(σB) (3.1)

for some constant σ > 1 and all balls B with σB ⊂ Ω and diam(B) ≥ d0 > 0. Here d0, 1 < p < ∞
and α > 0 are constants, and c ∈ Lp(logL)α(Ω,Λ	) is any closed form.

Proof. Let B ⊂ Ω be a ball with diam(B) ≥ d0 > 0. Let ε > 0 be small enough and a constant
C1 large enough such that

|B|−ε/p2 ≤ C1. (3.2)

Applying Lemma 2.9 in [6], we have

‖du‖p+ε,B ≤ C2|B|(p−(p+ε))/p(p+ε)‖du‖p,σB (3.3)

for some σ > 1. We may assume that |du|/‖du‖p,B ≥ 1 on B. Otherwise, setting B1 = {x ∈
B : |du|/‖du‖p,B ≥ 1}, B2 = {x ∈ B : |du|/‖du‖p,B < 1}, and using the elementary inequality
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|a + b|s ≤ 2s(|a|s + |b|s), where s > 0 is any constant, we have

‖du‖Lp(logL)α(B)

=

(∫
B

|du|plogα
(
e +

|du|
‖du‖p,B

)
dx

)1/p

=

(∫
B1
|du|plogα

(
e +

|du|
‖du‖p,B

)
dx +

∫
B2
|du|plogα

(
e +

|du|
‖du‖p,B

)
dx

)1/p

≤21/p
⎛
⎝

(∫
B1

|du|plogα
(
e+

|du|
‖du‖p,B

)
dx

)1/p

+

(∫
B2

|du|plogα
(
e+

|du|
‖du‖p,B

)
dx

)1/p
⎞
⎠.

(3.4)

First, we estimate the first term on the right. Since |du|/‖du‖p,B > 1 on B1, then for ε > 0
appeared in (3.2), there exists C3 > 0 such that

logα
(
e +

|du|
‖du‖p,B

)
≤ C3

(
|du|

‖du‖p,σ1B

)ε

. (3.5)

Combining (3.2), (3.3), and (3.5), we obtain

(∫
B1

|du|plogα
(
e +

|du|
‖du‖p,B

)
dx

)1/p

≤ C4

(
1

‖du‖εp,σ1B

∫
B1

|du|p+εdx
)1/p

≤ C4

(
1

‖du‖εp,σ1B

∫
B

|du|p+εdx
)1/p

=
C4

‖du‖ε/pp,σ1B

((∫
B

|du|p+εdx
)1/(p+ε)

)(p+ε)/p

≤ C5

‖du‖ε/pp,σ1B

(
|B|(p−(p+ε))/p(p+ε)‖du‖p,σ1B

)(p+ε)/p

≤ C6‖du‖p,σ1B
,

(3.6)

where σ1 > 1 is a constant. Since

logα
(
e +

|du|
‖du‖p,B

)
≤ M1log

α(e + 1) ≤ M2, x ∈ B2, (3.7)
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we can estimate the second term similarly

(∫
B2

|du|plogα
(
e +

|du|
‖du‖p,B

)
dx

)1/p

≤ C7‖du‖p,σ2B
, (3.6)′

where σ2 > 1 is a constant. From (3.4), (3.6), and (3.6)′, we have

‖du‖Lp(logL)α(B) ≤ C8‖du‖p,σ3B
, (3.8)

where σ3 = max{σ1, σ2}. By Lemma 2.2, we obtain

‖du‖p,σ3B
≤ C9|B|−1/n‖u − c‖p,σ4B

(3.9)

for some σ4 > σ3 and all closed forms c. Note that

logα
(
e +

|u − c|
‖u − c‖p,σ2B

)
≥ 1, α > 0. (3.5)′

Combining last three inequalities, we obtain

‖du‖Lp(logL)α(B) ≤ C10|B|−1/n‖u − c‖p,σ4B
≤ C10|B|−1/n‖u − c‖Lp(logL)α(σ4B). (3.10)

The proof of Theorem 3.1 has been completed.

If we revise (3.5) and (3.5)′ in the proof of Theorem 3.1, we obtain the following version
of Caccioppoli-type estimate.

Corollary 3.2. Let u ∈ Lp(logL)α(Ω,Λ	), 	 = 0, 1, . . . , n − 1, be a solution to the nonhomogeneous
A-harmonic equation (1.13) in Ω ⊂ R

n. Then, there exists a constant C, independent of u, such that

(∫
B

|du|plogα
(
e +

|du|
‖du‖p,Ω

)
dx

)1/p

≤ C

diam(B)

(∫
σB

|u − c|plogα
(
e +

|u − c|
‖u − c‖p,Ω

)
dx

)1/p

(3.11)

for some constant σ > 1 and all balls B with σB ⊂ Ω and diam(B) ≥ d0 > 0. Here d0, 1 < p < ∞
and α > 0 are constants, and c ∈ Lp(logL)α(Ω,Λ	) is any closed form.

Theorem 3.3. Let u ∈ Lp(logL)α(Ω,Λ	), 	 = 0, 1, . . . , n − 1, be a solution to the nonhomogeneous
A-harmonic equation (1.13) in a bounded domain Ω ⊂ R

n and w(x) ∈ Ar(Ω) for some r > 1. Then,
there exists a constant C, independent of u, such that

‖du‖Lp(logL)α(B,w) ≤ C|B|−1/n‖u − c‖Lp(logL)α(σB,w) (3.12)

for any closed form c, some constant σ > 1 and all balls B with σB ⊂ Ω and diam(B) ≥ d0 > 0. Here
d0, 1 < p < ∞ and α > 0 are constants, and c ∈ Lp(logL)α(Ω,Λ	) is any closed form.
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Proof. Let B be a ball with σB ⊂ Ω and diam(B) ≥ d0 > 0. Since Ω is bounded, then d0 ≤
diam(B) ≤ diam(Ω) < ∞. Thus, 0 < v1 ≤ |B| ≤ v2 < ∞ for some constants v1 and v2. By
Lemma 2.3, we have

m1‖u‖s,ρ1B ≤ ‖u‖t,B ≤ m2‖u‖s,ρ2B (3.13)

for any solution u of (1.13) and any constants s, t > 0, where 0 < ρ1 < 1, ρ2 > 1, 0 < m1 < 1,
and m2 > 1 are some constants. By Lemma 2.8, there exist constants k > 1 and C0 > 0, such
that

‖w‖k,B ≤ C0|B|(1−k)/k‖w‖1,B. (3.14)

Choose s = pk/(k − 1), then 1 < p < s and k = s/(s − p). We know that u ∈ Lp(logL)α(Ω,Λ	)
implies u ∈ Lp(Ω,Λ	). Then, for any closed form c ∈ Lp(logL)α(Ω,Λ	), it follows that u − c ∈
Lp(logL)α(Ω,Λ	). Thus, u − c ∈ Lp(Ω,Λ	). By Caccioppoli inequality with Lp-norms, we
know that du ∈ Lp(Ω,Λ	) which gives ‖du‖p,Ω = N < ∞. If ‖du‖p,B = 0, then du = 0 a.e.
on B and Theorem 3.3 follows. Thus, we may assume that 0 < m1 ≤ ‖du‖s,B < M1 and
0 < m2 ≤ ‖du‖p,B < M2 by (3.13). Since 1/p = 1/s + (s − p)/ps, by the Hölder inequality,
(3.14) and (2.23), we have

‖du‖Lp(logL)α(B,w) =

(∫
B

|du|plogα
(
e +

|du|
‖du‖p,B

)
wdx

)1/p

=

(∫
B

(
|du|logα/p

(
e +

|du|
‖du‖p,B

)
w1/p

)p

dx

)1/p

≤
(∫

B

|du|slogαs/p
(
e +

|du|
‖du‖p,B

)
dx

)1/s(∫
B

ws/(s−p)dx
)(s−p)/sp

≤ C1

(∫
B

|du|slogαs/p
(
e +

|du|
‖du‖s,B

)
dx

)1/s((∫
B

wkdx

)1/k
)1/p

≤ C2|B|(1−k)/kp‖w‖1/p1,B

(∫
B

|du|slogαs/p
(
e +

|du|
‖du‖s,B

)
dx

)1/s

.

(3.15)

Applying Theorem 3.1 yields

(∫
B

|du|slogαs/p
(
e +

|du|
‖du‖s,B

)
dx

)1/s

≤ C3|B|−1/n‖u − c‖Ls(logL)αs/p(σ1B).
(3.16)
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Here c is any closed form. Next, choose t = p/r. Using (3.16) and Lemma 2.5 with β = α/r,
we obtain

(∫
B

|du|slogαs/p
(
e +

|du|
‖du‖p,B

)
dx

)1/s

≤ C4|B|−1/n|B|(t−s)/st‖u − c‖Lt(logL)β(σ2B)
(3.17)

for some σ2 > σ1. Using the Hölder inequality again with 1/t = 1/p + (p − t)/pt, we obtain

‖u − c‖Lt(logL)β(σ2B)

=

(∫
σ2B

|u − c|tlogβ
(
e +

|u − c|
‖u − c‖t,σ2B

)
dx

)1/t

=

⎛
⎝

∫
σ2B

(
|u − c|logβ/t

(
e +

|u − c|
‖u − c‖t,σ2B

)
w1/pw−1/p

)t

dx

⎞
⎠

1/t

≤
(∫

σ2B

|u−c|plogβp/t

(
e+

|u−c|
‖u−c‖t,σ2B

)
wdx

)1/p(∫
σ2B

(
1
w

)t/(p−t)
dx

)(p−t)/pt

≤ ‖u − c‖Lp(logL)α(σ2B,w)

(∫
σ2B

(
1
w

)1/(r−1)
dx

)(r−1)/p
.

(3.18)

Combining (3.15), (3.17), and (3.18), we conclude that

‖du‖Lp(logL)α(B,w)

≤ C5|B|−r/p−1/n‖u − c‖Lp(logL)α(σ2B,w)

⎛
⎝

∫
B

w dx

(∫
σ2B

(
1
w

)1/(r−1)
dx

)(r−1)⎞
⎠

1/p

≤ C5|B|−r/p−1/n‖u − c‖Lp(logL)α(σ2B,w)

(
‖w‖1,σ2B

·
∥∥∥∥ 1
w

∥∥∥∥
1/(r−1),σ2B

)1/p

.

(3.19)
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Since w ∈ Ar(Ω), then

(
‖w‖1,σ2B

·
∥∥∥∥ 1
w

∥∥∥∥
1/(r−1),σ2B

)1/p

=

⎛
⎝

(∫
σ2B

w dx

)(∫
σ2B

(
1
w

)1/(r−1)
dx

)r−1⎞
⎠

1/p

=

⎛
⎝|σ2B|r

(
1

|σ2B|
∫
σ2B

w dx

)(
1

|σ2B|
∫
σ2B

(
1
w

)1/(r−1)
dx

)r−1⎞
⎠

1/p

≤ C6|B|r/p.

(3.20)

Substituting the last inequality into (3.19) it follows obviously that

‖du‖Lp(logL)α(B,w) ≤ C7|B|−1/n‖u − c‖Lp(logL)α(σ2B,w). (3.21)

This ends the proof of Theorem 3.3.

Let α = 1 in Theorem 3.3; we obtain the following corollary.

Corollary 3.4. Let u ∈ Lp(logL)(Ω,Λ	), 	 = 0, 1, . . . , n − 1, be a solution to the nonhomogeneous
A-harmonic equation (1.13) in a bounded domain Ω ⊂ R

n and w(x) ∈ Ar(Ω) for some r > 1. Then,
there exists a constant C, independent of u, such that

‖du‖Lp(logL)(B,w) ≤ C|B|−1/n‖u − c‖Lp(logL)(σB,w) (3.22)

for any closed form c, some constant σ > 1 and all balls B with σB ⊂ Ω and diam(B) ≥ d0 > 0. Here
d0 and 1 < p < ∞ are constants, and c ∈ Lp(logL)(Ω,Λ	) is any closed form.

We know that if w ∈ Ar(E) and 0 < λ ≤ 1, then wλ ∈ Ar(E). Thus, under the same
conditions of Theorem 3.3, we also have the following estimate:

‖du‖Lp(logL)α(B,wλ) ≤ C|B|−1/n‖u − c‖Lp(logL)α(σB,wλ), (3.23)

where c is any closed form, and 0 < λ ≤ 1 and α > 0 are any constants. Choose λ = 1/p,
1 < p < ∞, in (3.23). Then, for closed form c and any constant α > 0, we have

‖du‖Lp(logL)α(B,w1/p) ≤ C|M|−1/n‖u − c‖Lp(logL)α(σB,w1/p). (3.24)

We have proved Caccioppoli-type inequalities with Lp(logL)α-norms for solutions to
the nonhomogeneous A-harmonic equation. Using the same method developed in [12], we
can obtain the more general version of the Caccioppoli-type inequality for differential forms
satisfying certain conditions. A special useful Young function ψ : [0,∞) → [0,∞), termed
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an N-function, is a continuous Young function such that ψ(x) = 0 if and only if x = 0 and
limx→ 0ψ(x)/x = 0, limx→∞ψ(x)/x = +∞.We say that a differential form u ∈ W1,1

loc(Ω,Λ	) is a
k-quasiminimizer for the functional

I(Ω;v) =
∫
Ω
ψ(|dv|)dx (3.25)

if and only if, for every φ ∈ W1,1
loc(Ω,Λ	) with compact support,

I
(
suppφ;u

) ≤ k · I(suppφ;u + φ
)
, (3.26)

where k > 1 is a constant. We say that ψ satisfies the so-called Δ2-condition if there exists a
constant p > 1 such that ψ(2t) ≤ pψ(t) for all t > 0, from which it follows that

ψ(λt) ≤ λpψ(t) (3.27)

for any t > 0 and λ ≥ 1; see [12].
We will need the following lemma which can be found in [19] or [12].

Lemma 3.5. Let f(t) be a nonnegative function defined on the interval [a, b] with a ≥ 0. Suppose
that for s, t ∈ [a, b] with t < s,

f(t) ≤ A

(s − t)α
+ B + θf(s) (3.28)

holds, where A,B, α, and θ are nonnegative constants with θ < 1. Then, there exists a constant
C = C(α, θ) such that

f
(
ρ
) ≤ C

(
A(

R − ρ
)α + B

)
(3.29)

for any ρ, R ∈ [a, b] with ρ < R.

Theorem 3.6. Let u be a k-quasiminimizer for the functional (3.25) and let ψ be a Young function
satisfying the Δ2-condition. Then, for any ball BR ⊂ Ω with radius R, there exists a constant C,
independent of u, such that

∫
BR/2

ψ(|du|)dx ≤ C

∫
BR

ψ

( |u − c|
R

)
dx, (3.30)

where c is any closed form.

The proof of Theorem 3.6 is the same as that of Theorem 6.1 developed in [12]. For the
complete purpose, we include the proof of Theorem 3.6 as follows.
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Proof. Let BR = B(x0, R) ⊂ be a ball with radius R and center x0, R/2 < t < s < R. Set
η(x) = g(|x − x0|), where

g(τ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, 0 ≤ τ ≤ t,

affine, τ < t < s,

0, τ ≥ s.

(3.31)

Then, η ∈ W1,∞
0 (Bs), η(x) = 1 on Bt, and

∣∣dη(x)∣∣ =
⎧⎨
⎩
(s − t)−1, t ≤ |x − x0| ≤ s,

0, otherwise.
(3.32)

Let v(x) = u(x) + (η(x))p(c − u(x)). We find that

dv =
(
1 − ηp)du + ηpp

dη

η
(c − u(x)). (3.33)

Since ψ is an increasing convex function satisfying the Δ2-condition, we obtain

ψ(|dv|) ≤ (
1 − ηp)ψ(|du|) + ηpψ

(
p

∣∣dη∣∣
η

|c − u(x)|
)
. (3.34)

Using the definition of the k-quasiminimizer and (3.27), it follows that

∫
Bs

ψ(|du|)dx ≤ k

∫
Bs

ψ(|dv|)dx

≤ k

(∫
Bs\Bt

(
1 − ηp)ψ(|du|)dx +

∫
Bs

ηpψ

(
p

∣∣dη∣∣
η

|c − u(x)|
)
dx

)

≤ k

(∫
Bs\Bt

ψ(|du|)dx + pp
∫
Bs

ψ
(∣∣dη∣∣|u − c|)dx

)
.

(3.35)

Applying (3.35), (3.32), and (3.27), we have

∫
Bt

ψ(|du|)dx ≤
∫
Bs

ψ(|du|)dx

≤ k

(∫
Bs\Bt

ψ(|du|)dx + pp
∫
Bs

ψ

(
2R

|u − c|
s − tR

)
dx

)

≤ k

(∫
Bs\Bt

ψ(|du|)dx +

(
2pR

)p
(s − t)p

∫
Bs

ψ

( |u − c|
R

)
dx

)
.

(3.36)
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Adding k
∫
Bt
ψ(|du|)dx to both sides of inequality (3.36) yields

∫
Bt

ψ(|du|)dx ≤ k

k + 1

(∫
Bs

ψ(|du|)dx +

(
2pR

)p
(s − t)p

∫
Bs

ψ

( |u − c|
R

)
dx

)
. (3.37)

Next, write f(t) =
∫
Bt
ψ(|du|)dx, f(s) =

∫
Bs
ψ(|du|)dx, A = (2pR)p

∫
Bs
ψ(|u − c|/R)dx, and

B = 0. From (3.37), we find that the conditions of Lemma 3.5 are satisfied. Hence, using
Lemma 3.5 with ρ = R/2 and α = p, we obtain (3.30) immediately. The proof of Theorem 3.6
has been completed.

It should be noticed that c ∈ Lp(logL)α(Ω,Λ	) is any closed form on the right side
of each version of the Caccioppoli-type inequality. Hence, we may choose c = 0 in each of
the above Caccioppoli-type inequalities. For example, if we choose c = 0 in Theorem 3.1
and Theorem 3.6, we obtain the following Corollaries 3.7 and 3.8, respectively, which can be
considered as the special version of the Caccioppoli-type inequality.

Corollary 3.7. Let u ∈ Lp(logL)α(Ω,Λ	), 	 = 0, 1, . . . , n − 1, be a solution to the nonhomogeneous
A-harmonic equation (1.13) in Ω ⊂ R

n. Then, there exists a constant C, independent of u, such that

‖du‖Lp(logL)α(B) ≤ C|B|−1/n‖u‖Lp(logL)α(σB) (3.38)

for some constant σ > 1 and all balls B with σB ⊂ Ω and diam(B) ≥ d0 > 0. Here d0, 1 < p < ∞
and α > 0 are constants.

Corollary 3.8. Let u be a k-quasiminimizer for the functional (3.25) and ψ be a Young function
satisfying the Δ2-condition. Then, for any ball BR ⊂ Ω with radius R, there exists a constant C,
independent of u, such that

∫
BR/2

ψ(|du|)dx ≤ C

∫
BR

ψ

( |u|
R

)
dx. (3.39)

4. Poincaré Inequalities

In this section, we focus our attention on the local and global Poincaré inequalities with
Lp(logL)α-norms. The main result for this section is Theorem 4.2, the global Poincaré
inequality for solutions of the nonhomogeneous A-harmonic equation. The following
definition of Lϕ(μ)-domains can be found in [1].

Definition 4.1. Let ϕ be a Young function on [0,∞)with ϕ(0) = 0. We call a proper subdomain
Ω ⊂ R

n an Lϕ(μ)-domain, if there exists a constant C such that

∫
Ω
ϕ(σ|u − uΩ|)dμ ≤ C sup

B⊂Ω

∫
B

ϕ(στ |u − uB|)dμ (4.1)

for all u such that ϕ(|u|) ∈ L1
loc(Ω;μ), where the measure μ is defined by dμ = w(x)dx, w(x)

is a weight and τ, σ are constants with 0 < τ ≤ 1, 0 < σ ≤ 1, and the supremum is over all balls
B ⊂ Ω.
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Theorem 4.2. Assume that Ω ⊂ R
n is a bounded Lϕ(μ)-domain with ϕ(t) = tplogα(e + t/k), where

k = ‖u − uB0‖p,Ω, 1 < p < ∞, and B0 ⊂ Ω is a fixed ball. Let u ∈ D′(Ω,Λ0) be a solution of the
nonhomogeneous A-harmonic equation in Ω and du ∈ Lp(Ω,Λ1) as well as w ∈ Ar(Ω) for some
r > 1. Then, there is a constant C, independent of u, such that

‖u − uΩ‖Lp(logL)α(Ω,w) ≤ C|Ω|1/n‖du‖Lp(logL)α(Ω,w) (4.2)

for any constant α > 0.

To prove Theorem 4.2, we need the following local Poincaré inequalities, Theorems 4.3
and 4.4, with Orlicz norms.

Theorem 4.3. Let u ∈ D′(Ω,∧	) be a solution of the nonhomogeneous A-harmonic equation in a
domain Ω ⊂ R

n and du ∈ Lp(Ω,∧	+1), 	 = 0, 1, . . . , n. Assume that 1 < p < ∞. Then, there is a
constant C, independent of u, such that

‖u − uB‖Lp(logL)α(B) ≤ C|B|1/n‖du‖Lp(logL)α(ρB) (4.3)

for all balls B with ρB ⊂ Ω and diam(B) ≥ d0. Here α > 0 is any constant and ρ > 1 and d0 > 0 are
some constants.

Proof. Let B ⊂ Ω be a ball with diam(B) ≥ d0 > 0. Choose ε > 0 small enough and a constant
C1 such that

|B|−ε/p2 ≤ C1. (4.4)

From Lemma 2.3, we have

‖u − uB‖p+ε,B ≤ C2|B|(p−(p+ε))/p(p+ε)‖u − uB‖p,ρ1B (4.5)

for some ρ1 > 1. Similar to the proof of Theorem 3.1, wemay assume that |u−uB|/‖u−uB‖p,B ≥
1. Hence, for above ε > 0, there exists C3 > 0 such that

logα
(
e +

|u − uB|
‖u − uB‖p,B

)
≤ C3

(
|u − uB|

‖u − uB‖p,ρ1B

)ε

. (4.6)
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From (4.5) and (4.6) and Lemma 2.1, we have

‖u − uB‖Lp(logL)α(B) =

(∫
B

|u − uB|plogα
(
e +

|u − uB|
‖u − uB‖p,B

)
dx

)1/p

≤ C4

(
1

‖u − uB‖εp,ρ1B

∫
B

|u − uB|p+εdx
)1/p

≤ C4

‖u − uB‖ε/pp,ρ1B

((∫
B

|u − uB|p+εdx
)1/(p+ε)

)(p+ε)/p

≤ C5

‖u − uB‖ε/pp,ρ1B

(
|B|(p−(p+ε))/p(p+ε)‖u − uB‖p,ρ1B

)(p+ε)/p

≤ C6|B|−ε/p
2‖u − uB‖p,ρ1B

≤ C6|B|−ε/p
2 |B|1/n‖du‖p,ρ2B

(4.7)

for some ρ2 > ρ1. For any α > 0, we have

logα
(
e +

|du|
‖du‖p,ρ2B

)
≥ 1. (4.8)

Combining (4.8), (4.7), and (4.4), we obtain

‖u − uB‖Lp(logL)α(B) ≤ C6|B|−ε/p
2 |B|1/n‖du‖p,ρ2B

≤ C6|B|−ε/p
2 |B|1/n‖du‖Lp(logL)α(ρ2B)

≤ C7|B|1/n‖du‖Lp(logL)α(ρ2B).

(4.9)

The proof of Theorem 4.3 has been completed.

Theorem 4.4. Let u ∈ D′(Ω,Λ	) be a solution of the nonhomogeneous A-harmonic equation in a
domain Ω ⊂ R

n and du ∈ Lp(Ω,Λ	+1), 	 = 0, 1, . . . , n. Assume that 1 < p < ∞ and w ∈ Ar(Ω) for
some r > 1. Then, there is a constant C, independent of u, such that

‖u − uB‖Lp(logL)α(B,w) ≤ C|B|1/n‖du‖Lp(logL)α(σB,w) (4.10)

for all balls B with σB ⊂ Ω and diam(B) ≥ d0. Here α > 0 is any constant, and σ > 1 and d0 > 0 are
some constants.

The proof of Theorem 4.4 is similar to that of Theorem 3.3. For completeness of the
paper, we prove Theorem 4.4 as follows.
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Proof. Choose s = kp/(k − 1), where k > 1 is a constant involved in (3.14). Using the Hölder
inequality with 1/p = 1/s + (s − p)/sp, (3.14), and (2.23), we obtain

‖u − uB‖Lp(logL)α(B,w)

=

(∫
B

(
|u − uB|logα/p

(
e +

|u − uB|
‖u − uB‖p,B

)
w1/p

)p

dx

)1/p

≤
(∫

B

|u − uB|slogαs/p
(
e +

|u − uB|
‖u − uB‖p,B

)
dx

)1/s(∫
B

ws/(s−p)dx
)(s−p)/ps

≤ C1

(∫
B

|u − uB|slogαs/p
(
e +

|u − uB|
‖u − uB‖s,B

)
dx

)1/s((∫
B

wkdx

)1/k
)1/p

≤ C2|B|(1−k)/kp‖w‖1/p1,B

(∫
B

|u − uB|slogαs/p
(
e +

|u − uB|
‖u − uB‖s,B

)
dx

)1/s

.

(4.11)

Applying Theorem 4.3 yields

(∫
B

|u − uB|slogαs/p
(
e +

|u − uB|
‖u − uB‖s,B

)
dx

)1/s

≤ C2|B|1/n‖du‖Ls(logL)αs/p(σ1B),
(4.12)

where σ1 > 1 is some constant. Let t = p/r. Using Lemma 2.6 with β = α/r, we have

(∫
σ1B

|du|slogαs/p
(
e +

|du|
‖du‖s,B

)
dx

)1/s

≤ C2|B|(t−s)/st‖du‖Lt(logL)β(σ2B)
(4.13)

for some σ2 > σ1. Using the Hölder inequality again with 1/t = 1/p + (p − t)/pt, we obtain

‖du‖Lt(logL)β(σ2B) =

(∫
σ2B

|du|tlogβ
(
e +

|du|
‖du‖t,σ2B

)
dx

)1/t

=

⎛
⎝

∫
σ2B

(
|du|logβ/t

(
e +

|du|
‖du‖t,σ2B

)
w1/pw−1/p

)t

dx

⎞
⎠

1/t

≤
(∫

σ2B

|du|plogβp/t
(
e +

|du|
‖du‖t,σ2B

)
wdx

)1/p(∫
σ2B

(
1
w

)t/(p−t)
dx

)(p−t)/pt

≤ ‖du‖Lp(logL)α(σ2B,w)

(∫
σ2B

(
1
w

)1/(r−1)
dx

)(r−1)/p
.

(4.14)
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Combining (4.11), (4.12), (4.13), and (4.14), we have

‖u − uB‖Lp(logL)α(B,w)

≤ C3|B|1/n−r/p‖du‖Lp(logL)α(σ2B,w)

⎛
⎝

∫
B

w dx

(∫
σ2B

(
1
w

)1/(r−1)
dx

)(r−1)⎞
⎠

1/p

≤ C4|B|1/n−r/p‖du‖Lp(logL)α(σ2B,w)

(
‖w‖1,σ2B

·
∥∥∥∥ 1
w

∥∥∥∥
1/(r−1),σ2B

)1/p

.

(4.15)

Note that w ∈ Ar(Ω), then

(
‖w‖1,σ2B

·
∥∥∥∥ 1
w

∥∥∥∥
1/(r−1),σ2B

)1/p

≤
⎛
⎝

(∫
σ2B

w dx

)(∫
σ2B

(
1
w

)1/(r−1)
dx

)r−1⎞
⎠

1/p

=

⎛
⎝|σ2B|r

(
1

|σ2B|
∫
σ2B

w dx

)(
1

|σ2B|
∫
σ2B

(
1
w

)1/(r−1)
dx

)r−1⎞
⎠

1/p

≤ C5|B|r/p.

(4.16)

Substituting (4.16) into (4.15) it follows obviously that

‖u − uB‖Lp(logL)α(B,w) ≤ C6|B|1/n‖du‖Lp(logL)α(σ2B,w). (4.17)

This ends the proof of Theorem 4.4.

Proof of Theorem 4.2. For any constants ki > 0, i = 1, 2, 3, there are constants C1 > 0 and C2 > 0
such that

C1 log
(
e +

t

k1

)
≤ log

(
e +

t

k2

)
≤ C2 log

(
e +

t

k3

)
(4.18)

for any t > 0. Therefore, we have

C1

(∫
B

|u|tlogα
(
e +

|u|
k1

)
dx

)1/t

≤
(∫

B

|u|tlogα
(
e +

|u|
k2

)
dx

)1/t

≤ C2

(∫
B

|u|tlogα
(
e +

|u|
k3

)
dx

)1/t

.

(4.19)
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By properly selecting constants ki, we will have different inequalities that we need. Using the
definition of Lϕ(μ)-domainswith τ = 1, σ = 1 and ϕ(t) = tplogα(e+t/k), where k = ‖u−uB0‖p,Ω,
Theorem 4.4 and (4.19), we obtain

‖u − uΩ‖pLp(logL)α(Ω,w) =
∫
Ω
|u − uΩ|plogα

(
e +

|u − uΩ|
‖u − uB0‖p,Ω

)
wdx,

≤ C1 sup
B⊂Ω

∫
B

|u − uB|plogα
(
e +

|u − uB|
‖u − uB0‖p,Ω

)
wdx

≤ C2 sup
B⊂Ω

∫
B

|u − uB|plogα
(
e +

|u − uB|
‖u − uB‖p,B

)
wdx

≤ C3 sup
B⊂Ω

|B|p/n‖du‖p
Lp(logL)α(σB,w)

≤ C3 sup
B⊂Ω

|Ω|p/n‖du‖p
Lp(logL)α(Ω,w)

≤ C3|Ω|p/n‖du‖p
Lp(logL)α(Ω,w),

(4.20)

which is equivalent to

‖u − uΩ‖Lp(logL)α(Ω,w) ≤ C|Ω|1/n‖du‖Lp(logL)α(Ω,w). (4.21)

We have completed the proof of Theorem 4.2.

Definition 4.5. We call Ω, a proper subdomain of Rn, a δ-John domain, δ > 0, if there exists a
point x0 ∈ Ω which can be joined with any other point x ∈ Ω by a continuous curve γ ⊂ Ω so
that

d(ξ, ∂Ω) ≥ δ|x − ξ| (4.22)

for each ξ ∈ γ . Here d(ξ, ∂Ω) is the Euclidean distance between ξ and ∂Ω.

We know that any δ-John domain is an Lϕ(μ)-domain [1]. Hence, Theorem 4.2 holds
if Ω is a δ-John domain. Specifically, we have the following theorem.

Theorem 4.6. Let u ∈ D′(Ω,Λ0) be a solution of the nonhomogeneous A-harmonic equation in a
δ-John domain Ω ⊂ R

n and du ∈ Lp(Ω,Λ1). Assume that 1 < p < ∞ and w ∈ Ar(Ω) for some
r > 1. Then, there is a constant C, independent of u, such that

‖u − uΩ‖Lp(logL)α(Ω,w) ≤ C|Ω|1/n‖du‖Lp(logL)α(Ω,w) (4.23)

for any constant α > 0.
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5. Applications

In this section, we explore some applications of the results obtained in previous sections.

Example 5.1. Assume that B = 0 and u is a function (0-form) in (1.13). Note that |du| = |∇u| if
u is a function. Then, (1.13) reduces to the following A-harmonic equation:

divA(x,∇u) = 0 (5.1)

for functions. Let A(x, ξ) = ξ|ξ|p−2 with p > 1 in (5.1). Then, it is easy to see that the operator
A satisfies the required conditions and (5.1) reduces to the usual p-harmonic equation:

div
(
∇u|∇u|p−2

)
= 0 (5.2)

which is equivalent to the following partial differential equation:

(
p − 2

) n∑
k=1

n∑
i=1

uxkuxiuxkxi + |∇u|2Δu = 0. (5.3)

Let p = 2 in (5.3); we obtain the Laplace equation Δu = 0 for functions in R
n. Hence,

each version of the Caccioppoli-type inequality developed in Theorems 3.1, and 3.3, and
Corollaries 3.2, 3.4, 3.7, and 3.8 holds if u satisfies one of the equations (5.1), (5.2), (5.3) and
the equation Δu = 0.

Each version of the Caccioppoli-type inequality proved in Section 3 can be used to
study the properties of the solutions of the different A-harmonic equations, particularly, the
equations (5.1)–(5.3). For example, using Corollary 3.7, we have the following integrability
result.

Corollary 5.2. Let u be a solution to one of the equations (1.13)-(1.14), or (5.1)–(5.3) in Ω ⊂ R
n. If

u is locally Lp(logL)α-integrable in Ω, then du is also locally Lp(logL)α-integrable in Ω.

From Theorem 3 in [20, page 16], we know that any open subset of Rn is the union of a
sequence of mutually disjoint Whitney cubes. Also, cubes are convex. Thus, the definition of
the homotopy operator T can be extended into any domain Ω in R

n. Using the same method
developed in the proof of Theorem 4.4, we can extend inequality (2.5) into the weighted case.
Then, similar to the proof of Theorem 4.2, we can generalize the local weighted result into the
following global estimate.

Proposition 5.3. Let u ∈ D′(Ω,Λ0) be a solution of the nonhomogeneous A-harmonic equation
(1.13) in an Lϕ(μ)-domain. Assume that α > 0, 1 < p < ∞ and w ∈ Ar(Ω) for some r > 1. Then
there exists a constant C, independent of u, such that

‖u − uΩ‖Lp(logL)α(Ω,w) ≤ C‖u − c‖Lp(logL)α(Ω,w) (5.4)

for any closed form c.
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Using (5.4) with c = 0 and the triangle inequality, we have

‖uΩ‖Lp(logL)α(Ω,w) ≤ ‖u − uΩ‖Lp(logL)α(Ω,w) + ‖u‖Lp(logL)α(Ω,w)

≤ C1‖u‖Lp(logL)α(Ω,w) + ‖u‖Lp(logL)α(Ω,w)

= (C1 + 1)‖u‖Lp(logL)α(Ω,w)

= C2‖u‖Lp(logL)α(Ω,w).

(5.5)

Thus,

‖uΩ‖Lp(logL)α(Ω,w) ≤ C‖u‖Lp(logL)α(Ω,w). (5.6)

Theorem 5.4. Let u ∈ D′(Ω,Λ0) be a solution of the nonhomogeneous A-harmonic equation (1.13)
in a bounded Lϕ(μ)-domain and let T be the homotopy operator. Assume that α > 0, 1 < p < ∞, and
w ∈ Ar(Ω) for some r > 1. Then there exists a constant C, independent of u, such that

‖T(du)‖Lp(logL)α(Ω,w) ≤ C|Ω|1/n‖du‖Lp(logL)α(Ω,w),

‖T(du)‖Lp(logL)α(Ω,w) ≤ C‖u − c‖Lp(logL)α(Ω,w)

(5.7)

for any closed form c.

Proof. For any differential form u, from (1.16) and (1.17), we obtain

u = d(Tu) + T(du) = uΩ + T(du). (5.8)

Hence, by (5.8) and Theorem 4.2, it follows that

‖T(du)‖Lp(logL)α(Ω,w) = ‖u − uΩ‖Lp(logL)α(Ω,w)

≤ C|Ω|1/n‖du‖Lp(logL)α(Ω,w).
(5.9)

Next, combining (5.8) and (5.4) yields

‖T(du)‖Lp(logL)α(Ω,w) = ‖u − uΩ‖Lp(logL)α(Ω,w) ≤ C‖u − c‖Lp(logL)α(Ω,w). (5.10)

This ends the proof of Theorem 5.4.

The general theory of solutions to above equations is known as potential theory. In the
study of heat conduction, the Laplace equation is the steady-state heat equation. Considering
the length of the paper, we only discuss applications to the homotopy operator T ; see [1]
for more results about this operator. We leave it to readers to find similar applications to
other operators, such as the Laplace-Beltrami operator Δ = dd� + d�d and Green’s operator G
applied to differential forms. Note that there is a parameter α in ourmain results. For different
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choices of this parameter, we will have different versions of global inequalities. For example,
selecting α = 1 in Theorem 4.2, we have

‖u − uΩ‖Lp(logL)(Ω,w) ≤ C|Ω|1/n‖du‖Lp(logL)(Ω,w). (5.11)
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