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The aim of this paper is to investigate approximation properties of some extremal polynomials
in A1

p, p > 0 space. We are interested in finding approximation rate of extremal polynomials to
Riemann function in A1

p and C-norms on domains bounded by piecewise analytic curve.

1. Problem and Main Results

Let G be a finite region with z0 ∈ G bounded by Jordan curve L := ∂G and letw = ϕ(z) be the
canonical conformal mapping ofG onto the discDr0 := {w : |w| < r0}with ϕ(z0) = 0, ϕ′(z0) =
1, where r0 is called the conformal radius of G with respect to z0.

Denote by A1
p(G), p ∈ (0,∞) the set of functions f(z) analytic in G with f(z0) =

0, f ′(z0) = 1 such that

∥
∥f

∥
∥
A1

p
=
∥
∥f ′∥∥

Ap(G) :=
(∫∫

G

∣
∣f ′(z)

∣
∣
p
dσz

)1/p

< ∞, (1.1)

where dσz is two-dimensional Lebesgue measure.
Also, let us denote by ℘n the class of all polynomials Pn(z), degPn ≤ n, with Pn(z0) =

0, P ′
n(z0) = 1 and consider following extremal problem:

∫ ∫

G

∣
∣ϕ′(z) − P ′

n(z)
∣
∣
p
dσz −→ min, p > 0. (1.2)
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Using a method given in [1, page 137], it is seen that the solution of the extremal
problem in (1.2) exists, and if p > 1, the solution is unique [1, page 142]. This unique solution
was denoted by Bn,p(z) and it was called p-Bieberbach polynomials in [2].

Let us denote the best approximation to f in the class ℘n by A1
p-norm and C-norm by

En

(

f,A1
p

)

:= inf
Pn∈℘n

∥
∥f − Pn

∥
∥
A1

p
, (1.3)

En

(

f,G
)

:= inf
Pn∈℘n

∥
∥f − Pn

∥
∥
C = inf

Pn∈℘n

max
z∈G

∣
∣f(z) − Pn(z)

∣
∣, (1.4)

respectively.
It is clear from the definition of p-Bieberbach polynomials that

En

(

ϕ,A1
p

)

=
∥
∥ϕ − Bn,p

∥
∥
A1

p
. (1.5)

One of the problem in approximation theory is to calculate En(f,G) through the
calculation of En(f,A1

p) for given f . This idea goes back at least as far as in [3, pages 116–
141].

The special case p = 2 in (1.2) has two important properties. First, Bn,2(z) coincides
with usual Bieberbach polynomials Bn(z) and it has an explicit representation via orthogonal
polynomials [4]. Second, Bn,2(z) is a main tool in the construction of Riemann mapping
function for the given region.

Especially, approximation properties of Bieberbach polynomials were first investi-
gated by Keldych in 1939 in [5], and then considerable progress in this area has been achieved
by Mergelyan [6], Suetin [7], Simonenko [8], Andrievskiı̆ [9, 10], Gaier [11, 12], Abdullayev
[13–15], Israfilov [16, 17], and the others.

Besides this, approximation properties of Bn,p(z) have been investigated only by
authors of [2].

In this study, we are going to investigate the problem mentioned above in the region
bounded by piecewise analytic curve and consider analytic curve as the image of a segment
[0, 1] under conformal mapping in a neighborhood of this segment.

Definition 1.1. (a) The curve L := ∂G is called piecewise analytic if it is a union of finite number
of analytic arcs and it has λjπ, (0 < λj < 2, j = 1, 2, . . . , m) exterior angles with respect to G
on the zj , j = 1, 2, . . . , m corners where two arcs meet.

(b)One denotes the class of piecewise analytic curve byA(λ)where λ := min1≤j≤m{λj}.
(c) One says G ∈ A(λ), 0 < λ < 2, if L := ∂G ∈ A(λ), 0 < λ < 2.
For any λ, 0 < λ < 2 and p, 1 < p < 2/(1 − λ∗), let one denote

λ∗ := max{1, λ}, λ∗ := min{1, λ}, γ := γ
(

λ; p
)

=
λ(λ − 1)
2 − λ

+
2
p
λ, (1.6)

α(λ) := max

{

1,
2(1 − λ)(2 − λ)

1 + (1 − λ)2

}

. (1.7)
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Theorem 1.2. Let G ∈ A(λ) for some λ, 0 < λ < 2 and p, 1 < p < 2/(1 − λ∗). Then, for any
n = 1, 2, . . . , the p-Bieberbach polynomials Bn,p satisfy

∥
∥ϕ − Bn,p

∥
∥
A1

p
≤ const · n−γ , (1.8)

where γ is as in (1.6).

Theorem 1.3 (main theorem). Let G ∈ A(λ) for some λ, 0 < λ < 2. Then, for any n = 1, 2, . . . the
p-Bieberbach polynomials Bn,p satisfy

∥
∥ϕ − Bn,p

∥
∥
C
≤ const

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

n−γ , 2 < p <
2

1 − λ∗
,

n−γ logn, p = 2,

n−γ+(2/p−1)λ∗ , α(λ) < p < 2,

(1.9)

where λ∗, λ∗, and α(λ) are defined in (1.6) and (1.7), respectively.

Corollary 1.4. (a) If the region is a square, then Theorems 1.2 and 1.3 are true for

γ = 3
(
1
2
+
1
p

)

(1.10)

when 1 < p < ∞.
(b) If the region is an L-shaped region then Theorems 1.2 and 1.3 are true for

γ = −1
6
+
1
p

(1.11)

when 6/5 < p < 4.

Remark 1.5. If we take p = 2 in Theorems 1.2 and 1.3, we obtain the result of Gaier in [18].

2. Integral Representation of ϕ

We are going to follow the analog used by Andrievskiı̆ and Gaier in [19]. Let us suppose
that τi is a conformal mapping in an open neigborhood of [0, 1] such that Li := τi([0, 1]).
Then, there is a symmetric lens-shaped domain Si whose closure is contained in this open
neigborhood of [0, 1] (for more information see [19]).

So, we obtain

G̃ := G ∪
(

m⋃

i=1

τi(Si)

)

, (2.1)
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and ϕ can be extended into G̃ as follows:

ϕ̃(z) :=

⎧

⎪⎪⎪⎪
⎨

⎪⎪⎪⎪
⎩

ϕ(z), z ∈ G,

r20

ϕ
[

τi
(

τ−1i (z)
)]

, z ∈ τi(Si) \G.
(2.2)

From the construction of G̃, it is clear that ∂G̃ consists of m analytic arc Γi, i =
1, 2, . . . , m, and z1, z2, . . . , zm are the common end points of Li and Γi.

For an arbitrary small ε, ε < 1, let us choose R = 1 + cnε−1 such that 1 < R < 2, the
points z(j)i , i = 1, . . . , m, j = 1, 2 being the intersection of Γi and LR. So, these points divide Γi
into three parts such that

Γi = Γ1i ∪ Γ2i ∪ Γ3i , (2.3)

where

Γ1i := Γi
(

zi+1, z
(2)
i

)

, Γ2i := Γi
(

z
(2)
i , z

(1)
i

)

, Γ3i := Γi
(

z
(1)
i , zi

)

, (2.4)

so that

∂G̃ =
m⋃

i=1

3⋃

j=1

Γji . (2.5)

From the Cauchy integral formula, we have for all z ∈ G

ϕ(z) =
1

2πi

∫

∂G̃

ϕ(t)
t − z

dt =
1

2πi

m∑

i=1

3∑

j=1

∫

Γji

ϕ(t)
t − z

dt

=
m∑

i=1

(

J
(1)
i + J

(2)
i + J

(3)
i

)

,

(2.6)

where

J
(1)
i :=

1
2πi

∫

Γ1i

ϕ(t)
t − z

dt, J
(3)
i :=

1
2πi

∫

Γ3i

ϕ(t)
t − z

dt, J
(2)
i :=

1
2πi

∫

Γ2i

ϕ(t)
t − z

dt. (2.7)

3. Some Auxiliary Results

We will use the notation a ≺ b for a < cb, where c is a constant independent from n. The
following lemma plays central role in proving the main theorem.



Journal of Inequalities and Applications 5

Lemma 3.1. Let G ∈ A(λ) for some λ, 0 < λ < 2 and let 1 < p < 2/(1 − λ∗). Then, for any
n = 1, 2, . . . , there is a polynomial Qn(z) which satisfies both Qn(z0) = 0 and

∥
∥ϕ −Qn

∥
∥
A1

p
≺ 1

nγ
, (3.1)

where

γ = λ

(
λ − 1
2 − λ

+
2
p

)

. (3.2)

Proof. Since “J(2)i (z), i = 1, . . . , m” is analytic on G, there exists a polynomial with deg pn−1 ≤
n − 1 [1, page 142] such that

∣
∣
∣
∣

(

J
(2)
i (z)

)′ − pn−1(z)
∣
∣
∣
∣
≤ c

n
, i = 1, 2, . . . , m, (3.3)

where c is a constant independent from n.
Let us defineQn(z) :=

∫z

z0
pn−1(t)dt. Then,Qn(z0) = 0, and from (2.6) and (3.3)we have

∣
∣ϕ′(z) −Q′

n(z)
∣
∣ ≤ cm

n
+

m∑

i=1

(∣
∣
∣
∣

(

J
(1)
i (z)

)′∣∣
∣
∣
+
∣
∣
∣
∣

(

J
(3)
i (z)

)′∣∣
∣
∣

)

. (3.4)

By taking integral over G of the pth power of both sides of (3.4), we obtain

∫∫

G

∣
∣ϕ′(z) −Q′

n(z)
∣
∣
p
dσz ≺ 1

np
+

m∑

i=1

(∫ ∫

G

∣
∣
∣
∣

(

J1i (z)
)′∣∣
∣
∣

p

dσz +
∫ ∫

G

∣
∣
∣
∣

(

J3i (z)
)′∣∣
∣
∣

p

dσz

)

. (3.5)

J
(1)
i (z) and J

(3)
i (z) (i = 1, 2, . . . , m) have the same property in G, therefore, it is

sufficient to show that A1
p-norms of J(1)i (z) and J

(3)
i (z) tend to zero. So, we can restrict our

attention only to the estimate of

∫ ∫

G

∣
∣
∣
∣
∣

∫

l

ϕ(t)

(t − z)2
dt

∣
∣
∣
∣
∣

p

dσz −→ 0 (3.6)

where l = Γ(1)i or Γ(3)i , (i = 1, 2, . . . , m).
To estimate this term, we need to know the behaviour of ϕ(t) in the neigboorhood of

the corner. For this, the main tool is the Lehman result.
We have from [20]

∣
∣ϕ(t)

∣
∣ ≤ C|t − zi|αi , t → zi, i = 1, . . . , m, (3.7)

where αi = 1/(2 − λi), i = 1, 2, . . . , m.
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We conclude from (3.7) and (3.6) that

∫∫

G

∣
∣
∣
∣
∣

∫

l

∣
∣ϕ(t)

∣
∣

|t − z|2
dt

∣
∣
∣
∣
∣

p

dσz ≺
∫∫

G

(∫

l

∣
∣ϕ(t)

∣
∣

|t − z|2
dt

)p

dσz ≺
∫∫

G

(∫

l

|t − zi|αi

|t − z|2
dt

)p

dσz

≺
∫∫

G1

∣
∣
∣
∣
∣

∫

l

|t − zi|αi

|t − z|2
dt

∣
∣
∣
∣
∣

p

dσz +
∫∫

G2

(∫

l

|t − zi|αi

|t − z|2
dt

)p

dσz,

(3.8)

where

G1 := {z : |z − zi| ≤ δR} ∩G, G2 := {z : |z − zi| > δR} ∩G,

δR :=
∣
∣
∣z

(j)
i − zi

∣
∣
∣, j = 1, 2.

(3.9)

If z ∈ G1, we have |t − z| ∼ |t − zi| + |z − zi|. Let us denote |t − zi| and |z − zi| with s, r,
respectively. So,

∫∫

G1

(∫

l

|t − zi|αi

|t − z|2
|dt|

)p

dσz ≤ c3

∫δR

0
r

∣
∣
∣
∣
∣

∫ c4δR

0

sαi

(s + r)2
ds

∣
∣
∣
∣
∣

p

dr

≤ c3

∫δR

0
r

∣
∣
∣
∣
∣

∫ r

0

sαi

r2
ds +

∫ c4δR

r

sαi−2ds

∣
∣
∣
∣
∣

p

dr

≤ c3

∫δR

0
r

(

rαi+1

r2
+ c5δ

αi−1
R − rαi−1

)p

dr

≤
∫δR

0
rδ

p(αi−1)
R dr ≤ c6δ

p(αi−1)+2
R

(3.10)

for p(αi − 1) + 2 > 0.
If z ∈ G2,we have |t − z| ∼ |z − zi|. So,
∫∫

G2

∣
∣
∣
∣
∣

∫

l

|t − zi|αi

|t − z|2
|dt|

∣
∣
∣
∣
∣

p

dσz ≤
∫∫

G2

∣
∣
∣
∣
∣

∫

l

|t − zi|αi

|z − zi|2
|dt|

∣
∣
∣
∣
∣

p

dσz ≤
∫∫

G2

δ
(αi+1)p
R

|z|2p
dσz

≤ cδ
(αi+1)p
R

∫∞

δR

r1−2pdr ≤ δ
p(αi−1)+2
R .

(3.11)

Substituting (3.10) and (3.11) into (3.6), we obtain

∫∫

G

∣
∣
∣
∣
∣

∫

l

ϕ(t)

(t − z)2
dt

∣
∣
∣
∣
∣

p

dσz ≤ δ
p(αi−1)+2
R , (3.12)

and also from (3.5), we have

∥
∥ϕ −Qn

∥
∥
p

A1
p
≤ δ

p(αi−1)+2
R . (3.13)
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If we use Lehman result [20] for Ψ = Φ−1,we obtain

δR :=
∣
∣
∣z

(j)
i − zi

∣
∣
∣ =

∣
∣
∣Ψ

(

Φ
(

z
(j)
i

))

−Ψ(Φ(zi))
∣
∣
∣ ≤

∣
∣
∣Φ

(

z
(j)
i

)

−Φ(zi)
∣
∣
∣

λi ≤ n(ε−1)λi . (3.14)

The proof is completed by (3.13) and (3.14).

Lemma 3.2. Let G ∈ A(λ), 0 < λ < 2. Then, for all polynomials Pn(z),degPn(z) ≤ n with
Pn(z0) = 0, n = 2, 3, . . . , one has

‖Pn‖C ≺ ‖Pn‖A1
p

⎧

⎪⎪⎪⎪
⎨

⎪⎪⎪⎪
⎩

1, p > 2,
√

logn, p = 2,

n(2/p−1)λ∗ , p < 2.

(3.15)

Proof. We will prove only the case p < 2 since the other cases are already given in [10, 21].
Let z be an arbitrary fixed point on the boundary. It is clear from [14, Lemma 2.2] that

l(z0, z) ⊂ G exists joining z0, z and satisfying cord arc properties. If l1 := {ξ ∈ l(z0, z) : |ξ − z| ≤
εn−λ∗} and l2 := l(z0, z) \ l1, then we have

|Pn(z)| =
∣
∣
∣
∣
∣

∫

l(z0,z)
P ′
n(ξ)dξ

∣
∣
∣
∣
∣
≤
∫

l1

∣
∣P ′

n(ξ)
∣
∣|dξ| +

∫

l2

∣
∣P ′

n(ξ)
∣
∣|dξ|. (3.16)

It is well known from [14, Corollary 2.3] that

∥
∥P ′

n

∥
∥
C(G) ≤ c1n

λ∗ · ‖Pn‖C(G). (3.17)

At the same time, mes(l1) ≤ c2εn
−λ∗ is valid for a positive constant c2 which is

independent from ε. Using the Mean Value property of subharmonic function |P ′
n(ξ)|p (see

[22, page 482]), we have for arbitrary point ξ ∈ l2

∣
∣P ′

n(ξ)
∣
∣ ≤ 1

[πd2(ξ, L)]1/p
‖Pn‖A1

p
, (3.18)

and after combining (3.18) and (3.16), we obtain

|Pn(z)| ≤ c1n
λ∗ · ‖Pn‖C(G)

∫

l1

|dξ| + c3‖Pn‖A1
p

∫

l2

|dξ|
d2/p(ξ, L)

≤ c1n
λ∗ · ‖Pn‖C(G).c2εn

−λ∗ + c3‖Pn‖A1
p

∫

l2

|dξ|
|ξ − z|2/p

≤ c1c2ε‖Pn‖C(G) + c3‖Pn‖A1
p

∫mes(l)

c2εn−λ∗

dt

t2/p

≤ c1c2ε‖Pn‖C(G) + c3‖Pn‖A1
p
n(2/p−1)λ∗ .

(3.19)
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Using the maximum modulus principle and choosing ε satisfying c1c2ε < 1, the proof
is obtained.

Lemma 3.2 shows how we can measure C-norm of polynomials by using itsA1
p-norm.

Lemma 3.3 (see [2]). Let G ⊂ C be a simply connected region so that

∥
∥ϕ − Bn,p

∥
∥
A1

p
≤ n−η (3.20)

for each μ ∈ (0, 1), n = 1, 2, . . . , and

‖Pn‖C ≺ nμ‖Pn‖A1
p

(3.21)

for all polynomials Pn(z), degPn ≤ n with Pn(z0) = 0. Then,

∥
∥ϕ − Bn,p

∥
∥
C
≤ nμ−η. (3.22)

4. Proof of Theorems 1.2 and 1.3

4.1. Proof of Theorem 1.2

Let us set Pn(z) as follows:

Pn(z) := Qn(z) +
(

ϕ′(z0) −Q′
n(z)

)

(z − z0), (4.1)

where Qn(z) as in Lemma 3.1 and satisfying Qn(z0) = 0.
It is clear from the definition of Pn(z) that Pn(z0) = 0, P ′

n(z0) = 1 is satisfying

∣
∣ϕ′(z) − P ′

n(z)
∣
∣ ≤ ∣

∣ϕ′(z) −Q′
n(z)

∣
∣ +

∣
∣ϕ′(z0) −Q′

n(z0)
∣
∣. (4.2)

So, we have

∥
∥ϕ − Pn

∥
∥
p

A1
p
≤ δ

p(αi−1)+2
R +

∣
∣ϕ′(z0) −Q′

n(z0)
∣
∣, (4.3)

and from the Mean Value Theorem in [4] we also have

∣
∣ϕ′(z0) −Q′

n(z0)
∣
∣ ≤ 1

πd2/p(z0, L)

∥
∥ϕ −Qn

∥
∥
A1

p
. (4.4)

So, (4.3), (4.4), and (3.13) give

∥
∥ϕ − Pn

∥
∥
p

A1
p
≤ n−(p(αi−1)+2)). (4.5)

Using extremal properties of the p-Bieberbach polynomials, the proof is completed.
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4.2. Proof of Theorem 1.3

Lemma 3.3 shows that it is enough to choose η, μ in (3.20) and (3.21), respectively. For this,
we take η as in Theorem 1.2 and μ as in Lemma 3.2.
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