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We introduce a new iterative scheme with a countable family of nonexpansive mappings for the
variational inequality problems in Hilbert spaces and prove some strong convergence theorems
for the proposed schemes.

1. Introduction

Let H be a Hilbert space and C be a nonempty closed convex subset of H. Let F : H — H
be a nonlinear mapping. The classical variational inequality problem (for short, VI(F,C)) is
to find a point x € C such that

(F(x*),x—-x*)>0, Vx"eC. (1.1)

This variational inequality was initially studied by Kinderlehrer and Stampacchia
[1]. Since then, many authors have introduced and studied many kinds of the variational
inequality problems (inclusions) and applied them to many fields.

It is well known that, if F is a strongly monotone and Lipschitzian mapping on C, then
the VI(F, C) has a unique solution (see [2]).
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LetT : H — H be a mapping. Recall that a mapping T : H — H is nonexpansive if

[ITx = Tyl| < [lx -yl

, VYx,y€H. (1.2)

The set of fixed points of T is denoted by F(T). Recently, the iterative methods for
nonexpansive mappings and some kinds of nonlinear mappings have been applied to solve
the convex minimization problems (see [3-7]).

A typical problem is to minimize a quadratic function over the set of the fixed points
of a nonexpansive mapping on H:

1
I)£1€1('rj1§<Ax,x> —(x,b), (1.3)

where C is the fixed point set of a nonexpansive mapping T on H, b is a given point in H and
A is a strongly positive operator, that is, there is a constant y > 0 such that

(Ax,x ) >7||x||>, VxeH. (1.4)

Recently, for solving the variational inequality on A, Marino and Xu [8] introduced
the following general iterative scheme:

Xpe1 = ([ =y A)Txp + Yy f(xy), VYn2>0, (1.5)

where A is a strongly positive linear bounded operator on H, f is a contraction on H and
{a,} C(0,1).
More precisely, they gave the following result.

Theorem MX (see [8, Theorem 3.4]). Let {x,} be generated by algorithm (1.5) with the sequence
{an ) satisfying the following conditions:

(C1) lim, _, ot = 0,
(C2) > yan = oo,
(CB) either 377 |tns1 — an| < 00 or limy, — o@ps1 /aty = 1.

Then the scheme {x,} defined by (1.5) converges strongly to an element x* € C = F(T) which is the
unique solution of the variational inequality (for short, VI(A -y f, C)):

((A-yf)x*,x-x*) >0, VxeC. (1.6)

Let f : H — H be a contraction with coefficient 0 < @« < 1andlet A, B: H — H
be two strongly positive linear bounded operators with coefficients y € (0,1) and > 0,
respectively.

Motivated and inspired by the iterative sheme (1.5), Ceng et al. [9] introduced the
following so-called hybrid viscosity-like approximation algorithms with variable parameters for
nonexpansive mappings in Hilbert spaces.
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Theorem CGY1 (see [9, Theorem 3.1]). Let 0 < ya < pandy € (0,1). Let {1, } be a sequence in
(0,1) and {p,} be a sequence in (0, min{1, |B||™'}). Starting with an arbitrary initial guess xo € H,
generate a sequence {x,} by the following iterative scheme:

X1 = (I = X1 A) T + Mt [T — pnar (BT X — y f (x))], Vm > 0. (1.7)

Assume that

(i) limy, oAy, =0,

(11) Zn 1
(iii) either Zn 1 |An+1 —Ay| < worlim, oA, /Auy1 =1,

(iv) 1=7)/(B-ya) <limy_oopn = p < 2-7)/(f - ya).

Then the scheme {x,} defined by (1.7) converges strongly to an element x* € C = F(T) which is the
unique solution of the variational inequality (for short, VI(A - I+ u(B-yf),C)):

([A-T+u(B-yf)]x*,x-x*)>0, VxeC. (1.8)
Theorem CGY2 (see [9, Theorem 3.2]). Let 0 < ya < fandy € (0,1). Let {\,} be a sequence in

(0,1) and {p,} be a sequence in (0, min{1, ||B||"'}). Starting with an arbitrary initial guess xo € H,
generate a sequence {x,} by the following iterative scheme:

Xne1 = (I = )Ln+1A)T[n+1]xn + )Ln+1[ [n+1]Xn — Hn+l (BT n+1]X Yf(xn))] Vn > 0. (1.9)

Assume that

(i) limy, oA =0,

(i) 351 An = 00
(iii) either 3571 [Anen — An| < 00 0r limy oA/ Aen = 1,
(iv) A =7)/(B-ya) <lim, . oopn =< 2=7)/(f - ya).

In addition, assume that

N
C= ﬂF(Ti) =F(TWT,---Ty) = F(INT; -+ T>)
- (1.10)

=..=F(TLT3---TNTh).

Then the scheme {x,} defined by (1.9) converges strongly to an element x* € C = F(T) which is the
unique solution of the variational inequality (for short, VI(A -1+ u(B-yf),C)):

([A-T+u(B-yf)]x*,x—x*)>0, VxeC. (1.11)

In this paper, motivated and inspired by the above research results, we introduce a
new iterative process with a countable family of nonexpansive mappings for the variational
inequality problem in Hilbert spaces.
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More precisely, let H be a Hilbert space and {T;};2; be a countable family of
nonexpansive mappings from H to H such that C = 2, F(T;)#0. Let f : H — H be a
contraction with coefficient 0 < &« < 1 and A, B be strongly positive linear bounded operators
with coefficients 77 € (0,1) and B > 0, respectively. Let {\,};-; € (0,1) and {a,},~, C (0,1]
with ag = 1. Take three fixed numbers y, 1 and p» such that 0 < ya < g, py € (0,1] and

w2 € (1= nu)/ (B —ya), min{1,||B||™", (2 = nu1)/ (B — ya)}]. For any x; € H, generate the
iterative scheme {x,} by

Xns1 = O [ (I = Aupt1 A) X + A [2n = p2 (Bt = v f (x0))]]

0 (1.12)
+ Z([Xi_l — ai)Tixn, Vn > 1.
i=1

We prove that the iterative scheme {x,} defined by (1.12) strongly converges to an
element x* € C which is the unique solution of the variational inequality (for short, VI(p1 A -

I+ p(B-yf),C)):

([mA-T+p(B-yf)]x*, x-x*)>0, VxeC. (1.13)

2. Preliminaries

Let H be a Hilbert space and T be a nonexpansive mapping of H into itself such that F(T) # 0.
For all X € F(T) and x € H, we have

lx = 2| > | Tx = T||* = | Tx - %[> = |Tx - x + (x - %)|”
(2.1)
= ||ITx = x||* + ||x = X||* + 2(Tx - x, x - X)

and hence
ITx - x||* <2(x -Tx,x -X), VYxeF(T), xeH. (2.2)

Let {x,} be a sequence in a Hilbert space H and let x € H. Throughout this paper,
x, — x and x, — x denote that {x,} strongly converges to x € H and {x,} converges
weakly to a point x € H, respectively.

Lemma 2.1 (see [10]). Let C be a closed convex subset of a Hilbert space H and T be a nonexpansive
mapping from C into itself. Then I — T is demiclosed at zero, that is,

Xy —x, Xx,—Tx, — 0 implies x =Tx. (2.3)

The following lemma is an immediate consequence of the equality:

>, vx,yeH. (2.4)

llx+y||* = Ixl* + 2(y, x + y) - |y
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Lemma 2.2. Let H be a real Hilbert space. Then the following identity holds:

x+y|* < lIlxl* +2(y, x +y), Vx,y€H. (2.5)

Lemma 2.3 (see [4, 11]). Let {s,}, {cn} be the sequences of nonnegative real numbers and let {a,} C
(0,1). Suppose that {b,} is a sequence of real numbers such that

Spi1 < (1—ay)sp+by,+c,, VYn>0. (2.6)

Assume that 37, ¢, < oo. Then the following results hold.

(1) If b, < Pay, where (B > 0), then {s,} is a bounded sequence.

(2) If one has

& b
>ay =0, limsup— <0, (2.7)
n=0 n—oo dn

then lim,, _, s, = 0.

Lemma 2.4 (see [8]). Let H be a real Hilbert space, f : H — H be a contraction with coefficient
0 < a < 1 and B be a strongly positive linear bounded operator with coefficient p > 0. Then, for any y
with0 <y < p/a,

> Vx,yeH, (2.8)

(x=y,(B=yf)x=(B-yf)y) 2 (B-ya)||lx-y

that is, B — y f is strongly monotone with coefficient p — ya.

Lemma 2.5. Assume A is a strongly monotone linear bounded operator on a Hilbert space H with
coefficient a > 0. Take a fixed number p such that 0 < p < ||A||™Y. Then ||I - pA|| < 1 - pa.

Proof. The proof method is mainly from the idea of Marino and Xu [8, Lemma 2.5]. It is known
that the norm of a linear bounded self-adjoint operator V on H is as follows:

VIl = sup{[{Vx,x)[: x € H, [lx[| =1}. (2.9)
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Now, for all x € H with ||x|| = 1, we see that (here 0 denotes zero point in H)

|1 - pA|| = sup{((I - pA)x,x) : x € H, ||x]| =1}

sup{((I-pA)x—- (I-pA)0,x-0):x€H, ||x| =1}

{
{
sup{((x-0) - p(Ax — A0),x - 0) : x € H, ||x|| =1}

(2.10)
= sup [|x||? -p((Ax-A0),x-0):x€ H, ||x| = 1}
< sup{l - pallx - 0*:xeH, ||x]| = 1}
=1-pa.
This completes the proof. O

Remark 2.6. Lemma 2.5 still holds if A is a strongly positive linear bounded operator (see
[8, Lemma 2.5]). That is, Lemma 2.5 in this section and Lemma 2.5 in [8] both hold when A
is a strongly monotone linear bounded operator or a strongly positive linear bounded one
because an operator on a Hilbert space is strongly monotone linear if and only if it is strongly
positive linear.

In fact, if A is a strongly monotone linear operator with coefficient « > 0 on a Hilbert
space H, then, for all x € H,

(Ax,x) = (Ax — A0, x —0) > allx - 0|]* = a|x|]?, (2.11)

which shows that A is strongly positive linear. Assume that A is a strongly positive linear
operator with coefficient « > 0 on H. Then, forall x,y € H,

(Ax-Ay,x-y) = (A(x-y),x-y) > al|x-y|’, (2.12)

which shows that A is strongly monotone and linear.

3. Main Results

Let H be a Hilbert space and C be a nonempty closed and convex subsetof H.Let f : H — H
be a contraction with coefficient 0 < a« < 1. Let A,B : H — H be strongly positive linear
bounded operator with coefficient 7 € (0,1) and p > 0, respectively. Take a fixed number y
such that 0 < ya < p. Then, from Lemma 2.4, it follows that B — y f is strongly monotone with
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coefficient f — ya > 0. For any fixed numbers o1 € (0,1] and o, € ((1 —no1)/(f - ya), (2 -
1no1)/ (B —ya)), we have 0 = oy — 1 + 02(p — ya) € (0,1), which can be seen easily from the
following:

2 —
0y < 191 = o (f-ya) <2-noi
p-ya 3.1)
—=0=no1-1+0(p-ya) <1,
1-noy

<oy = 0 (p-ya) +no1 > 1

p-ya (3.2)
= 0=no1-1+0(p-ya)>0.

Moreover, observe that

[(01A-T+02(B-yf))x - (o1A-T+02(B-Yf))yl|l
= (1A= D) (x~y) +o2(B-yf)(x - y)|
<llowA-IN|lx =yl + o2[[|B(x = )| + vl fx - fy]]]
< [lorA=1l + o (1Bl +ya)] [lx - v,

(3.3)

which implies that 0y A—I+0>(B—y f) is Lipschitzian with coefficient |01 A—I||+ 02 (|| B||+ya) >
0.
On the other hand, from Lemma 2.4, it follows that

((1A-T+02(B-yf))x - (c1A-T+02(B-Yf))y,x~y)
= 01{Ax - Ay, x—y) + o ((B-yf)x = (B-yf)y,x-y) - |x - y||°

, , , (34)
2 o|lx -yl + o (- ya)|lx - yll” - [|x - vll

2
7

=0|lx-y

which implies that 01A — I + 02(B - yf) is strongly monotone with coefficient 6 > 0. Hence
the variational inequality (for short, VI(c1A -1+ 02(B-yf),C))

(1A-I+0y(B-yf)x*,x—x*)>0, VxeC (3.5)

has the unique solution.

Let T : H — H be a nonexpansive mapping. Take two fixed numbers p; and py such
that p; € (0,1] and po € (0, min{1,||B||"!}] and, for all A € (0,min{1,||A["'/p1}), define a
mapping T* : H — H by

T'x = (I - My A)Tx +A[Tx - uo(BTx - yf(x))], VxeH. (3.6)

Then we have the following results.
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Lemma3.1. If ps € (1-nu1)/ (B—yX), 2=nu1)/(B—y\)), then T* is a contraction with coefficient
1 - Ar, where T = 1 — 1+ pa(p — ya) € (0,1), that is,

T x-T'y | < a-an)llx-yll, veyeH. (3.7)
Proof. From Lemma 2.5 and Remark 2.6, it follows that, for all x, y € H,

”T)‘x - T)‘y” = ||(I = A1 A)Tx + A [Tx — pp (BTx — y f (x))]
~(I= A A)Ty - A[Ty = o (BTy =y f ()]
< [T =M A)Tx = (I - A A)Ty||

+ M| Tx — po (BTx —yf(x)) = [Ty — p2(BTy — y f ()]l
< [T =M A) ||| Tx = Ty||

3.8
+ A[[[(T = p2B)Tx = (I = 2 B) Ty || + peay || £ () = F () ][] Y
< (1= ) |lx =yl + A[lT = p2B|| | Tx = Ty || + payal|x - y|l]
< {1+ A1 - (B - ya) | }||x - vl
={1-Afn-1+p(f-ya)}x -yl
= (1-aA7)|[x -y
This completes the proof. O

Let {T;};~; be a countable family of nonexpansive mappings from H into itself such
that C = N;~; F(T;) #0. Since each F(T;) is closed and convex, then C is closed and convex.

Throughout this paper, let f : H — H be a contraction with coefficient 0 < a < 1.
Let A,B : H — H be strongly positive linear bounded mapping with coefficient 7 € (0,1)
and f > 0, respectively. Take a fixed number y such that 0 < ya < f. Suppose that y; € (0,1],
p2 € (L=nu1)/ (B—ya), min{1, ||B|| 7, 2-nu1)/ (B-ya)}) (assuming that (1-nu1)/ (f-ya) <
min{1, | B!} such that (1 - 1)/ (B - yA), min{1, | B, (2 - 1)/ (B - yA)}] is nonempty),
(X}, € (0,min{1, |Al|}/p1 }) with liminf, _, A, > 0 and {a,}52, C (0,1] with ag = 1.

Now, we can rewrite the iterative scheme (1.12) as follows:

n
Xpa1 = anTA 2, + Z(ai,l —a)Tix,, Yn>1, (3.9)
i=1

where TV x,, = (I -\ p1 A) Xy + Ay [ = p2(Bx,—Y f (x,,))]. Then, by Lemma 3.1, forall x, y € H,
we have

Ty x - Tpy

| <A-M7)||x -y

, VYn>1, (3.10)

where 7 = nu; — 1+ o (f— ya) € (0,1).
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Lemma 3.2. If {a,} is strictly decreasing, then the scheme {x,} defined by (3.9) is bounded.

Proof. Since ||T*p —p|| = An|| (1A = I + p2(B=yf))pl|, it follows from (3.10) that, for all p € C,

[l = pll =

ay, <T)‘"xn - p) + Zn:(di—l - a;)(Tix, — p) “
i=1
< lxn“Tj\nxn - P” + i(ai—l - ai) ”Tixn - P”
i-1

9 |y T)‘"p

|+ a||Top = p| + (1= ) [l -l
< (1= A7) [ = | + @k || A =T+ p2(B=yf))p|| + (1 = an) |20 = p|

= (1= ankaT) |0 = pl| + auku || (1A = I+ p2(B =y f))p |-
(3.11)

By induction, we obtain

1
s =pll < max{ s =l NG A =T+ ia(B -y £)pl . (12)

proof. O

Hence {x,} is bounded and so are {T*x,} and {T;x,} for each i > 1. This completes the
Lemma 3.3. If {a,} is strictly decreasing and the following conditions hold:
dan=0, Dy —Apal <o, (3.13)
n=1 n=1
then lim,, _, oo ||xp+1 — Xl = 0.
Proof. By the iterative scheme (3.9), we have
i=1 i=1

n n-1
Xns1 = X = g T2 + D (@1 — ) Tixy — (aanj\nlxnl + > (@i - ai)Tixn1>

n
=ap (T)tnxn - T)Lnxn—1> + Z(ai—l - ai)(Tixn - Tixn—l)
i=1

n n-1
A L
+ > (@i = a)Tixy 1 — > (@i — &) Tixn1 + @y TV X1 — a1 TV 204
i1 i=1

n
=0y (Tj\nxn - T)Lnxrkl) + Z(“i*l - ai)(Tixn - Tixnfl)
i=1

+ (“n—l - “n)Tnxn—l + (an—l-)tn—l - ‘xn)tn) [(ﬂlA -I+ H2 (B - Yf))xn—l]

+ ([xn - “n—l)xn—l
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n
=0y (Tj\nxn - T)Lnxrkl) + Z(‘Xifl - ai)(Tixn - Tixnfl)
i=1

+ (“n—l - an)Tnxn—l + (an - an—l)xn—l

+ [(‘xn—l - ‘xn)-ln + ()‘n—l - /\n)an—ll [(/41A -1+ H2 (B - Yf))xn—l]

(3.14)
and hence
n
”xn+1 - xn” < ay T)Lnxn - T)Lnxn—l ' + Z(ai—l - an)”Tixn - Tixn—ln
i=1
+ (a1 — ) | Tuxp || + (@1 — o) || x|
+ [(an-1 = an) Ay + Aoy = Aplanaa ] || (1A =1+ pa (B =y f))xpa]|
(3.15)

< an (1= Xum)[|xn = Xnall + (1= an) |30 — Xn-1 |

+ (@1 = &) [ Tuxn-a || + (@n1 = an) [ X |

+ [(an-1 = an) + Ao = L] || (1A =T+ 2 (B =y f) ) xnt ||
< (1 = apdyT)|[xn = Xpa || + (@n1 = an) M + [Anog = An| M,

where M is a constant. Since {\,,} C (0, min{1,||Al|"}/p1}), there exists a constant A" > 0 such
that A, >\’ for all n > 1. Therefore, we have

%41 = %]l < (1= anX'T) |20 = xp1 || + [(@no1 — @) + [Auo1 — Au|] M. (3.16)

Putc, = [(ap-1—an)+|Ap-1—A,|] M. Since {a, } is a strictly decreasing sequence and 3, [A,-1—
| < o0, we have 3,77, ¢, < 0. By Lemma 2.3, it follows that ||x,.1 —x,|| — 0asn — co. This
completes the proof. O

Lemma 3.4. If {a,} is strictly decreasing and the following conditions hold:
lima, =0, Dap=00, > Ay—Apa|<oo (3.17)
nme n=1 n=1

then limy, —, o ||x,, — Tixy|| =0, for all i > 1.

Proof. By the iterative scheme (3.9), we have

n
Xp+1 + Z(“H — ;) (%0 = Tixxn) = (1 = ap) Xy = 4, TV x,,, (3.18)
i=1
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that is,
Z(‘Xi—l —a;)(xp, — Tixy) = a <Tknxn - xn> + (Xp = Xpe1)- (3.19)
i=1

Hence, for any p € C, we get

n

Z(“H — ;) (xn = Tixp, X, —p) = zxn<T*"xn — Xy, Xy — p> + (Xp = Xpa1, Xn — P). (3.20)
i=1

Since each T; is nonexpansive, it follows from (2.2) that
(| Tixxn — x|* < 2(xy = Tixp, Xp — p). (3.21)

Hence, combining (3.21) with (3.20), it follows that

n n
(@i — ) [[Tixn = xul* <2 (@1 = ) (xn = Tixt, X = p)
i1 i1 (3.22)
= 2, (T Xy = X, X0 = P ) + 2 = Xs1, X = P),

which implies that
1 5
EZ(ai—l — a;)||Tixy — x,]|” < “n<T)L"xn — Xp, Xy — p> + (X = Xpi1, Xn — P). (3.23)
i=1

Since each (a;_1 — a;)||Tix, — x> > 0 and a;_; — a; > 0, then we have

1
5 (@i = ai) || Tixn - X * < an<T*"xn = Xp, Xy — p> +(Xp = Xpi1, Xn — P), (3.24)
that is,
(| Tixxn — x| < 2a <T)‘"x - Xp, X —p>+ (%n = Xpa1, Xn — p) (3.25)
1vn n = i — al n nsvn az_l _ al n n+ls4n . .

Since {x,} and {T*"x,} are both bounded, there exists a constant M’ > 0 such that

a 1

[T~ ol < M (22 0= Xl ). (3:26)
ai1—a a1~ QA

By Lemma 3.3 and the assumption condition lim,, _, ,t, = 0, it follows that

lim || Tix, — x| =0, V¥i>1. (3.27)

This completes the proof. O
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Finally, we give the main result in this paper.

Theorem 3.5. If {a,} is strictly decreasing and the following conditions hold:

n—oo

lima, =0, Dan=o00, > [Ay—Apal|<oo, (3.28)
n=1 n=1

then the scheme {x,} defined by (3.9) converges strongly to an element x* € C which is the unique
solution of the variational inequality (VI(n A =1+ ua(B-yf),C)):

([mA-T+u(B-yf)]x*,x-x*)>0, VxeC (3.29)

Proof. First, we prove that limsup, | (=[p1A =1+ p2(B—yf)]x*, x441 —x*) <0.
To prove this, we pick a subsequence {x,,} of {x,} such that

limsup(=[pA =T+ p2(B=yf)]x",xn = x") = im (= [ A = I+ po (B =y f)|x", 2, = ).
(3.30)

Without loss of generality, we may, further, assume that x,, — x for some x € H. From
Lemmas 2.1 and 3.3, it follows that x € F(T;) for each i > 1 and so x € C = N, F(T;). Since x*
is the unique solution of the problem VI(y1A — I + (B -y f), C), we obtain

limsup(=[p1 A - I+ p2(B-yf)]x", xn = x") = (-[nA-T+pa(B-yf)]x",x-x") <0.

n— oo
(3.31)
It follows from Lemma 2.2 and (3.10) that
n 2
261 = x7||* = [an (T*"xn - T*"X’“) + (i1 — ) (Tix, — x*)] +ay <T*"X* - x*)
i=1
n 2
< |an (T*"xn - T*"x*> + (@i — ) (Tixy — x7)
i=1
+ 20, TV = 2%, 2 = 27 (3.32)

< (1= L) ||xn = x| + (1 = ) |2 — x7[]?
+ 20, (= [ A =T+ po(B =y f)]x", Xpe1 = x7)
< (1= @) otn = 72+ 200 (= [j1 A = T + o (B = Y )], 21 = x°)

< (1 - a7 ||2xn - x|+ 20, (— [ A -1+ (B-yf)]x*, xp1 — x*),



Journal of Inequalities and Applications 13

where ' > 0 is a constant such that A, > )’ for all n > 1. Since };2 @, = oo and
limsup, , (=[#1A~ I+ (B~ yf)]x*, xu1 — x*) < 0, by Lemma 2.3, we conclude that the
scheme {x,} converges strongly to x*. This completes the proof. O

Remark 3.6. (1) For each n > 1, a simple example on control parameters is a, = 1/n and

Ax = A, where A is a constant in (0, min{1, ||A[|"/p1}).
(2) We obtain the desired results without any assumptions on the family {T;}Z;. Foe
example, in Theorem CGY2, the authors gave the strong condition (1.10).

Remark 3.7. 1) f Ty =T, =--- =T, = --- = T in (3.9), then we have the following iterative
scheme:

X1 = O [(I = AMp1 A) Xy + Ay (x0 = po (B =y f (x4)))] + A = )T, Vn>1,  (3.33)

and the scheme {x,} defined by (3.33) converges strongly to an element x* € C which is the
unique solution of the variational inequality (VI(u1A -1+ pu2(B-yf),C)):

([mA-T+pu(B-yf)]x*, x-x*)>0, VxeC. (3.34)

(2) If A=1and p; =1in (3.33), then we have the following iterative scheme:

X1 = 0y (I = Appio (B=7f))xn + Z(“H -a)Tix,, Vn>1, (3.35)
i=1

and the scheme {x,} defined by (3.35) converges strongly to an element x* € C which is the
unique solution of the variational inequality (VI(B - yf,C)):

((m2(B=yf))x*,x—x*) >0, VxeC. (3.36)

(3) Furthermore, if gy, = 1 and y = 0 in (3.35), then we have the following iterative
scheme:

n
X1 = @ (I = X B)xy + D (@1 — @) Tixy, Vn 21, (3.37)
i1

and the scheme {x,} defined by (3.37) converges strongly to an element x* € C which is the
unique solution of the variational inequality (VI(B,C)), which is Stampacchia’s variational

inequality:

(Bx*,x—x*)>0, VxeC. (3.38)
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