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Modeled on the Gauss measure, the authors introduce the locally doubling measure metric space
(X, d, μ)ρ, which means that the set X is endowed with a metric d and a locally doubling regular
Borel measure μ satisfying doubling and reverse doubling conditions on admissible balls defined
via the metric d and certain admissible function ρ. The authors then construct an approximation
of the identity on (X, d, μ)ρ, which further induces a Calderón reproducing formula in Lp(X) for
p ∈ (1,∞). Using this Calderón reproducing formula and a locally variant of the vector-valued
singular integral theory, the authors characterize the space Lp(X) for p ∈ (1,∞) in terms of the
Littlewood-Paley g-function which is defined via the constructed approximation of the identity.
Moreover, the authors also establish the Fefferman-Stein vector-valued maximal inequality for
the local Hardy-Littlewood maximal function on (X, d, μ)ρ. All results in this paper can apply
to various settings including the Gauss measure metric spaces with certain admissible functions
related to the Ornstein-Uhlenbeck operator, and Euclidean spaces and nilpotent Lie groups of
polynomial growth with certain admissible functions related to Schrödinger operators.

1. Introduction

The Littlewood-Paley theory on R
n nowadays becomes a very important tool in harmonic

analysis, partial differential equations, and other related fields. Especially, the extent to
which the Littlewood-Paley theory characterizes function spaces is very remarkable; see, for
example, Stein [1], Frazier, et al. [2], and Grafakos [3, 4]. Moreover, Han and Sawyer [5]
established a Littlewood-Paley theory essentially on the Ahlfors 1-regular metric measure
space with a quasimetric, which means that the measure of any ball is comparable with
its radius. This theory was further generalized to the RD-space in [6], namely, a space of
homogeneous type in the sense of Coifman and Weiss [7, 8]with an additional property that
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the measure satisfies the reverse doubling condition. Tolsa [9] established a Littlewood-Paley
theory with the nondoubling measure μ on R

n, which means that μ is a Radon measure on R
n

and satisfies that μ(B(x, r)) ≤ Crd for all x ∈ R
n, r > 0, and some fixed d ∈ (0, n]. Furthermore,

these Littlewood-Paley theories were used to establish the corresponding Besov and Triebel-
Lizorkin spaces on these different underlying spaces; see [5, 6, 10].

Let (Rn, | · |, dγ) be the Gauss measure metric space, namely, the n-dimensional
Euclidean space R

n endowed with the Euclidean norm | · | and the Gauss measure dγ(x) ≡
π−n/2e−|x|

2
dx for all x ∈ R

n. Such an underlying space naturally appears in the study of
the Ornstein-Uhlenbeck operator; see, for example, [11–18]. In particular, via introducing
some local BMO (γ) space and Hardy space H1(γ) associated to admissible balls defined
via the Euclidean metric and the admissible function ρ(x) ≡ min{1, 1/|x|} for x ∈ R

n,
Mauceri andMeda [12] developed a theory of singular integrals on (Rn, | · |, dγ)ρ, which plays
for the Ornstein-Uhlenbeck operator the same role as that the theory of classical Calderón-
Zygmund operators plays for the Laplacian on classical Euclidean spaces. The results of [12]
are further generalized to some kind of nondoubling measure metric spaces by Carbonaro et
al. in [18, 19].

It is well known that the Gauss measure metric space is beyond the space of
homogeneous type in the sense of Coifman and Weiss, a fortiori, the RD-space. To be precise,
the Gauss measure is known to be only locally doubling (see [12]). In this paper, modeled on
the Gauss measure, we introduce the locally doubling measure metric space (X, d, μ)ρ, which
means that the setX is endowedwith ametric d and a locally doubling regular Borel measure
μ satisfying the doubling and reverse doubling conditions on admissible balls defined via
the metric d and certain admissible function ρ. An interesting phenomenon is that even in
such a weak setting, we are able to construct an approximation of the identity on (X, d, μ)ρ,
which further induces a Calderón reproducing formula in Lp(X) for p ∈ (1,∞). Using this
Calderón reproducing formula and a locally variant of the vector-valued singular integral
theory, we then characterize the space Lp(X) for p ∈ (1,∞) in terms of the Littlewood-Paley
g-function which is defined by the aforementioned constructed approximation of the identity.
As a byproduct, we establish the Fefferman-Stein vector-valued maximal inequality for the
local Hardy-Littlewood maximal function on (X, d, μ)ρ, which together with the Calderón
reproducing formula paves the way for further developing a theory of local Besov and
Triebel-Lizorkin spaces on (X, d, μ)ρ.

To be precise, motivated by [12], in Section 2, we introduce locally doubling measure
metric space (X, d, μ)ρ; see Definition 2.1 below. The reasonabilities of Definition 2.1 are given
by Propositions 2.3 and 2.5. Some geometric properties of these spaces are also presented in
Section 2.

To develop a Littlewood-Paley theory on the space (X, d, μ)ρ, one of the main
difficulties is the construction of appropriate approximations of the identity. In Section 3, by
subtly modifying Coifman’s idea in [20] (see (3.2) through (3.4) below), for any given �0 ∈ Z,
we construct an approximation of the identity, {Sk}∞k=�0 , associated to ρ; see Proposition 3.2
below. Indeed, we not only modify the operators appearing in the construction of Coifman to
the setting associated with the given admissible function ρ, but also use an adjoint operator in
our construction as in Tolsa [9]. Some basic estimates on such approximations of the identity
are given in Lemma 3.4 and Proposition 3.5 below. We remark that, although the Gauss
measure is a nondoubling measure considered by Tolsa [9], due to its advantage-locally
doubling property, the construction of the corresponding approximation of the identity
here does not appeal to the complicated constructions of some special doubling cubes and
associated “dyadic” cubes as in [9].
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In Section 4, invoking some ideas of [3, 7, 11], we establish the Lp(X)-boundedness
for p ∈ (1,∞) and weak-(1, 1) estimate of local vector-valued singular integral operators on
(X, d, μ)ρ; see Theorem 4.1 below. As a consequence, in Theorem 4.4 below, we also obtain the
Fefferman-Stein vector-valued maximal function inequality with respect to the noncentered
local Hardy-Littlewood maximal operator (see (2.20)).

The existence of the approximation of the identity guarantees that we obtain some
Calderón reproducing formulae in Lp(X) for p ∈ (1,∞) in (5.2) and Corollary 5.4, by using
the methods developed in [20]. Applying such formula, we then establish the Littlewood-
Paley characterization for Lp(X) with p ∈ (1,∞) on (X, d, μ)ρ in terms of Littlewood-Paley
g-function; see Theorem 5.6 below.

Some typical examples of locally doubling measure metric spaces in Definition 2.1 are
presented in Section 6. These typical examples include the aforementioned Gauss measure
metric spaces with certain admissible functions related to the Ornstein-Uhlenbeck operator,
and Euclidean spaces and nilpotent Lie groups of polynomial growth with certain admissible
functions related to Schrödinger operators; see [21–25]. All results, especially, Theorems 4.4
and 5.6, are new even for these typical examples.

It should be pointed out that all results in Section 2 through Section 4 are exempt from
using the reverse locally doubling condition (2.3); see Remark 2.2(iii) below.

We make the following conventions on notation. Let N ≡ {1, 2, . . .}. For any p ∈ [1,∞],
denote by p′ the conjugate index, namely, 1/p + 1/p′ = 1. In general, we use B to denote
a Banach space, and Ba with a > 0 to denote a collection of admissible balls. For any set
E ⊂ X, denote by χE the characteristic function of E, and by #(E) the cardinality of E, and
set E� ≡ X \ E. For any operator T , denote by T ∗ its dual operator. For any a, b ∈ R, set
a∧b ≡ min{a, b} and a∨b ≡ max{a, b}. Denote by C a positive constant independent of main
parameters involved, which may vary at different occurrences. Constants with subscripts do
not change through the whole paper. We use f � g and f � g to denote f ≤ Cg and f ≥ Cg,
respectively. If f � g � f , we then write f ∼ g.

2. Locally Doubling Measure Metric Spaces

Let (X, d, μ) be a setX endowed with a regular Borel measure μ such that all balls defined by
the metric d have finite and positive measures. Here, the regular Borel measure μmeans that
open sets are measurable and every set is contained in a Borel set with the same measure; see,
for example, [26]. For any x ∈ X and r > 0, set B(x, r) ≡ {y ∈ X : d(x, y) < r}. For a ball
B ⊂ X, we use cB and rB to denote its center and radius, respectively, and for κ > 0, we set
κB ≡ B(cB, κrB). Now we introduce the precise definition of locally doubling measure metric
spaces.

Definition 2.1. A function ρ : X → (0,∞) is called admissible if for any given τ ∈ (0,∞), there
exists a constant Θτ ≥ 1 such that for all x, y ∈ X satisfying d(x, y) ≤ τρ(x),

[Θτ]−1ρ
(
y
) ≤ ρ(x) ≤ Θτρ

(
y
)
. (2.1)

For each a > 0, denote by Ba the set of all balls B ⊂ X such that rB ≤ aρ(cB). Balls in Ba are
referred to as admissible balls with scale a. The triple (X, d, μ)ρ is called a locally doubling
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metric space associated with admissible function ρ if for every a > 0, there exist constants
Da,Ka, Ra ∈ (1,∞) such that for all B ∈ Ba,

μ(2B) ≤ Daμ(B)
(
locally doubling condition

)
, (2.2)

and

μ(KaB) ≥ Raμ(B)
(
locally reverse doubling condition

)
. (2.3)

Remark 2.2. (i)Another notion of admissible functionswas introduced in [25] in the following
way: a function ρ : X → (0,∞) is called admissible if there exist positive constants C and ν
such that for all x, y ∈ X,

ρ
(
y
) ≤ C

[
ρ(x)

]1/(1+ν)[
ρ(x) + d

(
x, y

)]ν/(1+ν)
. (2.4)

By [25, Lemma 2.1], any ρ satisfying (2.4) also satisfies (2.1), while the converse may be not
true; see Example 6.5 below.

(ii) Obviously, any constant function is admissible. When ρ ≡ 1, if {Da}a>0 has upper
bound, then (X, d, μ)ρ is the space of homogeneous type in the sense of Coifman and Weiss
[7, 8]; furthermore, if {Ka}a>0 has upper bound and {Ra}a>0 has lower bound away from 1,
then (X, d, μ)ρ is just the RD-space in [6]. Conversely, any RD-space is obviously a locally
doubling measure metric space with ρ ≡ 1.

(iii) We remark that the locally reverse doubling condition (2.3) is a mild requirement
of the underlying space. Indeed, if a > 0 andX is path connected on all balls contained in B2a

and (2.2) holds for certain ã > 0, then (2.3) holds; see Proposition 2.3(vi) below. Moreover,
(2.3) is required only in Section 5, that is, all results in Section 2 through Section 4 are true
by only assuming that ρ is an admissible function satisfying (2.1) and that (X, d, μ)ρ satisfies
(2.2).

(iv) Let d be a quasimetric, which means that there exists A0 ≥ 1 such that for all
x, y, z ∈ X, d(x, y) ≤ A0(d(x, z) + d(z, y)). Recall that Macı́as and Segovia [27, Theorem 2]
proved that there exists an equivalent quasimetric d̃ such that all balls corresponding to d̃ are
open in the topology induced by d̃, and there exist constants Ã0 > 0 and θ ∈ (0, 1) such that
for all x, y, z ∈ X,

∣∣∣d̃(x, z) − d̃
(
y, z

)∣∣∣ ≤ Ã0

[
d̃
(
x, y

)]θ[
d̃(x, z) + d̃

(
y, z

)]1−θ
. (2.5)

If the metric d in Definition 2.1 is replaced by d̃, then all results in this paper have
corresponding generalization on the space (X, d̃, μ)ρ. To simplify the presentation, we always
assume d to be a metric in this paper.

Proposition 2.3. Fix a ∈ (0,∞). Then the following hold:

(i) the condition (2.2) is equivalent to the following: there exist K > 1 and D̃a > 1 such that
for all B ∈ B(2/K)a, μ(KB) ≤ D̃aμ(B);
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(ii) the condition (2.2) is equivalent to the following: there exist Ca > 1 and na > 0, which
depend on a, such that for all λ ∈ (1,∞) and λB ∈ B2a, μ(λB) ≤ Caλ

naμ(B);

(iii) the following two statements are equivalent:

(a) there exists Ra > 1 such that for all B ∈ Ba, μ(2B) ≥ Raμ(B);

(b) there existK1 ∈ (1, 2] and R̃a > 1 such that μ(K1B) ≥ R̃aμ(B) for all B ∈ B(2/K1)a;

(iv) if (2.3) holds, then there exist C̃a ∈ (0, 1] and κa > 0 such that for all λ > 1 and λB ∈ BaKa ,
μ(λB) ≥ C̃aλ

κaμ(B);

(v) if (2.3) holds, then KaB \ B /= ∅ for all B ∈ Ba;

(vi) if there exists a0 > 1 such that a0B \ B /= ∅ for all B ∈ B2a, and (2.2) holds for all B ∈ Bã

with ã ≡ (a/2)[1 + 4a0]Θ2a0a, then for any given a1 > a0, there exists a positive constant
C̃ depending on a0 and ã such that for all B ∈ Ba, μ(a1B) ≥ C̃μ(B).

Proof. The sufficiency of (i) follows from letting K = 2. To see its necessity, we consider K ∈
(1, 2) and K ∈ [2,∞), respectively. When K ∈ (1, 2), there exists a unique N ∈ N such that
KN < 2 ≤ KN+1, which implies that for all B ∈ Ba,

μ(2B) = μ

(
KN+1 2

KN+1
B

)
≤
(
D̃a

)N+1
μ

(
2

KN+1
B

)
≤
(
D̃a

)1+log2K
μ(B). (2.6)

When K ∈ [2,∞), for any B ∈ Ba, we have (2/K)B ∈ B(2/K)a and μ(2B) ≤ D̃aμ((2/K)B) ≤
D̃aμ(B), thus, (2.2) holds. Therefore, we obtain (i).

Now we assume (2.2) and prove the sufficiency of (ii). For any λ > 1, choose N ∈ N

such that 2N−1 < λ ≤ 2N . Then, for all λB ∈ B2a, we have (λ/2j)B ∈ Ba for all 1 ≤ j ≤ N;
we therefore apply (2.2) N times and obtain μ(λB) ≤ (Da)

Nμ((λ/2N)B) ≤ Daλ
naμ(B), where

na ≡ log2Da. The necessity of (ii) is obvious.
Next we prove (iii). If (a) holds, then (b) follows from setting K1 = 2. Conversely, if

(b) holds, then for any B ∈ Ba, we have (2/K1)B ∈ B(2/K1)a and

μ(2B) = μ

(
K1

2
K1

B

)
≥ R̃aμ

(
2
K1

B

)
≥ R̃aμ(B), (2.7)

which implies (a).
To prove (iv), for any λ > 1, there exists a unique N ∈ N such that (Ka)

N−1 < λ ≤
(Ka)

N . This combined with the fact that (λ/Ka)B ∈ Ba implies that

μ(λB) = μ

(

(Ka)N−1 λ

(Ka)N−1B

)

≥ (Ra)N−1μ

(
λ

(Ka)N−1B

)

≥ (Ra)logKa
λ−1μ(B) ≡ C̃aλ

κaμ(B),

(2.8)

where C̃a ≡ (Ra)
−1 and κa ≡ logKa

Ra. Thus, (iv) holds.
Notice that (v) is obvious. To show (vi), without loss of generality, we may assume

that a1 ∈ (a0, 2a0]. Set σ ≡ (a1 − a0)/(1 + a0). Observe that 0 < σ < 1. Thus, for any B ∈ Ba,
we have (1 + σ)B ∈ B2a and a0(1 + σ)B \ (1 + σ)B /= ∅. Choose y ∈ a0(1 + σ)B \ (1 + σ)B. It is
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easy to check that B(y, σrB) ∩ B = ∅ and B(y, σrB) ⊂ a1B ⊂ B(y, [σ + 2a0(1 + σ)]rB). Notice
that rB ≤ aρ(cB) ≤ aΘ2a0aρ(y) and B(y, [σ + 2a0(1 + σ)]rB) ∈ B2ã. This combined with (2.2)
and (i) of Proposition 2.3 yields that

μ(a1B) ≥ μ(B) + μ
(
B
(
y, σrB

) )

≥ μ(B) + [Cã]−1
[

σ

σ + 2a0(1 + σ)

]nã

μ
(
B
(
y, [σ + 2a0(1 + σ)]rB

))

≥ μ(B) + [Cã]−1
[

σ

σ + 2a0(1 + σ)

]nã

μ(a1B),

(2.9)

which further implies that μ(a1B) ≥ C̃μ(B)with C̃ ≡ {1 − [Cã]
−1[σ/(σ + 2a0(1 + σ))]nã}−1 > 1.

This finishes the proof of (vi), and hence the proof of Proposition 2.3.

Remark 2.4. (i) By Proposition 2.3(i), there is no essential difference whether we define the
locally doubling condition (2.2) by using 2B or KB for some constant K > 0.

(ii) The assumption K1 ∈ (1, 2] in (b) of Proposition 2.3(iii) cannot be replaced by
K1 ∈ (1,∞); see Proposition 2.5 below. Therefore, in Definition 2.1, it is more reasonable to
require (2.3) rather than (a) of Proposition 2.3(iii).

In the following Proposition 2.5, we temporarily consider the Gauss measure space
(Rn, | · |, γ)ρ, where ρ is given by ρ(x) ≡ min{1, 1/|x|} and dγ(x) ≡ π−n/2e−|x|

2
dx for all x ∈ R

n.
In this case, for any ball B centered at cB and is of radius rB, we have B ≡ {x ∈ R

n : |x − cB| <
rB}, and moreover, B ∈ Ba if and only if rB ≤ aρ(cB); see [12].

Proposition 2.5. Let a ∈ (0,∞) and (Rn, | · |, γ)ρ be the Gauss measure space. Then,

(a) there exist positive constants Ka > 1 and Ca > 1, which depend on a, such that for all
B ∈ Ba, γ(KaB) ≥ Caγ(B);

(b) there exists a sequence of balls, {Bj}j∈N ⊂ Ba, such that limj→∞(γ(2Bj)/γ(Bj)) = 1.

Proof. Recall that for all B ∈ Ba and x ∈ B, it was proved in [12, Proposition 2.1], that e−2a−a
2 ≤

e|cB |
2−|x|2 ≤ e2a. From this, it follows that for any Ka > 0,

γ(B) =
∫

B

π−n/2e−|x|
2
dx ≤ π−n/2e−|cB |

2+2a|B|,

γ(KaB) =
∫

KaB

π−n/2e−|x|
2
dx ≥ π−n/2e−|cB |

2−2a−a2(Ka)n|B|,
(2.10)

where and in what follows, we denote by |B| the Lebesgue measure of the ball B. Thus,
γ(KaB) ≥ (Ka)

ne−4a−a
2
γ(B). Hence, (a) holds by choosing Ka > e(4a+a

2)/n.
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To show (b), for simplicity, we may assume n = 1. Consider the ball By ≡ B(y, e−y),
where y ≥ 1 such that e−y ≤ a/y. Thus, By ∈ Ba for any such chosen y. A simple calculation
yields that limy→∞γ(By) = 0. Therefore, using the L′-Hospital rule, we obtain

lim
y→∞

γ
(
2By

)

γ
(
By

) = lim
y→∞

∫y+2e−y
y−2e−y e

−|x|2dx
∫y+e−y
y−e−y e

−|x|2dx

= lim
y→∞

(1 − 2e−y)e−(y+2e
−y)2 − (1 + 2e−y)e−(y−2e

−y)2

(1 − e−y)e−(y+e−y)
2 − (1 + e−y)e−(y−e−y)

2

= lim
y→∞

e−3e
−2y−2ye−y (1 − 2e−y) − (1 + 2e−y)e8ye

−y

(1 − e−y) − (1 + e−y)e4ye−y
= 1,

(2.11)

which implies the desired result of (b). This finishes the proof of Proposition 2.5.

Next we present some properties concerning the underlying space (X, d, μ)ρ. In what
follows, for any x,y ∈ X and δ > 0, set Vδ(x) ≡ μ(B(x, δ)) and V (x, y) ≡ μ(B(x, d(x, y))).

Proposition 2.6. Let τ > 0, η > 0, a > 0, and B ∈ Ba. Then the following hold:

(a) for any given τ ′ ∈ (0, τ], if x, y ∈ X satisfy d(x, y) ≤ τ ′ρ(x), then d(x, y) ≤ τ ′Θτρ(y),

Vτ ′ρ(x)(x) ∼ Vτ ′ρ(y)
(
y
) ∼ Vτ ′ρ(y)(x) ∼ Vτ ′ρ(x)

(
y
)
, (2.12)

and V (x, y) ∼ V (y, x) with equivalent constants depending only on τ ;

(b) for all x, y ∈ X satisfying d(x, y) ≤ ηρ(x),

Vτρ(x)(x) + V
(
x, y

) ∼ Vτρ(y)
(
y
)
+ V

(
x, y

) ∼ μ
(
B
(
x, τρ(x) + d

(
x, y

)))
, (2.13)

with equivalent constants depending on η and τ ;

(c)
∫
d(z,x)<r d(z, x)

a(1/V (z, x)) dμ(z) ≤ Cra uniformly in x ∈ X and r ∈ (0, τρ(x)];

(d) for any ball B′ satisfying B′ ∩ B /= ∅ and rB′ ≤ τrB, B′ ∈ BτaΘ(1+τ)a ;

(e) there exists a positive constant Da,τ depending only on a and τ such that if B′ ∩ B /= ∅ and
rB′ ≤ τrB, then μ(B′) ≤ Da,τμ(B).

Proof. We first show (a). For all τ ′ ∈ (0, τ], if d(x, y) ≤ τ ′ρ(x), then d(x, y) ≤ τΘτρ(y) by (2.1).
Since

B
(
x, τ ′ρ(x)

) ⊂ B
(
y, 2τ ′ρ(x)

) ⊂ B
(
y, 2τ ′Θτ

(
ρ
(
y
)))

, (2.14)

by (2.2), we obtain Vτ ′ρ(x)(x) ≤ DΘτ Vτ ′ρ(y)(y). A similar argument together with (2.1) and
(2.2) shows the rest estimates of (a) as well (b). The details are omitted.
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To prove (c), by (a) and (2.2), we obtain

∫

d(z,x)<r

d(z, x)a

V (z, x)
dμ(z) ∼

∫

d(z,x)<r

d(z, x)a

μ(B(x, d(z, x)))
dμ(z)

≤
∞∑

j=0

∫

2−j−1r≤d(z,x)<2−j r

(
2−j r

)a

μ
(
B
(
x, 2−j−1r

))dμ(z)

≤
∞∑

j=0

2−jaDτr
a � ra,

(2.15)

which implies (c).
To see (d), by B ∩ B′ /= ∅ and rB′ ≤ τrB, we have d(cB′ , cB) < rB + rB′ < (1 + τ)rB, which

combined with (2.1) and the fact B ∈ Ba implies that

rB′ ≤ τrB ≤ τaρ(cB) ≤ τaΘ(1+τ)aρ(cB′). (2.16)

Thus, (d) holds.
To show (e), notice that B′ ⊂ B(cB, (2τ + 1)rB) ∈ B(2τ+1)a. Choose N ∈ N such that

2N−1 < 2τ+1 ≤ 2N . Then, by (2.2), we obtain μ(B′) ≤ μ(2NB) ≤ [D(2τ+1)a]
Nμ(B), which implies

(e) by setting Da,τ ≡ [D(2τ+1)a]
1+log2(2τ+1). This finishes the proof of Proposition 2.6.

A geometry covering lemma on (X, d, μ)ρ is as follows.

Lemma 2.7. Let ρ be an admissible function. For any λ > 0, there exists a sequence of balls,
{B(xj , λρ(xj))}j , such that

(i) X =
⋃

j Bj , where Bj ≡ B(xj , λρ(xj));

(ii) the balls {B̃j}j are pairwise disjoint, where B̃j ≡ B(xj , ([Θλ]
2 + 1)−1λρ(xj));

(iii) for any τ > 0, there exists a positive constantM depending on τ and λ such that any point
x ∈ X belongs to no more than M balls of {τBj}j .

Proof. Let I be the maximal set of balls, B̃j ≡ B(xj , ([Θλ]
2 + 1)

−1
λρ(xj)) ⊂ X, such that for all

k /= j, B̃j ∩ B̃k = ∅. The existence of such a set is guaranteed by the Zorn lemma. We claim that
I is at most countable.

Indeed, we choose x0 ∈ X, and set XN ≡ B(x0,Nρ(x0)) and JN ≡ {j : B̃j ∩ XN /= ∅}.
For any j ∈ JN , denote bywj an arbitrary point in B̃j ∩XN . From (2.1), it follows that ρ(xj) ∼
ρ(wj) ∼ ρ(x0)with constants depending only on N and λ; thus, for all z ∈ B̃j ,

d(z, x0) ≤ d
(
z, xj

)
+ d

(
xj ,wj

)
+ d

(
wj, x0

) ≤ Cλ,Nρ(x0), (2.17)
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for some positive constantCλ,N . This implies that
⋃

j∈JN B̃j ⊂ B(x0, Cλ,Nρ(x0)). Likewise, there

exists a positive constant C̃λ,N such that for all j ∈ JN , B(x0, Cλ,Nρ(x0)) ⊂ C̃λ,NB̃j . By this and
(2.2), we obtain

#(JN)μ
(
B
(
x0, Cλ,Nρ(x0)

))
�

∑

j∈JN
μ
(
B̃j

)
∼ μ

⎛

⎝
⋃

j∈JN
B̃j

⎞

⎠ � μ
(
B
(
x0, Cλ,Nρ(x0)

))
, (2.18)

and hence #(JN) � 1. This combined with the fact that X =
⋃∞

N=1 XN implies the claim.
For any z ∈ X, by the maximal property of I, there exists some j such that

B

(
z,
(
[Θλ]2 + 1

)−1
λρ(z)

)
∩ B

(
xj ,

(
[Θλ]2 + 1

)−1
λρ

(
xj

)
)

/= ∅, (2.19)

which combined with (2.1) implies that ρ(z) ≤ [Θλ]
2ρ(xj) and d(z, xj) < λρ(xj). This proves

(i).
For any z ∈ X, set J(z) ≡ {j : z ∈ τBj}. By (2.1), ρ(xj) ∼ ρ(z) for all j ∈ J(z). Then

by an argument similar to the proof for the above claim, we obtain (iii), which completes the
proof of Lemma 2.7.

For any a > 0, we consider the noncentered local Hardy-Littlewood maximal operator Ma

on (X, d, μ)ρ, which is defined by setting, for all locally integrable functions f and x ∈ X,

Maf(x) ≡ sup
B∈Ba(x)

1
μ(B)

∫

B

∣∣f
(
y
)∣∣dμ

(
y
)
, (2.20)

where Ba(x) is the collection of balls B ∈ Ba containing x. Observe that if (X, d, μ)ρ is the
Gauss measure metric space and ρ(x) ≡ min{1, 1/|x|}, then (2.20) is exactly the noncentered
local Hardy-Littlewood maximal function introduced in [12, (3.1)]; see also [18, (7.1)].

Theorem 2.8. (i) For any a > 0, the operator Ma in (2.20) is of weak type (1, 1) and bounded on
Lp(X) for p ∈ (1,∞].

(ii) For any locally integrable function f and almost all x ∈ X,

lim
r→ 0

1
μ(B(x, r))

∫

B(x,r)

∣∣f
(
y
) − f(x)

∣∣dμ
(
y
)
= 0. (2.21)

Proof. A similar argument as in [26, Theorem 2.2] together with (2.2) shows (i). Following
the procedure in [26, Theorem 1.8], we obtain that for almost all x ∈ X,

lim
r→ 0

1
μ(B(x, r))

∫

B(x,r)
f
(
y
)
dμ

(
y
)
= f(x), (2.22)

which together with an argument similar to that of the Euclidean case (see [28]) yields (ii).
This finishes the proof of Theorem 2.8.
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3. Approximations of the Identity

Motivated by [6, 20], we introduce the following inhomogeneous approximation of the
identity on the locally doubling measure metric space (X, d, μ)ρ.

Definition 3.1. Let �0 ∈ Z. A sequence of bounded linear operators, {Sk}∞k=�0 , on L2(X) is called
an �0-approximation of the identity on (X, d, μ)ρ (for short, �0-AOTI) if there exist positive
constants C1 and C2 (may depend on �0) such that for all k ≥ �0 and all x, x′, y and y′ ∈ X,
Sk(x, y), the integral kernel of Sk, is a measurable function fromX ×X to C satisfying that

(i) Sk(x, y) = 0 if d(x, y) ≥ C12−k[ρ(x) ∧ ρ(y)] and |Sk(x, y)| ≤ C2(1/(V2−kρ(x)(x) +
V2−kρ(y)(y)));

(ii) |Sk(x, y) − Sk(x′, y)| ≤ C2(d(x, x′)/(2−kρ(x)))(1/(V2−kρ(x)(x) + V2−kρ(y)(y))) if
d(x, x′) ≤ (C1 ∨ 1)2−k+1ρ(x);

(iii) |Sk(x, y) − Sk(x, y′)| ≤ C2(d(y, y′)/(2−kρ(y)))(1/(V2−kρ(x)(x) + V2−kρ(y)(y))) if
d(y, y′) ≤ (C1 ∨ 1)(2−k+1ρ(y));

(iv) |[Sk(x, y) − Sk(x, y′)] − [Sk(x′, y) − Sk(x′, y′)]| ≤ C2(d(x, x′)/(2−kρ(x)))(d(y, y′)/
(2−kρ(y))(1/(V2−kρ(x)(x) + V2−kρ(y)(y))) if d(x, x′) ≤ (C1 ∨ 1)2−k+1ρ(x) and d(y, y′) ≤
(C1 ∨ 1)2−k+1ρ(y);

(v)
∫
X Sk(x,w)dμ(w) = 1 =

∫
X Sk(w,y)dμ(w) for all k ≥ �0.

The existence of the approximation of the identity on (X, d, μ)ρ follows from a subtle
modification on the construction of Coifman in [20, Lemma 2.2] (see also [6]). Different from
[20], here we define Sk = MkTkWkT

∗
k
Mk, where Tk is an integral operator whose kernel is

defined via the admissible function ρ, and Mk and Wk are the operators of multiplication by
(1/Tk1) and [T ∗

k(1/Tk1)]
−1, respectively; see (3.2), (3.3), and (3.4) below. We remark that the

idea of using the dual operator T ∗
k
here was used before by Tolsa [9].

Proposition 3.2. For any given �0 ∈ Z, there exists a nonnegative symmetric �0-AOTI {Sk}∞k=�0 ,
where the symmetric means that Sk(x, y) = Sk(y, x) for all k ≥ �0 and x,y ∈ X. Moreover, there
exists a positive constant C3 (may depend on �0) such that for all k ≥ �0 and x, y ∈ X satisfying
d(x, y) ≤ 2−kρ(x),

C3V2−kρ(x)(x)Sk

(
x, y

) ≥ 1. (3.1)

Proof. Let h be a differentiable radial function on R satisfying χ[0,a0] ≤ h ≤ χ[0,2a0) with a0 ≡
2Θ2−�0 . For any k ≥ �0, f ∈ L1

loc (X), and u ∈ X, define

Tk
(
f
)
(u) ≡

∫

X
h

(
d(u,w)
2−kρ(w)

)

f(w)dμ(w), (3.2)

and its dual operator

T ∗
k

(
f
)
(u) ≡

∫

X
h

(
d(u,w)
2−kρ(u)

)

f(w)dμ(w). (3.3)



Journal of Inequalities and Applications 11

Then, for all x,y ∈ X, set

Sk

(
x, y

) ≡ 1
Tk1(x)

{∫

X
h

(
d(x, z)
2−kρ(z)

)
1

T ∗
k(1/Tk1)(z)

h

(
d
(
z, y

)

2−kρ(z)

)

dμ(z)

}
1

Tk1
(
y
) . (3.4)

It is easy to see that Sk is nonnegative, Sk(x, y) = Sk(y, x), and
∫
X Sk(x, y)dμ(y) = 1.

The support condition of h together with (2.1) and (2.2) implies that for any u ∈ X,

Tk1(u) ∼ V2−kρ(u)(u) ∼ T ∗
k1(u), (3.5)

with constants depending on �0.
If Sk(x, y)/= 0, then by (3.4), there exists z ∈ X such that d(x, z) ≤ a02−k+1ρ(z) and

d(z, y) ≤ a02−k+1ρ(z), which together with (2.1) implies that

d
(
x, y

) ≤ a0
[
Θa02−�0+1

]
2−k+2

[
ρ(x) ∧ ρ

(
y
)]
, (3.6)

and that the integral domain in (3.4) is B(x, a0[Θa02−�0+1]2
−k+1ρ(x)).

For any z ∈ B(x, a0[Θa02−�0+1]2
−k+1ρ(x)), by (3.5), (2.2), the support condition of h, and

Proposition 2.6(a), we obtain

T ∗
k

(
1

Tk1

)
(z) =

∫

X
h

(
d(z,w)
2−kρ(z)

)
1

Tk1(w)
dμ(w) �

∫

B(z,2−kρ(z))

1
V2−kρ(w)(w)

dμ(w) � 1,

T ∗
k

(
1

Tk1

)
(z) �

∫

B(z,a02−k+1ρ(z))

1
Tk1(w)

dμ(w) � 1,

(3.7)

which further implies that for all z ∈ B(x, a0[Θa02−�0+1]2
−k+1ρ(x)),

T ∗
k

(
1

Tk1

)
(z) ∼ 1. (3.8)

By (3.5), (3.8), Proposition 2.6(a), and the fact that the integral domain in (3.4) is
B(x, a0[Θa02−�0+1]2

−k+1ρ(x)), we obtain

0 ≤ Sk

(
x, y

)
� 1

V2−kρ(x)(x)
� 1

V2−kρ(x)(x) + V2−kρ(y)
(
y
) . (3.9)

Thus, (i) of Definition 3.1 holds with positive constants C1 and C2 depending only on �0.
To show (3.1), by the fact h ≥ χ[0,a0] and (3.8), we obtain that when d(x, y) ≤ 2−kρ(x),

Sk

(
x, y

)
� 1

Tk1(x)

{∫

X

[
χ{d(x,z)≤a−10 2−kρ(z)}(z)

]
h

(
d
(
z, y

)

2−kρ(z)

)

dμ(z)

}
1

Tk1
(
y
) . (3.10)
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When d(x, y) ≤ 2−kρ(x) and d(x, z) ≤ a−1
0 2−kρ(z), by (2.1) and the fact that a0 > 1, we have

[Θ2−�0 ]
−1ρ(z) ≤ ρ(x) ≤ Θ2−�0ρ(z) and

d
(
y, z

) ≤ d
(
y, x

)
+ d(x, z) ≤ 2−kρ(x) + a−1

0 2−kΘ2−�0ρ(x) ≤ 2−k+1ρ(x) ≤ a02−kρ(z), (3.11)

which implies that h(d(z, y)/2−kρ(z)) = 1. Inserting this into (3.10) and then using (3.5), we
obtain (3.1).

Now we show that Sk satisfies the desired regularity in the first variable when
d(x, x′) ≤ (C1 ∨ 1)2−k+1ρ(x). Notice that in this case, Sk(x, y) − Sk(x′, y)/= 0 implies that
d(x, y) � 2−kρ(x), and hence ρ(y) ∼ ρ(x) ∼ ρ(x′) by (2.1). Write

Sk

(
x, y

) − Sk

(
x′, y

)

=
[

1
Tk1(x)

− 1
Tk1(x′)

]{∫

X
h

(
d(x, z)
2−kρ(z)

)
1

T ∗
k(1/Tk1)(z)

h

(
d
(
z, y

)

2−kρ(z)

)

dμ(z)

}
1

Tk1
(
y
)

+
1

Tk1(x′)

{∫

X

[

h

(
d(x, z)
2−kρ(z)

)

− h

(
d(x′, z)
2−kρ(z)

)]
1

T ∗
k(1/Tk1)(z)

h

(
d
(
z, y

)

2−kρ(z)

)

dμ(z)

}

× 1
Tk1

(
y
) ≡ Z1 + Z2.

(3.12)

If d(x, x′) ≤ (C1 ∨ 1)2−k+1ρ(x), then by the mean value theorem, (2.1), (2.2), (3.5), and
Proposition 2.6(a),

∣∣∣∣
1

Tk1(x)
− 1
Tk1(x′)

∣∣∣∣ ≤
1

Tk1(x)Tk1(x′)

∫

X

∣∣∣∣∣
h

(
d(x, z)
2−kρ(z)

)

− h

(
d(x′, z)
2−kρ(z)

)∣∣∣∣∣
dμ(z)

� 1
V2−kρ(x)(x)V2−kρ(x′)(x′)

∫

d(x,z)≤a02−k+1ρ(z)
or d(x′,z)≤a02−k+1ρ(z)

d(x, x′)
2−kρ(z)

dμ(z)

� d(x, x′)
2−kρ(x)

1
V2−kρ(x)(x)

.

(3.13)

By this, (3.5), (3.8), ρ(x′) ∼ ρ(x), d(x, y) � 2−kρ(x), and Proposition 2.6(a), we obtain

Z1 � d(x, x′)
2−kρ(x)

1
V2−kρ(x)(x)

∼ d(x, x′)
2−kρ(x)

1
V2−kρ(x)(x) + V2−kρ(y)

(
y
) . (3.14)

Now we estimate Z2. If Z2 /= 0, from the support condition of h and Proposition 2.6(a), we
deduce that d(x, z) ≤ C2−kρ(x) for some positive constant C that depends on �0. Therefore,
by the mean value theorem and (3.8),

Z2 � 1
Tk1(x′)

{∫

d(x,z)≤C2−kρ(x)

d(x, x′)
2−kρ(z)

h

(
d
(
z, y

)

2−kρ(z)

)

dμ(z)

}
1

Tk1
(
y
) , (3.15)
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which combined with (2.1), (3.5), d(x, y) � 2−kρ(x), d(x, x′) ≤ C2−kρ(x), and
Proposition 2.6(a) further implies that

Z2 � d(x, x′)
2−kρ(x)

1
V2−kρ(x)(x) + V2−kρ(y)

(
y
) . (3.16)

Combining the estimates of Z1 and Z2 yields that Sk satisfies (ii) of Definition 3.1.
We finally prove that Sk satisfies (iv) of Definition 3.1 if d(x, x′) ≤ (C1 ∨ 1)2−k+1ρ(x)

and d(y, y′) ≤ (C1 ∨ 1)2−k+1ρ(y). In this case, [Sk(x, y) − Sk(x′, y)] − [Sk(x, y′) − Sk(x′, y′)]/= 0
implies that d(x, y) � 2−kρ(x) and hence ρ(x′) ∼ ρ(x) ∼ ρ(y) ∼ ρ(y′) by (2.1). Write

[
Sk

(
x, y

) − Sk

(
x′, y

)] − [
Sk

(
x, y′) − Sk

(
x′, y′)]

=
[

1
Tk1(x)

− 1
Tk1(x′)

]{∫

X
h

(
d(x, z)
2−kρ(z)

)
1

T ∗
k(1/Tk1)(z)

h

(
d
(
z, y

)

2−kρ(z)

)

dμ(z)

}

×
[

1
Tk1

(
y
) − 1

Tk1
(
y′)

]

+
[

1
Tk1(x)

− 1
Tk1(x′)

]
1

Tk1
(
y′)

×
{∫

X
h

(
d(x, z)
2−kρ(z)

)
1

T ∗
k(1/Tk1)(z)

[

h

(
d
(
z, y

)

2−kρ(z)

)

− h

(
d
(
z, y′)

2−kρ(z)

)]

dμ(z)

}

+
1

Tk1(x′)

{∫

X

[

h

(
d(x, z)
2−kρ(z)

)

− h

(
d(x′, z)
2−kρ(z)

)]
1

T ∗
k(1/Tk1)(z)

h

(
d
(
z, y

)

2−kρ(z)

)

dμ(z)

}

×
[

1
Tk1

(
y
) − 1

Tk1
(
y′)

]

+
1

Tk1(x′)
1

Tk1
(
y′)

×
{∫

X

[

h

(
d(x, z)
2−kρ(z)

)

− h

(
d(x′, z)
2−kρ(z)

)]
1

T ∗
k(1/Tk1)(z)

×
[

h

(
d
(
z, y

)

2−kρ(z)

)

− h

(
d
(
z, y′)

2−kρ(z)

)]

dμ(z)

}

≡ Z3 + Z4 + Z5 + Z6.

(3.17)

By (3.13), (3.5), (3.8), (3.6), the fact ρ(x′) ∼ ρ(x) ∼ ρ(y) ∼ ρ(y′), and Proposition 2.6(a), we
obtain

Z3 � d(x, x′)
2−kρ(x)

1
V2−kρ(x)(x)

d
(
y, y′)

2−kρ
(
y
)

1
V2−kρ(y)

(
y
)μ

(
B
(
x, a0Θa02−�0+12

−kρ(x)
))

� d(x, x′)
2−kρ(x)

d
(
y, y′)

2−kρ
(
y
)

1
V2−kρ(x)(x) + V2−kρ(y)

(
y
) .

(3.18)
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The estimates forZ4 throughZ5 are similar to those ofZ3 orZ2 and hence omitted. Therefore,
Sk satisfies (iv) of Definition 3.1. This finishes the proof of Proposition 3.2.

Remark 3.3. (a) It should be mentioned that (3.1) is crucial in establishing the vector-valued
Fefferman-Stein maximal function inequality; see Theorem 4.4 below.

(b) Let �0 ∈ Z. Given any τ > 0, if {Sk}∞k=�0 satisfy (i) and (ii) of Definition 3.1, then by
(2.1) and (2.2), we have that there exists a positive constant C (depending on τ) such that for
all k ≥ �0 and all d(x, x′) ≤ τ2−kρ(x),

∣
∣Sk

(
x, y

) − Sk

(
x′, y

)∣∣ ≤ C
d(x, x′)
2−kρ(x)

1
V2−kρ(x)(x) + V2−kρ(y)

(
y
) . (3.19)

If {Sk}∞k=�0 satisfy (i) and (iii) of Definition 3.1, then a symmetric estimate as in (3.19) holds
for the second variable. Analogously, if {Sk}∞k=�0 satisfy (i) through (iv) of Definition 3.1, then
for all d(x, x′) ≤ τ2−kρ(x) and d(y, y′) ≤ τ2−kρ(y),

∣∣[Sk

(
x, y

) − Sk

(
x, y′)] − [

Sk

(
x′, y

) − Sk

(
x′, y′)]∣∣

≤ C
d(x, x′)
2−kρ(x)

d
(
y, y′)

2−kρ
(
y
)

1
V2−kρ(x)(x) + V2−kρ(y)

(
y
) .

(3.20)

The following technical lemma in some sense illustrates that the composition of two
�0-AOTI’s is still an �0-AOTI (except Definition 3.1(v)).

Lemma 3.4. Let �0 ∈ Z and let {Sk}∞k=�0 and {Ek}∞k=�0 be two �0-AOTI’s. Set D�0 ≡ S�0 , Q�0 ≡ E�0 ,
Dk ≡ Sk −Sk−1, andQk ≡ Ek −Ek−1 for k > �0. Then for any η, σ, δ ∈ (0, 1) and σ +δ ∈ (0, 1], there
exists a positive constant C, depending on η, σ, δ, C1, and C2, such that the kernel of DkQj , which is
still denoted by DkQj , satisfies that for all k, j ≥ �0,

(i) if DkQj(x, y)/= 0, then d(x, y) ≤ C42−(k∧j)[ρ(x) ∧ ρ(y)] with C4 ≡ 4C1ΘC12−�0+1 ;

(ii) for all x, y ∈ X,

∣∣DkQj

(
x, y

)∣∣ ≤ C2−|k−j|
1

V2−(k∧j)ρ(x)(x) + V2−(k∧j)ρ(y)
(
y
) ; (3.21)

(iii) for all x, y, y′ ∈ X satisfying d(y, y′) ≤ (C4 ∨ 1)2−(k∧j)+1ρ(y),

∣∣DkQj

(
x, y

) −DkQj

(
x, y′)∣∣

≤ C2−|k−j|(1−η)
(

d
(
y, y′)

2−(k∧j)ρ
(
y
)

)η
1

V2−(k∧j)ρ(x)(x) + V2−(k∧j)ρ(y)
(
y
) ;

(3.22)
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(iv) for all x,y,x′ ∈ X satisfying d(x, x′) ≤ (C4 ∨ 1)2−(k∧j)+1ρ(x),

∣
∣DkQj

(
x, y

) −DkQj

(
x′, y

)∣∣

≤ C2−|k−j|(1−η)
(

d(x, x′)
2−(k∧j)ρ(x)

)η
1

V2−(k∧j)ρ(x)(x) + V2−(k∧j)ρ(y)
(
y
) ;

(3.23)

(v) for all x, y, x′, y′ ∈ X satisfying d(x, x′) ≤ (C4 ∨ 1)2−(k∧j)+1ρ(x) and d(y, y′) ≤ (C4 ∨
1)2−(k∧j)+1ρ(y),

∣
∣[DkQj

(
x, y

) −DkQj

(
x′, y

)] − [
DkQj

(
x, y′) −DkQj

(
x′, y′)]∣∣

≤ C2−|k−j|(1−η)(σ+δ)
(

d(x, x′)
2−(k∧j)ρ(x)

)η(1−σ)(
d
(
y, y′)

2−(k∧j)ρ(y)

)η(1−δ)

× 1
V2−(k∧j)ρ(x)(x) + V2−(k∧j)ρ(y)

(
y
) ;

(3.24)

(vi) for all x,y ∈ X,
∫
X DkQj(x, y)dμ(x) =

∫
X DkQj(x, y)dμ(y) = 0 when (k ∨ j) > �0; = 1

when k = j = �0.

Proof. Without loss of generality, we may assume that j ≥ k ≥ �0. By Definition 3.1(i), for all
j ≥ �0, Qj(x, y)/= 0 implies that

d
(
x, y

) ≤ C12−(j−1)
[
ρ(x) ∧ ρ

(
y
)]
, (3.25)

likewise for Dk. Therefore, if DkQj(x, y) =
∫
X Dk(x, z)Qj(z, y)dμ(z)/= 0, then there exists z ∈

X such that d(x, z) ≤ C12−(k−1)[ρ(x)∧ρ(z)] and d(z, y) ≤ C12−(j−1)[ρ(z)∧ρ(y)], which together
with (2.1) yields (i).

The support and size conditions of S�0 and E�0 together with (2.1), (2.2), and
Proposition 2.6(a) imply that (ii) holds when j = k = �0. To show that (ii) holds when j > �0,
by the fact

∫
X Qj(z, y)dμ(z) = 0, (3.25), the size condition of Qj , and the regularity of Dk, we

obtain that for all x, y ∈ X,

∣∣DkQj

(
x, y

)∣∣ =
∣∣∣∣

∫

X

[
Dk(x, z) −Dk

(
x, y

)]
Qj

(
z, y

)
dμ(z)

∣∣∣∣

≤
∫

d(z,y)≤C12−j+1ρ(y)

∣∣Dk(x, z) −Dk

(
x, y

)∣∣∣∣Qj

(
z, y

)∣∣dμ(z)

� 1
2−kρ

(
y
)

1
V2−kρ(x)(x)

∫

d(z,y)≤C12−j+1ρ(y)

d
(
y, z

)

V2−j ρ(y)
(
y
)
+ V

(
y, z

)dμ(z),

(3.26)
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which combined with Proposition 2.6(c) and j ≥ k further implies that

∣
∣DkQj

(
x, y

)∣∣ � 1
2−kρ

(
y
)

1
V2−kρ(x)(x)

∫

d(z,y)≤C12−j+1ρ(y)

d
(
z, y

)

V
(
z, y

)dμ(z) � 2k−j
1

V2−kρ(x)(x)
. (3.27)

This together with (i) of this lemma and Proposition 2.6(a) yields (ii).
The proofs for (iii) and (iv) are similar and we only show (iii). To this end, it suffices

to prove that when d(y, y′) ≤ (C4 ∨ 1)2−k+1ρ(y),

∣∣DkQj

(
x, y

) −DkQj

(
x, y′)∣∣ �

d
(
y, y′)

2−kρ
(
y
)

1
V2−kρ(x)(x) + V2−kρ(y)

(
y
) . (3.28)

To see this, notice that if DkQj(x, y) −DkQj(x, y′)/= 0, then the assumption of (iii) combined
with (i) and (2.1) yields that

ρ(x) ∼ ρ
(
y
) ∼ ρ

(
y′), d

(
x, y

)
� 2−k

[
ρ(x) ∧ ρ

(
y
)]
. (3.29)

This together with (ii) and Proposition 2.6(a) further implies that

∣∣DkQj

(
x, y

) −DkQj

(
x, y′)∣∣ � 2−|k−j|χ{d(x,y)≤C42−kρ(x)}

(
x, y

)
{

1
V2−kρ(x)(x)

+
1

V2−kρ(x)(x)

}

� 2−|k−j|
1

V2−kρ(x)(x) + V2−kρ(y)
(
y
) .

(3.30)

Taking the geometric mean between (3.28) and (3.30) gives the desired estimate of (iii).
Nowwe verify (3.28). Indeed, by the observation (3.19) on the regularity of the second

variable, it suffices to show (3.28) for d(y, y′) ≤ C12−kρ(y)/4. In fact, we show that (3.28)
holds for d(y, y′) ≤ [C12−kρ(y) + d(x, y)]/4. To this end, by Definition 3.1(v), we write

∣∣DkQj

(
x, y

) −DkQj

(
x, y′)∣∣ =

∣∣∣∣

∫

X

[
Dk(x, z) −Dk

(
x, y

)][
Qj

(
z, y

) −Qj

(
z, y′)]dμ(z)

∣∣∣∣

≤
2∑

i=1

∫

Wi

∣∣Dk(x, z) −Dk

(
x, y

)∣∣∣∣Qj

(
z, y

) −Qj

(
z, y′)∣∣dμ(z)

≡
2∑

i=1

Zi,

(3.31)

where W1 ≡ {z ∈ X : d(y, y′) ≤ [C12−jρ(y) + d(z, y)]/2} and W2 ≡ {z ∈ X : d(y, y′) >
[C12−jρ(y) + d(z, y)]/2}.

We first estimate Z1. If z ∈ W1 and Qj(z, y) − Qj(z, y′)/= 0, then either d(z, y) ≤
C12−j[ρ(z) ∧ ρ(y)] or d(z, y′) ≤ C12−j[ρ(z) ∧ ρ(y′)], which together with (2.1) yields that
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d(y, y′) � 2−jρ(y) and d(z, y) � 2−j[ρ(z) ∧ ρ(y)] � 2−kρ(y). These facts and (3.29) together
with Proposition 2.6(a) and the regularities of {Dk}∞k=�0 and {Qj}∞j=�0 yield that

Z1 �
d
(
y, y′)

2−jρ
(
y
)
∫

W2

d
(
z, y

)

2−kρ
(
y
)

1
V2−kρ(y)

(
y
)

χj

(
z, y

)

V2−kρ(z)(z) + V2−kρ(y)
(
y
)dμ(z)χk

(
x, y

)

�
d
(
y, y′)

2−kρ(x)
1

V2−kρ(x)(x) + V2−kρ(y)
(
y
) ,

(3.32)

where and in what follows, χj(z, y) ≡ χ{d(z,y)�2−j [ρ(z)∧ρ(y)]}(z, y) for all j ≥ �0 and z, y ∈ X.
To estimate Z2, notice that for any z ∈ W2, by (3.29) and (2.1), we have

d
(
z, y

) ≤ 2d
(
y, y′) ≤

[
C12−kρ

(
y
)
+ d

(
x, y

)]

2
� 2−kρ

(
y
) ∼ 2−kρ(x). (3.33)

This combined with (3.19) and Proposition 2.6(b) gives that

Z2 � χk

(
x, y

)
∫

W2

d
(
z, y

)

2−kρ(x)
1

V2−kρ(y)
(
y
)
[∣∣Qj

(
z, y

)∣∣ +
∣∣Qj

(
z, y′)∣∣]dμ(z)

� χk

(
x, y

)
∫

W2

d
(
z, y

)

2−kρ(x)

d
(
y, y′)

C12−jρ
(
y
)
+ d

(
z, y

)
1

V2−kρ(y)
(
y
)
[∣∣Qj

(
z, y

)∣∣ +
∣∣Qj

(
z, y′)∣∣]dμ(z)

� χk

(
x, y

)d
(
y, y′)

2−kρ
(
y
)

1
V2−kρ(y)

(
y
)
∫

X

[∣∣Qj

(
z, y

)∣∣ +
∣∣Qj

(
z, y′)∣∣]dμ(z)

�
d
(
y, y′)

2−kρ
(
y
)

1
V2−kρ(x)(x) + V2−kρ(y)

(
y
) .

(3.34)

Combining the estimates of Z1 and Z2 yields (3.28) and hence (iii) holds.
When j ≥ k, to prove (v), it suffices to verify that for any η ∈ (0, 1), d(x, x′) ≤ (C4 ∨

1)2−k+1ρ(x) and d(y, y′) ≤ (C4 ∨ 1)2−k+1ρ(y),

∣∣[DkQj

(
x, y

) −DkQj

(
x′, y

)] − [
DkQj

(
x, y′) −DkQj

(
x′, y′)]∣∣

�
(

d(x, x′)
2−kρ(x)

)η(
d
(
y, y′)

2−kρ(y)

)η
1

V2−kρ(x)(x) + V2−kρ(y)
(
y
) .

(3.35)

To see this, notice that if DkQj(x, y′) − DkQj(x′, y′)/= 0, then by (i) and the assumption
d(x, x′) ≤ (C4 ∨ 1)2−k+1ρ(x) together with (2.1), we have d(x, y′) � 2−kρ(x), which combined
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with d(y, y′) ≤ (C4 ∨ 1)2−kρ(x) further implies that d(x, y) � 2−kρ(x). By this, (iv) of this
lemma, (3.19), and Proposition 2.6(a), we obtain

∣
∣[DkQj

(
x, y

) −DkQj

(
x′, y

)] − [
DkQj

(
x, y′) −DkQj

(
x′, y′)]∣∣

� 2−|k−j|(1−η)
(

d(x, x′)
2−kρ(x)

)η{
1

V2−kρ(x)(x) + V2−kρ(y)
(
y
) +

χk

(
x, y

)

V2−kρ(x)(x) + V2−kρ(y′)
(
y′)

}

� 2−|k−j|(1−η)
(

d(x, x′)
2−kρ(x)

)η
1

V2−kρ(x)(x) + V2−kρ(y)
(
y
) .

(3.36)

Using (iii) of this lemma and a symmetric argument, we obtain that

∣∣[DkQj

(
x, y

) −DkQj

(
x′, y

)] − [
DkQj

(
x, y′) −DkQj

(
x′, y′)]∣∣

� 2−|k−j|(1−η)
(

d
(
y, y′)

2−kρ(y)

)η
1

V2−kρ(x)(x) + V2−kρ(y)
(
y
) .

(3.37)

Then the geometric mean among (3.35), (3.36), and (3.37) gives the desired estimate of (v).
By the observation (3.20), we only need to show (3.35) for d(y, y′) ≤ C12−kρ(y)/8

and d(x, x′) ≤ C12−kρ(y)/8. Actually, we now establish (3.35) for d(y, y′) ≤ [C12−kρ(y) +
d(x, y)]/8 and d(x, x′) ≤ [C12−kρ(y) + d(x, y)]/8. To this end, notice that if |[DkQj(x, y) −
DkQj(x′, y)] − [DkQj(x, y′) − DkQj(x′, y′)]/= 0, then (i) of this lemma implies that at least
one of the following four inequalities holds: d(x, y) ≤ C42−k[ρ(x) ∧ ρ(y)], d(x′, y) ≤
C42−k[ρ(x′) ∧ ρ(y)], d(x, y′) ≤ C42−k[ρ(x) ∧ ρ(y′)], and d(x′, y′) ≤ C42−k[ρ(x′) ∧ ρ(y′)]. This
and (2.1) together with the assumptions d(y, y′) ≤ [C12−kρ(y) + d(x, y)]/8 and d(x, x′) ≤
[C12−kρ(y) + d(x, y)]/8 imply that

d
(
x, y

)
� 2−kρ(x), ρ(x) ∼ ρ

(
y
) ∼ ρ

(
x′) ∼ ρ

(
y′), (3.38)

and hence

d
(
x, x′) � 2−kρ(x), d

(
y, y′) � 2−kρ

(
y
)
. (3.39)
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Then we write

∣
∣[DkQj

(
x, y

) −DkQj

(
x′, y

)] − [
DkQj

(
x, y′) −DkQj

(
x′, y′)]∣∣

=
∣
∣
∣
∣

∫

X

{[
Dk(x, z) −Dk

(
x′, z

)] − [
Dk

(
x, y

) −Dk

(
x′, y

)]} {
Qj

(
z, y

) −Qj

(
z, y′)}dμ(z)

∣
∣
∣
∣

≤
2∑

i=1

∫

Ui

∣
∣[Dk(x, z) −Dk

(
x′, z

)] − [
Dk

(
x, y

) −Dk

(
x′, y

)]∣∣
∣
∣Qj

(
z, y

) −Qj

(
z, y′)∣∣dμ(z)

≡
2∑

i=1

Ji,

(3.40)

where U1 ≡ {z ∈ X : d(y, y′) ≤ [C12−jρ(y) + d(z, y)]/2} and U2 ≡ {z ∈ X : d(y, y′) >
[C12−jρ(y) + d(z, y)]/2}.

If z ∈ U1 and Qj(z, y) −Qj(z, y′)/= 0, then by the support condition of Qj and the fact
d(y, y′) ≤ [C12−jρ(y) + d(z, y)]/2 together with (3.38), we have

d
(
z, y

)
� 2−jρ

(
y
)

� 2−kρ
(
y
)
, (3.41)

and hence d(y, y′) � 2−jρ(y). By this, (3.41), (3.39), the second-order difference condition of
Dk, and Remark 3.3(b), we then obtain

J1 �
∫

U1

d(x, x′)
2−kρ(x)

d
(
z, y

)

2−kρ
(
y
)

1
V2−kρ(x)(x) + V2−kρ(y)

(
y
)
d
(
y, y′)

2−jρ
(
y
)

χ{d(z,y)�2−j ρ(y)}(z)

V2−j ρ(z)(z) + V2−j ρ(y)
(
y
)dμ(z)

� d(x, x′)
2−kρ(x)

d
(
y, y′)

2−kρ
(
y
)

1
V2−kρ(x)(x) + V2−kρ(y)

(
y
) .

(3.42)

If z ∈ U2, then by (3.39), we have d(z, y) ≤ 2d(y, y′) � 2−kρ(y). This and (3.39)
together with the second-order difference condition of Dk and (3.19) yield that

J2 �
∫

U2

d
(
y, y′)

C12−jρ
(
y
)
+ d

(
z, y

)
d(x, x′)
2−kρ(x)

d
(
z, y

)

2−kρ
(
y
)

1
V2−kρ(x)(x) + V2−kρ(y)

(
y
)

× ∣∣Qj

(
z, y

) −Qj

(
z, y′)∣∣dμ(z)

� d(x, x′)
2−kρ(x)

d
(
y, y′)

2−kρ
(
y
)

1
V2−kρ(x)(x) + V2−kρ(y)

(
y
)
∫

X

∣∣Qj

(
z, y

) −Qj

(
z, y′)∣∣dμ(z)

� d(x, x′)
2−kρ(x)

d
(
y, y′)

2−kρ
(
y
)

1
V2−kρ(x)(x) + V2−kρ(y)

(
y
) .

(3.43)

Combining the estimates of J1 and J2 yields (3.35). Hence, (v) holds.
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Property (vi) can be obtained simply by using Definition 3.1(v). This finishes the proof
of Lemma 3.4.

We conclude this section with some basic properties of �0-AOTI, which are used in
Section 5. For all f ∈ Lp(X) with p ∈ [1,∞] and x ∈ X, set Sk(f)(x) ≡

∫
X Sk(x, y)f(y)dμ(y).

Denote by L∞
b
(X) the collection of all f ∈ L∞(X)with bounded support.

Proposition 3.5. Let �0 ∈ Z and {Sk}∞k=�0 be an �0-AOTI as in Definition 3.1.

(i) There exists a positive constant C depending only �0 such that for all x, y ∈ X and k ≥ �0,∫
X |Sk(x, y)|dμ(y) ≤ C and

∫
X |Sk(x, y)|dμ(x) ≤ C.

(ii) There exists a positive constant C depending only on �0 such that for all k ≥ �0, locally
integrable functions f , and x ∈ X, |Sk(f)(x)| ≤ CMC12−�0f(x), where C1 is the constant
appearing in Definition 3.1(i).

(iii) For p ∈ [1,∞], there exists a positive constant Cp, depending on p and �0, such that for all
k ≥ �0 and f ∈ Lp(X), ‖Sk(f)‖Lp(X) ≤ Cp‖f‖Lp(X).

(iv) Set D�0 ≡ S�0 and Dk ≡ Sk − Sk−1 for k > �0. Then I =
∑∞

k=�0 Dk in Lp(X), where
p ∈ [1,∞) and I is the identity operator on Lp(X).

Proof. (i) can be easily deduced from the support and size conditions of Sk together with
Proposition 2.6(c). We can easily show (ii) by using (2.20) and Definition 3.1(i). Property (iii)
is a simple corollary of (i) and Hölder’s inequality.

To prove (iv), it suffices to show that limN→∞‖f −∑N
k=�0 Dk(f)‖Lp(X)

= 0 for all f ∈
Lp(X)with p ∈ [1,∞). Since ‖f −∑N

k=�0 Dk(f)‖Lp(X)
= ‖f − SN(f)‖Lp(X), it is enough to show

lim
N→∞

∫

X

∣∣f(x) − SN

(
f
)
(x)

∣∣pdμ(x) = 0. (3.44)

Now we prove (3.44) for p ∈ (1,∞). Let x ∈ X be a point such that Theorem 2.8(ii)
holds for f . Then using (v) and (i) of Definition 3.1, we obtain

∣∣f(x) − SN

(
f
)
(x)

∣∣ ≤
∫

X

∣∣SN

(
x, y

)∣∣∣∣f(x) − f
(
y
)∣∣dμ

(
y
)

� 1
μ
(
B
(
x,C12−Nρ(x)

))
∫

B(x,C12−Nρ(x))

∣∣f(x) − f
(
y
)∣∣dμ

(
y
)
,

(3.45)

which tends to 0 asN → ∞, by Theorem 2.8(ii). This and |SN(f)(x)| � MC12−�0f(x) together
with the dominated convergence theorem and Theorem 2.8(i) imply that (3.44) holds for p ∈
(1,∞).

To prove (3.44) for the case p = 1, we first consider f ∈ L∞
b (X). Assume that supp f ⊂

B(x0, r0ρ(x0)) for some x0 ∈ X and r0 > 0. Combining this with (2.1) gives supp Sk(f) ⊂
B(x0, (C1Θr0 + r0)ρ(x0)). By Hölder’s inequality and L∞

b
(X) ⊂ L2(X) together with the fact

that (3.44) holds for p = 2, we obtain that for all f ∈ L∞
b (X),

lim
N→∞

∥∥SN

(
f
) − f

∥∥
L1(X) ≤ lim

N→∞
[
μ
(
B
(
x0, (C1Θr0 + r0)ρ(x0)

))]1/2∥∥SN

(
f
) − f

∥∥
L2(X) = 0,

(3.46)
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which combinedwith the density of L∞
b (X) in L1(X) and Proposition 3.5(iii) yields that (3.44)

holds for p = 1. Thus, we obtain (iv), which completes the proof of Proposition 3.5.

4. Local Vector-Valued Singular Integral Operators

In this section, let (X, d) be a metric space and μ a regular Borel measure satisfying (2.2).
Denote by B a complex Banach space with norm ‖ · ‖B, and by B∗ its dual space with norm
‖ · ‖B∗ . A function F defined on a σ-finite measure space (X, μ) and taking values in B is
called B-measurable if there exists a measurable subset X0 of X such that μ(X \X0) = 0 and
F(X0) is contained in some separable subspaceB0 ofB, and for every u∗ ∈ B∗, the complex-
valued map x → 〈u∗, F(x)〉 is measurable. From this definition and the theorem in [29, page
131], it follows that the function x → ‖F(x)‖B on X is measurable.

For any p ∈ (0,∞], we define Lp(X,B) to be the space of all B-measurable functions

F on X satisfying ‖F‖Lp(X,B) < ∞, where ‖F‖Lp(X,B) = {∫X ‖F(x)‖pB dμ(x)}1/p with a usual
modification made when p = ∞. Define Lp,∞(X,B) to be the space of all B-measurable
functions F on X satisfying ‖F‖Lp,∞(X,B) < ∞, where

‖F‖Lp,∞(X,B) = sup
α>0

{
α
[
μ({x ∈ X : ‖F(x)‖B > α})]1/p

}
. (4.1)

Denote by L∞
b
(X,B) the set of all functions in L∞(X,B) with bounded support. For p ∈

(0,∞), let Lp(X) ⊗ B be the set of all finite linear combinations of elements of B with
coefficients in Lp(X), that is, elements of the form,

F = f1u1 + · · · + fmum, (4.2)

where m ∈ N, fj ∈ Lp(X), and uj ∈ B for j ∈ {1, . . . , m}. Both L∞
b (X,B) and Lp(X) ⊗ B are

dense in Lp(X,B); see, for example, [3] or [30, Lemma 2.1]. Given F ∈ L1(X) ⊗B as in (4.2),
we define its integral to be the following element of B:

∫

X
F(x)dμ(x) ≡

m∑

j=1

{∫

X
fj(x)dμ(x)

}
uj. (4.3)

Therefore, for any F ∈ L1(X,B), the integral
∫
X F(x)dμ(x), as a unique extension of the

integral of functions in L1(X) ⊗B, is well defined; it is not difficult to show that

∥∥∥∥

∫

X
F(x)dμ(x)

∥∥∥∥
B

≤
∫

X
‖F(x)‖Bdμ(x); (4.4)

see, for instance, [3] or [29]. Here we refer the reader to [3, 31, 32] for more detailed
knowledge on Banach space-valued functions.

In what follows, we consider a kernel
−→
K defined on (X × X) \ Δ with Δ = {(x, x) :

x ∈ X} that takes values in the space L(B1,B2) of all bounded linear operators from Banach
space B1 to Banach space B2. Then

−→
K(x, y) is a bounded linear operator from B1 to B2
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whose norm is denoted by ‖−→K(x, y)‖B1 →B2
. Assume that

−→
K(x, y) is L(B1,B2)-measurable

and locally integrable on (X ×X) \Δ such that the integral

−→
T (F)(x) =

∫

X

−→
K
(
x, y

)
F
(
y
)
dμ

(
y
)

(4.5)

is well defined as an element of B2 for all F ∈ L∞
b
(X,B1) and x /∈ supp F. Set A ≡

lim infτ → 0Θτ . Suppose that there exist constants C5 > 2A2ΘA2ΘA + A and C6 > 0 such that
for all x, y ∈ X satisfying d(x, y) ≤ C5ρ(x),

∥
∥
∥
−→
K
(
x, y

)∥∥
∥
B1 →B2

≤ C6
1

V
(
x, y

) , (4.6)

∫

d(x,z)≥2d(x,y)

∥∥∥
−→
K(z, x) − −→

K(z, y)
∥∥∥
B1 →B2

dμ(z) ≤ C6, (4.7)

∫

d(x,z)≥2d(x,y)

∥∥∥
−→
K(x, z) − −→

K(y, z)
∥∥∥
B1 →B2

dμ(z) ≤ C6. (4.8)

Let N ≡ {(x, y) ∈ X × X : d(x, y) ≤ [ρ(x) ∧ ρ(y)]} and Nx ≡ {y ∈ X : (x, y) ∈ N}.
Then for all x ∈ X, set

−→
T local(F)(x) ≡

−→
T
(
χNxF

)
(x), (4.9)

where χNx represents the characteristic function of the set Nx. A conclusion concerned such
locally vector-valued singular integrals is as follows.

Theorem 4.1. Let B1 and B2 be Banach spaces. Suppose that
−→
T given by (4.5) is a bounded linear

operator from Lr(X,B1) to Lr(X,B2) for some r ∈ (1,∞] with norm Ar > 0. Assume that
−→
K

satisfies (4.6) through (4.8). Then
−→
T local as in (4.9) has well-defined extensions on Lp(X,B1) for all

p ∈ [1,∞). Moreover, there exists a positive constant C depending on X, p, and C5 such that
(i) whenever p ∈ [1, r), for all F ∈ Lp(X,B1),

∥∥∥
−→
T local(F)

∥∥∥
Lp,∞(X,B2)

≤ C(C6 +Ar)‖F‖Lp(X,B1); (4.10)

(ii) whenever p ∈ (1,∞), for all F ∈ Lp(X,B1),

∥∥∥
−→
T local(F)

∥∥∥
Lp(X,B2)

≤ C(C6 +Ar)‖F‖Lp(X,B1). (4.11)

Proof. It suffices to show the theorem for F ∈ L∞
b (X,B1), since L∞

b (X,B1) is dense in
Lp(X,B1) for p ∈ [1,∞). We further assume that μ(X) < ∞, since the proof for the case
μ(X) = ∞ is similar and simpler.
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Suppose that r < ∞ and p ∈ [1, r). If 0 < A−1
r λ ≤ ‖F‖Lp(X,B1)/μ(X)1/p (this happens

only when μ(X) < ∞), then

μ

({
x ∈ X :

∥
∥
∥
−→
T local(F)(x)

∥
∥
∥
B2

> λ

})
≤ μ(X) ≤

(
Ar

λ

)p

‖F‖pLp(X,B1)
. (4.12)

Assume now that A−1
r λ > ‖F‖Lp(X,B1)/μ(X)1/p. By Lemma 2.7, for any given sufficiently

small positive number t, which will be determined later, there exists a sequence of balls,
Bj ≡ B(xj , tρ(xj)), such that X =

⋃
j Bj and {ηBj}j has finite overlapping property whenever

η > 0. Set B∗
j ≡ B(xj , [Θt + t]ρ(xj)). It follows easily from (2.1) that for any given j,

⋃
x∈Bj

Nx ⊂ B∗
j . Therefore, by (4.9),

μ

({
x ∈ X :

∥∥∥
−→
T local (F)(x)

∥∥∥
B2

> λ

})

≤
∑

j

μ

({
x ∈ Bj :

∥∥∥
−→
T
(
χNxF

)
(x)

∥∥∥
B2

> λ

})

≤
∑

j

μ

({
x ∈ Bj :

∥∥∥
−→
T
(
χB∗

j
F
)
(x)

∥∥∥
B2

>
λ

2

})

+
∑

j

μ

({
x ∈ Bj :

∥∥∥
−→
T
(
χB∗

j \NxF
)
(x)

∥∥∥
B2

>
λ

2

})
≡
∑

j

Yj + Y.

(4.13)

Observe that if y ∈ B∗
j and x ∈ Bj , then d(x, y) ≤ (Θt + 2t)ρ(xj) ≤ Θt(Θt + 2t)ρ(x), so d(x, y) <

C5ρ(x) if we choose t > 0 sufficiently small. Thus, for any x ∈ Bj , by (4.4) and (4.6), we have

∥∥∥
−→
T
(
χB∗

j \NxF
)
(x)

∥∥∥
B2

=

∥∥∥∥∥

∫

B∗
j \Nx

−→
K
(
x, y

)
F
(
y
)
dμ

(
y
)
∥
∥∥∥∥
B2

≤ C6

∫

B∗
j \Nx

∥∥F
(
y
)∥∥

B1

V
(
x, y

) dμ
(
y
)
.

(4.14)

If x ∈ Bj and y ∈ B∗
j \ Nx, then (2.1) implies that B∗

j ⊂ B(x,Θt(Θt + 2t)ρ(x)) and d(x, y) >

[Θt]
−1[ΘΘt+t]

−1ρ(x). This combined with (4.14) and (2.2) yields that there exists a positive
constant C̃, depending only on X and t, such that

∥∥∥
−→
T
(
χB∗

j \Nx
F
)
(x)

∥∥∥
B2

≤ C̃C6

[
Ma

(
‖F(·)‖pB1

χB∗
j

)
(x)

]1/p
, (4.15)
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where a ≡ Θt(Θt + 2t). By (4.15), Theorem 2.8(i), Lemma 2.7(ii), the finite overlapping
property of {B∗

j }j , and the fact that for all κ > 1 and {aj}j∈N ⊂ C,

∑

j∈N

∣
∣aj

∣
∣κ ≤

⎛

⎝
∑

j∈N

∣
∣aj

∣
∣

⎞

⎠

κ

, (4.16)

we then obtain

Y ≤
∑

j

μ

({

x ∈ B∗
j : Ma

(
‖F(·)‖pB1

χB∗
j

)
(x) >

λp

C̃C6

})

� C6

∑

j

∥∥∥FχB∗
j

∥∥∥
p

Lp(X,B1)

λp
� C6

‖F‖pLp(X,B1)

λp
.

(4.17)

Now we estimate
∑

j Yj . Set fj ≡ ‖F(·)‖B1
χB∗

j
. Then supp fj ⊂ B∗

j . We claim that there
exists a positive number t sufficiently small such that

supp
[
Ma

(
f
p

j

)]1/p ⊂ B
(
xj , C5ρ

(
xj

))
. (4.18)

In fact, for any x ∈ X, from (2.20), we deduce that if [Ma(f
p

j )(x)]
1/p

/= 0, then there exists a
ball B � x satisfying that B ∩ B∗

j /= ∅ and rB ≤ aρ(cB). From this and (2.1) together with the
triangular inequality of d, it follows that d(x, xj) ≤ [2aΘaΘΘt+t + Θt + t]ρ(xj). Combined this
with the facts C5 > 2A2ΘA2ΘA + A, A ≡ lim infτ → 0Θτ , and a = Θt(Θt + 2t), we obtain that
x ∈ B(xj , C5ρ(xj)) if t is sufficiently small. Thus, (4.18) holds.

For any λ > 0, the set Ωλ ≡ {x ∈ X : [Ma(f
p

j )(x)]
1/p

> λ} is open and, by (4.18), Ωλ

is contained in the ball B(xj , C5ρ(xj)). Following the procedure of the proof for the Whitney
covering lemma (see [33, page 277] and [7, pages 70–71] ), we obtain that for any fixed j,
there exists a sequence {Bi

j}i∈Ij of balls, where Ij is an index set depending on j and a positive

number M (depending on DC5 in (2.2)with a = C5, but not on j) such that

(i) ΩA−1
r λ =

⋃
i∈Ij B

i
j ⊂ B(xj , C5ρ(xj));

(ii) rBi
j
≤ C5ρ(xj)/(2ΘC5 + 2);

(iii) every point ofX belongs to no more than M balls of {3Bi
j}i∈Ij ;

(iv) the balls {(1/4)Bi
j}i∈Ij are mutually disjoint and (3(ΘC5 + 1)Bi

j) ∩ (ΩA−1
r λ)

�
/= ∅.
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For any given j, i ∈ Ij , and x ∈ X, we set ζij(x) ≡ χBi
j
(x)/

∑
i∈Ij χBi

j
(x), and define

gj(x) ≡ F(x)χB∗
j \ΩA−1

r λ
(x) +

∑

i∈Ij

⎧
⎨

⎩
1

μ
(
Bi
j

)
∫

Bi
j

F
(
y
)
χB∗

j

(
y
)
ζij
(
y
)
dμ

(
y
)
⎫
⎬

⎭
χBi

j
(x), (4.19)

hi
j(x) ≡ F(x)χB∗

j
(x)ζij(x) −

⎧
⎨

⎩
1

μ
(
Bi
j

)
∫

Bi
j

F
(
y
)
χB∗

j

(
y
)
ζij
(
y
)
dμ

(
y
)
⎫
⎬

⎭
χBi

j
(x). (4.20)

By Properties (i), (iii), and (iv) above together with Lemma 2.7, it is not difficult to show that
there exists a positive constant C, independent of j, such that

(v) for all x ∈ X, F(x)χB∗
j
(x) = gj(x) + hj(x), where hj(x) =

∑
i∈Ij h

i
j(x);

(vi) for almost every x ∈ X, ‖gj(x)‖B1 ≤ CA−1
r λ;

(vii) ‖gj‖Lp(X,B1)
≤ C‖FχB∗

j
‖
Lp(X,B1)

;

(viii) for any i ∈ Ij , supp hi
j ⊂ Bi

j and
∑

i∈Ij μ(B
i
j) ≤ C‖FχB∗

j
‖p
Lp(X,B1)

/(A−1
r λ)p;

(ix) for any i ∈ Ij ,
∫
X hi

j(x)dμ(x) = θB1 , where θB1 denotes the zero element of B1;

(x)
∑

i∈Ij ‖hi
j‖Lp(X,B1)

≤ C‖FχB∗
j
‖
Lp(X,B1)

;

(xi)
∑

i∈Ij ‖hi
j‖L1(X,B1)

≤ C[A−1
r λ]1−p‖FχB∗

j
‖p
Lp(X,B1)

by (viii).

Then, by Property (v), we obtain

Yj ≤ μ

({
x ∈ Bj :

∥∥∥
−→
T
(
gj
)
(x)

∥∥∥
B2

>
λ

2

})
+ μ

({
x ∈ Bj :

∥∥∥
−→
T
(
hj

)
(x)

∥∥∥
B2

>
λ

2

})

≤ 2r

λr

∥∥∥∥

∥∥∥
−→
T
(
gj
)
(·)

∥∥∥
B2

∥∥∥∥

r

Lr(X)
+ μ

⎛

⎝
⋃

i∈Ij

(
3Bi

j

)
⎞

⎠

+ μ

⎛

⎝

⎧
⎨

⎩
x ∈ Bj \

⋃

i∈Ij

(
3Bi

j

)
: ‖T(h)(x)‖B2

>
λ

2

⎫
⎬

⎭

⎞

⎠ ≡ Lj +Hj +Nj.

(4.21)

Recall that p ∈ [1, r). The boundedness of
−→
T from Lr(X,B1) to Lr(X,B2) together with

Properties (vi) and (vii) implies that

Lj � (Ar)r

λr
∥∥gj

∥∥r

Lr(X,B1)
�

(
Ar

λ

)p∥∥gj
∥∥p

Lp(X,B1)
�

(
Ar

λ

)p∥∥∥FχB∗
j

∥∥∥
p

Lp(X,B1)
. (4.22)

By (2.2) and (viii) together with Theorem 2.8(i), we have

Hj �
∑

i∈Ij
μ
(
3Bi

j

)
�

∑

i∈Ij
μ
(
Bi
j

)
�

(
Ar

λ

)p∥∥∥FχB∗
j

∥∥∥
p

Lp(X,B1)
. (4.23)
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To estimate Nj , for any x ∈ Bj \ (
⋃

i∈Ij (3B
i
j)), by (ix), (4.4), and (4.5),

∥
∥
∥
−→
T (hj)(x)

∥
∥
∥
B2

=

∥
∥
∥
∥
∥
∥

∑

i∈Ij

∫

Bi
j

[−→
K
(
x, y

) − −→
K
(
x, cBi

j

)]
hi
j

(
y
)
dμ

(
y
)
∥
∥
∥
∥
∥
∥
B2

≤
∑

i∈Ij

∫

Bi
j

∥
∥
∥
[−→
K
(
x, y

) − −→
K
(
x, cBi

j

)]
hi
j

(
y
)∥∥
∥
B2

dμ
(
y
)

≤
∑

i∈Ij

∫

Bi
j

∥
∥
∥
−→
K
(
x, y

) − −→
K
(
x, cBi

j

)∥∥
∥
B1 →B2

∥
∥
∥hi

j

(
y
)∥∥
∥
B1

dμ
(
y
)
.

(4.24)

For any j and i, if x ∈ Bj \ (
⋃

i∈Ij (3B
i
j)), then x ∈ Bj \ (3Bi

j), which implies that for any y ∈ Bi
j ,

d(x, y) > 2d(y, cBi
j
). By (ii) and (2.1), we have

d
(
y, cBi

j

)
< rBi

j
< (2ΘC5 + 2)−1C5ρ

(
xj

) ≤ (2ΘC5 + 2)−1C5ΘC5ρ
(
y
) ≤ C5ρ

(
y
)
. (4.25)

Therefore, applying (4.7) and (xi) yields that

Nj ≤ 2
λ

∫

Bj\
⋃

i∈Ij (3B
i
j )

∥∥∥
−→
T (hj)(x)

∥∥∥
B2

dμ(x)

≤ 2
λ

∑

i∈Ij

∫

Bi
j

∫

Bj\(3Bi
j )

∥∥∥
−→
K
(
x, y

) − −→
K
(
x, cBi

j

)∥∥∥
B1 →B2

∥∥∥hi
j

(
y
)∥∥∥

B1
dμ(x) dμ

(
y
)

� C6(Ar)p−1

λp

∥∥∥FχB∗
j

∥∥∥
p

Lp(X,B1)
.

(4.26)

The estimates of Lj , Hj , and Nj together with the finite overlapping property of {B∗
j }j and

(4.16) imply

∑

j

Yj �
(
Ar + C6

λ

)p∑

j

∥∥∥FχB∗
j

∥∥∥
p

Lp(X,B1)
�

(
Ar + C6

λ

)p

‖F‖pLp(X,B1)
, (4.27)

which combined with the estimate of Y and (4.13) yields that (4.10) holds when r < ∞.
Following the proof of [30, Theorem 1.1], we interpolate between the estimates

−→
T local :

L(1+p)/2 (X,B1) → L(1+p)/2,∞ (X,B2) and
−→
T local : L(p+r)/2 (X,B1) → L(p+r)/2,∞ (X,B2), and

then obtain that (4.11) holds whenever p ∈ (1, r). A standard duality argument shows that
(4.11) holds for p ∈ (r,∞); see, for example, [30].

The case r = ∞ of the theorem can be proved by a slight modification of the above
argument (see [3, 30]) and we omit the details. This finishes the proof of Theorem 4.1.

As an application of Theorem 4.1, by an argument similar to that used in [3], we obtain
the following conclusion. The details are omitted.
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Proposition 4.2. Let p,q ∈ (1,∞) andB1,B2 be Banach spaces. Suppose that
−→
T in (4.5) is a bounded

linear operator from Lq(X,B1) to Lq(X,B2)with normAq > 0. Assume that
−→
K satisfies (4.6) through

(4.8) with positive constants C5 and C6. Let
−→
T local be as in (4.9). Then there exists a positive constant

C, depending on X and C5, such that for all B1-valued functions {Fj}j∈N,

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j∈N

∥
∥
∥
−→
T local(Fj)

∥
∥
∥
q

B2

⎞

⎠

1/q
∥
∥
∥
∥
∥
∥
∥
L1,∞(X,B2)

≤ C
(
C6 +Aq

)

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j∈N

∥∥Fj

∥∥q

B1

⎞

⎠

1/q
∥
∥
∥
∥
∥
∥
∥
L1(X,B1)

,

∥
∥
∥
∥∥
∥
∥

⎛

⎝
∑

j∈N

∥
∥∥
−→
T local(Fj)

∥
∥∥
q

B2

⎞

⎠

1/q
∥
∥
∥
∥∥
∥
∥
Lp(X,B2)

≤ C
(
C6 +Aq

)

∥
∥
∥
∥∥
∥
∥

⎛

⎝
∑

j∈N

∥
∥Fj

∥
∥q

B1

⎞

⎠

1/q
∥
∥
∥
∥∥
∥
∥
Lp(X,B1)

.

(4.28)

Remark 4.3. It is not difficult to see that Theorem 4.1 and Proposition 4.2 still hold ifN in (4.9)
is replaced by any set {(x, y) ∈ X×X : d(x, y) ≤ C̃ρ(x)}with C̃ > 0 and C5 > 2C̃A2ΘC̃A2ΘC̃A+
C̃A, where A ≡ lim infτ →∞Θτ . In fact, in this case, we only need to replace B∗

j in the proof of

Theorem 4.1 by B̃∗
j ≡ B(xj , (C̃Θt + t)ρ(xj)) and make some corresponding modifications for

the succedent proof.

Using the approximation of the identity constructed in Proposition 3.2 together with
Theorem 4.1 and Proposition 4.2, we obtain the following Fefferman-Stein vector-valued
inequality, which was first established by Fefferman and Stein in [34] for the setting of
Euclidean spaces; see also [30] for the setting of RD-spaces.

Theorem 4.4. Let a > 0 and Ma be as in (2.20). For p ∈ (1,∞) and q ∈ (1,∞], there exists a
positive constant C, depending on a, p, and q, such that for all measurable functions {fj}j∈N,

∥∥∥∥∥∥∥

⎛

⎝
∑

j∈N

[Ma

(
fj
)]q

⎞

⎠

1/q
∥∥∥∥∥∥∥
L1,∞(X)

≤ C

∥∥∥∥
∥∥∥

⎛

⎝
∑

j∈N

∣∣fj
∣∣q
⎞

⎠

1/q
∥∥∥∥∥∥∥
L1(X)

,

∥∥∥∥∥∥∥

⎛

⎝
∑

j∈N

[Ma

(
fj
)]q

⎞

⎠

1/q
∥∥∥∥∥∥∥
Lp(X)

≤ C

∥∥∥∥∥∥∥

⎛

⎝
∑

j∈N

∣∣fj
∣∣q
⎞

⎠

1/q
∥∥∥∥∥∥∥
Lp(X)

.

(4.29)

Proof. If q = ∞, then (4.29) can be deduced from the boundedness of Ma in Theorem 2.8 and
the fact that supj∈NMa(fj)(x) ≤ Ma(supj∈N|fj |)(x) for all x ∈ X.

Now we assume that q < ∞. In this case, by (2.1) and (2.2), we have

Ma

(
f
)
(x) � sup

r≤2aΘa

1
μ
(
B
(
x, rρ(x)

))
∫

B(x,rρ(x))

∣∣f
(
y
)∣∣dμ

(
y
)
, (4.30)
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uniformly in x ∈ X. Choose �0 ∈ Z such that 2−�0−1 < 2aΘa ≤ 2−�0 . Let {Sk}∞k=�0 be the
�0-AOTI constructed in Proposition 3.2. For any f ∈ L1

loc(X) and x ∈ X, set M(f)(x) ≡
supk≥�0 |Sk(f)(x)| (the operator M here in fact depends on a). This combined with (4.30) and
(3.1) yields that

Ma

(
f
)
(x) � sup

k≥�0

1
μ
(
B
(
x, 2−kρ(x)

))
∫

B(x,2−kρ(x))

∣∣f
(
y
)∣∣dμ

(
y
)

� sup
k≥�0

∫

B(x,2−kρ(x))
Sk

(
x, y

)∣∣f
(
y
)∣∣dμ

(
y
) ∼ M(∣∣f

∣∣)(x).

(4.31)

Now the proof of Theorem 4.4 falls into proving the inequalities (4.29) and for the operator
M. To this end, we set B1 ≡ C, B2 ≡ �∞, and view M as the linear operator that maps B1-
valued functions f to B2-valued functions {Sk(f)}∞k=�0 . Precisely, define

−→M(f) ≡ {Sk(f)}∞k=�0 .
The corresponding kernel of

−→M, say
−→
K(x, y) = {Sk(x, y)}∞k=�0 , is defined by that for any t ∈ C,

−→
K(x, y)(t) ≡ {Sk(x, y)t}∞k=�0 . If we appropriately choose N ≡ {(x, y) ∈ X × X : d(x, y) ≤
C12−�0ρ(x)}, then

−→Mlocal =
−→M. Recall that we are using the �0-AOTI {Sk}k=�0 constructed in

Proposition 3.2, which is nonnegative and
∫
X Sk(x, y)dμ(y) = 1 for all x ∈ X. Therefore, for

all f ∈ L∞(X) and x ∈ X,

∣∣Sk

(
f
)
(x)

∣∣ ≤ ‖Sk(x, ·)‖L1(X)

∥∥f
∥∥
L∞(X) ≤

∥∥f
∥∥
L∞(X), (4.32)

which implies that
−→M is bounded from L∞(X,B1) to L∞(X,B2).

Now we show that
−→
K satisfies (4.6) through (4.8). In fact, for all x, y ∈ X, since Sk is

nonnegative and satisfies Definition 3.1(i),

∥∥∥
−→
K
(
x, y

)∥∥∥
C→ �∞

= sup
k≥�0

Sk

(
x, y

)
� sup

k≥�0

χ{d(x,y)≤C12−kρ(x)}
(
x, y

)

V2−kρ(x)(x) + V2−kρ(y)
(
y
) � 1

V
(
x, y

) . (4.33)

Observe that

∫

d(x,y)≥2d(z,y)

∥∥∥
−→
K(x, y) − −→

K(x, z)
∥∥∥
C→ �∞

dμ(x)

≤
∞∑

k=�0

∫

d(x,y)≥2d(z,y)

∣∣Sk

(
x, y

) − Sk(x, z)
∣∣dμ(x) ≡

∞∑

k=�0

Ik.

(4.34)

When d(z, y) > C12−k[ρ(z) ∨ ρ(y)] and d(x, y) ≥ 2d(z, y), by the support condition of Sk, we
have Sk(x, y) = Sk(x, z) = 0. So the summation

∑∞
k=�0 is valid only for k satisfying d(z, y) ≤

C12−kΘC12−�0ρ(y). Moreover, for these k’s, if Sk(x, y) − Sk(x, z)/= 0, then d(x, y) ≤ C̃2−kρ(y),
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where C̃ is a positive constant depending only on �0. Since {Sk}∞k=�0 satisfy (i) and (iii) of
Definition 3.1, by Remark 3.3 and (2.2),

Ik �
∫

d(x,y)≤C̃2−kρ(y)

d
(
y, z

)

2−kρ
(
y
)

1
V2−kρ(x)(x) + V2−kρ(y)

(
y
) dμ(x)

�
d
(
y, z

)

2−kρ
(
y
)
μ
(
B
(
y, C̃2−kρ

(
y
)))

V2−kρ(y)
(
y
) �

d
(
y, z

)

2−kρ
(
y
) .

(4.35)

Taking summation over all k satisfying d(y, z) ≤ C12−kΘC12−�0ρ(y) yields that
∑∞

k=�0 Ik � 1.
Thus, (4.7) holds. Likewise, (4.8) holds by symmetry.

Applying Theorem 4.1 yields that
−→M is bounded from Lq(X,B1) to Lq(X,B2) when

q ∈ (1,∞). Then, by Proposition 4.2 and ‖−→M(fj)(x)‖B2
= M(fj)(x), we obtain that (4.29)

hold for the operator M. This finishes the proof of Theorem 4.4

5. Littlewood-Paley Operators

Fix �0 ∈ Z. Let {Sk}∞k=�0 be an �0-AOTI as in Definition 3.1. Set D�0 ≡ S�0 , and Dk = Sk − Sk−1
for k > �0. Without loss of generality, we may assume that Dk ≡ 0 for k < �0.

For any given measurable function f onX, we define the Littlewood-Paley g-function
g(f) by setting, for all x ∈ X,

g
(
f
)
(x) ≡

⎧
⎨

⎩

∞∑

j=�0

∣∣Dj

(
f
)
(x)

∣∣2

⎫
⎬

⎭

1/2

. (5.1)

Recall that I =
∑∞

k=�0 Dk in Lp(X) with p ∈ [1,∞); see Proposition 3.5(iv). Following
Coifman’s idea in [20], we know that for any N ∈ N,

I =

( ∞∑

k=�0

Dk

)⎛

⎝
∞∑

j=�0

Dj

⎞

⎠ =
∑

|�|>N

∞∑

k=�0

Dk+�Dk +
∞∑

k=�0

DN
k Dk ≡ RN + TN, (5.2)

in Lp(X), where DN
k ≡ ∑

|�|≤N Dk+� .
Applying an argument similar to the proof of Lemma 3.4 in [6] yields the following

conclusion.

Lemma 5.1. LetN ∈ N and RN be as in (5.2). Then there exists a positive constant C, depending on
�0, C1, and C2, such that for allN ∈ N,

‖RN‖L2(X)→L2(X) ≤ C2−N. (5.3)
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Proof. For any |�| ≤ N, k ≥ �0, and j ≥ �0, by Lemma 3.4 and Proposition 3.5(iii), we obtain
that for all f ∈ L2(X),

∥
∥Dk+�Dk

(
Dj+�Dj

)∗
f
∥
∥
L2(X) � 2−|�|

∥
∥(Dj+�Dj

)∗
f
∥
∥
L2(X) � 2−2|�|

∥
∥f

∥
∥
L2(X),

∥
∥Dk+�Dk

(
Dj+�Dj

)∗
f
∥
∥
L2(X) =

∥
∥
∥Dk+�DkD

∗
j D

∗
j+�f

∥
∥
∥
L2(X)

�
∥
∥
∥DkD

∗
j D

∗
j+�f

∥
∥
∥
L2(X)

� 2−|k−j|
∥
∥
∥D∗

j+�f
∥
∥
∥
L2(X)

� 2−|k−j|
∥
∥f

∥
∥
L2(X).

(5.4)

The geometric mean between (5.4) gives

∥
∥Dk+�Dk

(
Dj+�Dj

)∗∥∥
L2(X)→L2(X) � 2−|�|2−|k−j|/2. (5.5)

Similarly,

∥∥Dj+�Dj(Dk+�Dk)∗
∥∥
L2(X)→L2(X) � 2−|�|2−|k−j|/2. (5.6)

Applying the Cotlar-Knapp-Stein lemma (see [32, page 280]) together with (5.5) and (5.6)
yields that ‖∑∞

k=�0 Dk+�Dk‖L2(X)→L2(X)
� 2−|�|. Thus, we obtain

‖RN‖L2(X)→L2(X) ≤
∑

|�|>N

∥∥∥∥∥

∞∑

k=�0

Dk+�Dk

∥∥∥∥∥
L2(X)→L2(X)

� 2−N, (5.7)

which completes the proof of Lemma 5.1.

The locally reverse doubling condition (2.3) is used in the proof of following lemma.

Lemma 5.2. For any η > 0 and �0 ∈ Z, there exists a positive constant C depending on η and �0 such
that

∞∑

k=�0

χ{d(x,y)≤η2−kρ(x)}
(
x, y

)

μ
(
B
(
x, 2−kρ(x)

)) ≤ C
1

V
(
x, y

) . (5.8)

Proof. Notice that

∞∑

k=�0

χ{d(x,y)≤η2−kρ(x)}
(
x, y

)

μ
(
B
(
x, 2−kρ(x)

)) �
∞∑

k=�0

χ{d(x,y)≤η2−kρ(x)}
(
x, y

)

μ
(
B
(
x, 2−kρ(x)

))
2−kρ(x)

2−kρ(x) + d
(
x, y

) . (5.9)
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Observe that the summation in the above inequality equals to 0 if d(x, y) > η2−�0ρ(x).
Choose k0 ∈ N such that 2−k0−�0ηρ(x) ≤ d(x, y) < 2−k0−�0+1ηρ(x). If �0 ≤ k ≤ k0 + �0, by
Proposition 2.3(iv), there exists a positive constant κã with ã ≡ 2−�0+1η such that

V
(
x, y

) ≤ μ
(
B
(
x, 2−k0−�0+1ηρ(x)

))

� 2(−k0−�0+k)κãμ
(
B
(
x, 2−k+1ηρ(x)

))

� 2(−k0−�0+k)κãμ
(
B
(
x, 2−kρ(x)

))
,

(5.10)

where in the last inequality we used (2.2). This further implies that

k0+�0∑

k=�0

χ{d(x,y)≤η2−kρ(x)}
(
x, y

)

μ
(
B
(
x, 2−kρ(x)

))
2−kρ(x)

2−kρ(x) + d
(
x, y

) � 1
V
(
x, y

)
k0+�0∑

k=�0

2(−k0−�0+k)κã � 1
V
(
x, y

) . (5.11)

If k > k0 + �0 and d(x, y) ≤ η2−kρ(x), then by (2.2),

V
(
x, y

) ≤ μ
(
B
(
x, 2−kηd

(
x, y

))) ≤ Dημ
(
B
(
x, 2−kd

(
x, y

)))
, (5.12)

and hence

∞∑

k=k0+�0+1

χ{d(x,y)≤η2−kρ(x)}
(
x, y

)

μ
(
B
(
x, 2−kρ(x)

))
2−kρ(x)

2−kρ(x) + d
(
x, y

) � 1
V
(
x, y

)
∞∑

k=k0+�0+1

2−kρ(x)
d
(
x, y

)

� 1
V
(
x, y

) .

(5.13)

Combining the last two formulae yields the desired result of Lemma 5.2.

Lemmas 5.1 and 5.2 together with the scalar version of Theorem 4.1 yield the following
conclusion.

Corollary 5.3. Let N ∈ N and RN be as in (5.2). Then, for any p ∈ (1,∞), there exists a positive
constant C, depending on p, �0, C1, and C2, such that for all N ∈ N,

‖RN‖Lp(X)→Lp(X) ≤ C2−N/2; (5.14)

while p = 1, ‖RN‖L1(X)→L1,∞(X) ≤ C2−N/2.

Proof. For all x, y ∈ X, we write

RN

(
x, y

)
=

∞∑

�=N

∞∑

k=�0

Dk+�Dk

(
x, y

)
+

−N∑

�=−∞

∞∑

k=�0

· · · ≡ R1
N

(
x, y

)
+ R2

N

(
x, y

)
. (5.15)
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By (i) and (ii) of Lemma 3.4 together with Lemma 5.2, we obtain

∣
∣
∣R1

N

(
x, y

)∣∣
∣ �

∞∑

�=N

∞∑

k=�0

2−�
χ{d(x,y)≤C42−kρ(x)}

(
x, y

)

μ
(
B
(
x, 2−kρ(x)

)) � 2−N
χ{d(x,y)≤C4ρ(x)}

(
x, y

)

V
(
x, y

) , (5.16)

where C4 is as in Lemma 3.4(i). If d(y, y′) ≤ d(x, y)/2 and Dk+�Dk(x, y) −Dk+�Dk(x, y′)/= 0,
then by Lemma 3.4(i),

d
(
x, y

) ≤ 2C42−kρ(x). (5.17)

Thus, when d(y, y′) ≤ d(x, y)/2, using (5.17), Lemma 3.4(iii), and (3.20), we obtain

∣∣∣R1
N

(
x, y

) − R1
N

(
x, y′)

∣∣∣ ≤
∞∑

�=N

∞∑

k=�0

∣∣Dk+�Dk

(
x, y

) −Dk+�Dk

(
x, y′)∣∣

�
∞∑

�=N

∞∑

k=�0

2−�/2
(

d
(
y, y′)

2−kρ(x)

)1/2
χ{d(x,y)≤2C42−kρ(x)}

(
x, y

)

μ
(
B
(
x, 2−kρ(x)

))

� 2−N/2

(
d
(
y, y′)

d(x, y)

)1/2 ∞∑

k=�0

χ{d(x,y)≤2C42−kρ(x)}
(
x, y

)

μ
(
B
(
x, 2−kρ(x)

)) ,

(5.18)

which together with Lemma 5.2 and (2.2) implies that for the constant C̃ ≡ 2−�0+1C4,

∫

d(x,y)≥2d(y,y′)

∣∣∣R1
N

(
x, y

) − R1
N

(
x′, y

)∣∣∣dμ(x)

� 2−N/2
∞∑

k=1

∫

2kd(y,y′)≤d(x,y)<2k+1d(y,y′)

[
d
(
y, y′)

d(x, y)

]1/2χ{d(x,y)≤C̃ρ(x)}
(
x, y

)

V
(
x, y

) dμ(x)

� 2−N/2.

(5.19)

Similarly, R2
N satisfies the same estimates as in (5.16) and (5.19). From this and a

symmetric argument, we deduce that RN satisfies (4.6) through (4.8). Notice that (RN)local =
RN if we choose N ≡ {(x, y) ∈ X × X : d(x, y) ≤ 2−�0+1C4ρ(x)}. Applying Lemma 5.1,
Theorem 4.1, and Remark 4.3, we obtain Corollary 5.3.

From Corollary 5.3, we easily deduce the following Calderón reproducing formulae,
which are basic tools connecting considered operators with corresponding function spaces.
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Corollary 5.4. For any given p ∈ (1,∞), there exists N ∈ N large enough, depending on p, �0, and
X, such that for all f ∈ Lp(X),

f =
∞∑

k=�0

T−1
N DN

k Dk

(
f
)
=

∞∑

k=�0

DN
k DkT

−1
N

(
f
)
, (5.20)

in Lp(X).

Proof. For any given p ∈ (1,∞), by Corollary 5.3, there exists N ∈ N large enough such that
‖RN‖Lp(X)→Lp(X) < 1/2. This combined with (5.2) implies that T−1

N exists and is bounded on
Lp(X); see [29, page 69,Theorem 2]. In view of (5.2), TN =

∑∞
k=�0 D

N
k Dk in Lp(X). Therefore,

the desired conclusions of Corollary 5.4 hold.

Proposition 5.5. There exists a positive constant C, depending on �0, C1, and C2, such that for all
f ∈ L2(X),

C−1∥∥f
∥∥2
L2(X) ≤

∞∑

k=�0

∥∥Dk(f)
∥∥2
L2(X) ≤ C

∥∥f
∥∥2
L2(X). (5.21)

Proof. By Proposition 3.5(iii), ‖S�0(f)‖L2(X) � ‖f‖L2(X). Therefore, to show the second
inequality of (5.21), it suffices to show that

∞∑

k=�0+1

∥∥Dk(f)
∥∥2
L2(X) �

∥∥f
∥∥2
L2(X). (5.22)

In fact, by Lemma 3.4 and the proof of Proposition 3.5(iii), there exists a positive constant C,
which depends on �0, C1, and C2, such that for all k, j ≥ �0 + 1,

∥∥∥DkD
∗
j

∥∥∥
L2(X)→L2(X)

+
∥∥∥D∗

j Dk

∥∥∥
L2(X)→L2(X)

≤ C2−|k−j|. (5.23)

This combined with the Cotlar-Knapp-Stein lemma yields (5.22). Thus, the second inequality
of (5.21) holds.

Now we show the first inequality of (5.21). By Lemma 5.1, for large N ∈ N, we have

‖I − TN‖L2(X)→L2(X) = ‖RN‖L2(X)→L2(X) <
1
2
, (5.24)

and hence TN is invertible on L2(X). Thus, for large N, there exists a positive constant C,
depending onN, such that ‖f‖L2(X) ≤ C‖TN(f)‖L2(X) for all f ∈ L2(X).
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For any f ∈ L2(X) and h ∈ L2(X), by Hölder’s inequality,

∣
∣〈TN

(
f
)
, h
〉∣∣ =

∣
∣
∣
∣
∣

〈 ∞∑

k=�0

DN
k Dk

(
f
)
, h

〉∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∞∑

k=�0

〈
Dk

(
f
)
,
(
DN

k

)∗
h
〉
∣
∣
∣
∣
∣

≤
{ ∞∑

k=�0

∥∥Dk

(
f
)∥∥2

L2(X)

}1/2{ ∞∑

k=�0

∥
∥
∥DN

k (h)
∥
∥
∥
2

L2(X)

}1/2

.

(5.25)

Then, using DN
k ≡ ∑

|�|≤N Dk+� , Minkowski’s inequality, and the second inequality of (5.21),
we obtain

∞∑

k=�0

∥
∥
∥DN

k (h)
∥
∥
∥
2

L2(X)
�

∞∑

k=0

∑

|�|≤N
‖Dk+�(h)‖2L2(X)

�
∞∑

k=�0

‖Dk(h)‖2L2(X) � ‖h‖2L2(X).

(5.26)

This combined with (5.25) together with a dual argument yields that

∥∥f
∥∥2
L2(X) �

∥∥TN(f)
∥∥2
L2(X) �

∞∑

k=�0

∥∥Dk(f)
∥∥2
L2(X), (5.27)

which completes the proof of Proposition 5.5.

The main result of this section is the following characterization of Lp(X) for p ∈ (1,∞)
by using the Littlewood-Paley g-function.

Theorem 5.6. Let p ∈ (1,∞). Then there exists a positive constant C, depending on p, �0, C1, and
C2, such that for all f ∈ Lp(X),

C−1∥∥f
∥∥
Lp(X) ≤

∥∥g(f)
∥∥
Lp(X) ≤ C

∥∥f
∥∥
Lp(X), (5.28)

while p = 1, for all f ∈ L1(X),

∥∥g(f)
∥∥
L1,∞(X) ≤ C

∥∥f
∥∥
L1(X). (5.29)

Proof. We first show (5.29) and ‖g(f)‖Lp(X) � ‖f‖Lp(X) by using Theorem 4.1. To this end, set

B1 ≡ C, B2 ≡ �2, and define
−→
T (f) ≡ {Dk(f)}∞k=0. The corresponding kernel of

−→
T , say

−→
K(x, y),

is given by that for any t ∈ C,
−→
K(x, y)(t) = {Dk(x, y)t}∞k=�0 . By Proposition 5.5,

−→
T is bounded

from L2(X,B1) to L2(X,B2). Observe that Dk(x, y) = 0 when d(x, y) > C12−k+1[ρ(x) ∧ ρ(y)].
Then

−→
T local defined as in (4.9) equals to

−→
T if we choose N ≡ {(x, y) ∈ X × X : d(x, y) ≤

2−�0+1C1ρ(x)}. It remains to show that
−→
K(x, y) satisfies the hypotheses (4.6) through (4.8).
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For any x, y ∈ X, since Dk satisfies Definition 3.1(i), we apply Lemma 5.2 to obtain

∥
∥
∥
−→
K(x, y)

∥
∥
∥
C→ �2

=

{ ∞∑

k=�0

∣
∣Dk

(
x, y

)∣∣2
}1/2

�
∞∑

k=�0

χ{d(x,y)≤C12−k+1ρ(x)}
(
x, y

)

μ
(
B
(
x, 2−kρ(x)

)) � 1
V
(
x, y

) , (5.30)

and hence
−→
K satisfies (4.6). An argument similar to the proof of Theorem 4.4 shows that−→

K(x, y) satisfies the hypotheses (4.7) and (4.8). Applying Theorem 4.1 and Remark 4.3 yields
(5.29) and ‖g(f)‖Lp(X) � ‖f‖Lp(X).

The proof for ‖f‖Lp(X) � ‖g(f)‖Lp(X) follows by duality. In fact, Corollary 5.3 implies
that ‖RN‖Lp(X)→Lp(X) < 1/2 for large enough N. Furthermore, for large N, the operator TN ≡
I − RN is invertible on Lp(X) and ‖f‖Lp(X) � ‖TN(f)‖Lp(X).

By the second inequality of (5.28) together with an argument similar to (5.25) and
(5.26), we obtain that for all h ∈ Lp′(X)with ‖h‖Lp′ (X) ≤ 1,

∣∣〈TN
(
f
)
, h〉∣∣ ≤

∫

X

∞∑

k=�0

∣∣∣Dk

(
f
)
(x)

(
DN

k

)∗
(h)(x)

∣∣∣dμ(x)

≤
∫

X

( ∞∑

k=�0

∣∣Dk

(
f
)
(x)

∣∣2
)1/2( ∞∑

k=�0

∣∣∣
(
DN

k

)∗
(h)(x)

∣∣∣
2
)1/2

dμ(x)

≤
∥∥∥∥∥∥

( ∞∑

k=�0

∣∣Dk

(
f
)∣∣2

)1/2
∥∥∥∥∥∥
Lp(X)

∥∥∥∥∥∥

( ∞∑

k=�0

∣∣∣
(
DN

k

)∗
(h)

∣∣∣
2
)1/2

∥∥∥∥∥∥
Lp′ (X)

�
∥∥g(f)

∥∥
Lp(X).

(5.31)

Thus, ‖f‖Lp(X) � ‖TN(f)‖Lp(X) � ‖g(f)‖Lp(X), which completes the proof of Theorem 5.6.

As an application of Proposition 4.2, Theorem 5.6 has the following vector-valued
extension; see, for example, [3] for the Euclidean case. The details are omitted.

Corollary 5.7. Let p ∈ (1,∞). Then there exist positive constants Cp and C, which depend on �0,
such that for all {fj}j∈Z ⊂ Lp(X),

∥∥∥∥∥∥∥

⎧
⎨

⎩

∑

j∈Z

∞∑

k=�0

∣∣Dk

(
fj
)∣∣2

⎫
⎬

⎭

1/2
∥∥∥∥∥∥∥
Lp(X)

≤ Cp

∥∥∥∥∥∥∥

⎧
⎨

⎩

∑

j∈Z

∣∣fj
∣∣2

⎫
⎬

⎭

1/2
∥∥∥∥∥∥∥
Lp(X)

, (5.32)

and for all {fj}j∈Z ⊂ L1(X),

∥∥∥∥∥∥∥

⎧
⎨

⎩

∑

j∈Z

∞∑

k=�0

∣∣Dk

(
fj
)∣∣2

⎫
⎬

⎭

1/2
∥∥∥∥∥∥∥
L1,∞(X)

≤ C

∥∥∥∥∥∥∥

⎧
⎨

⎩

∑

j∈Z

∣∣fj
∣∣2

⎫
⎬

⎭

1/2
∥∥∥∥∥∥∥
L1(X)

. (5.33)
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In particular, the inequalities (5.32) and (5.33) still hold if their left-hand sides are replaced by

‖{∑∞
j=�0 |Dj(fj)|2}1/2‖

Lp(X)
and ‖{∑∞

j=�0 |Dj(fj)|2}1/2‖
L1,∞(X)

, respectively.

6. Some Examples

In this section, we present some typical examples of the locally doubling measure metric
spaces satisfying Definition 2.1. All results in previous sections, especially, Theorems 4.4 and
5.6 apply to various settings appearing in the following examples and, to the best of our
knowledge, are new even for these typical settings.

Example 6.1 (Gauss measure metric spaces). Let (Rn, | · |, dγ) be the Gauss measure metric
space and for all x ∈ R

n, ρ(x) ≡ min{1, 1/|x|}; see Mauceri and Meda [12].
The space (Rn, | · |, γ)ρ is a locally doubling measure metric space in the sense of

Definition 2.1. To see this, for a ∈ (0,∞), by the definition of Ba, any Euclidean ball B ⊂ R
n is

in the class Ba if and only if rB ≤ aρ(cB), where cB is the center of B and rB is its radius. For
all B ∈ Ba and y ∈ B,

(a + 1)−1ρ
(
y
) ≤ ρ(cB) ≤ (a + 1)ρ

(
y
)
; (6.1)

see [12, (3.4)] when a = 1 and see [35] for general a ∈ (0,∞). Thus, ρ satisfies (2.1) with
Θa ≡ a + 1. By Proposition 2.5(a) and its proof, the Gauss measure γ satisfies the locally
doubling Condition (2.2) and the reverse locally doubling Condition (2.3).

For the admissible function ρ̃(x) ≡ 1/(1 + |x|) for all x ∈ R
n, a similar argument shows

that (Rn, | · |, γ)ρ̃ is also a locally doubling measure metric space in the sense of Definition 2.1.
It should be mentioned that the admissible function ρ or ρ̃ plays important roles

in analysis on Gauss measure metric spaces, especially in the study of operators related
to Ornstein-Uhlenbeck semigroup; see, for example, [11–15, 17]. These operators can be
represented as integral operators associated with kernels K: for all f ∈ C∞

c (Rn) and
x /∈ supp(f),

T
(
f
)
(x) ≡

∫

Rn

K
(
x, y

)
f
(
y
)
dγ

(
y
)
; (6.2)

see, for example, [12]. Fix δ > 0. Some common properties shared by these operators are that
their kernels K(x, y) satisfy that

K
(
x, y

) ≤ Cδ
e|y|

2

∣∣x − y
∣∣n

,
∣∣∂xK

(
x, y

)∣∣ +
∣∣∂yK

(
x, y

)∣∣ ≤ Cδ
e|y|

2

∣∣x − y
∣∣n+1

, (6.3)

only in the regionsNδ ≡ {(x, y) ∈ R
n ×R

n : x /=y, |x−y| ≤ δρ(x)}with constants Cδ growing
exponentially as δ → ∞; see, for example, [11, 12, 15, 16]. A usual treatment in considering
the boundedness of these operators on Lp(Rn, dγ) (p ∈ [1,∞)) is by splitting the operator
into a local part and a global part, namely, Tlocal(f)(x) ≡ T(χNδ(x, ·)f)(x) for all x ∈ R

n and
Tglobal ≡ T − Tlocal; see, for instance, [11, 14, 17] and the references therein.

We remark that Theorem 4.1 is an extension of [11, Theorem 2.1] in a more abstract
setting, which can be applied to local versions of operators such as Riesz transforms of any
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order (see, e.g., [11, 14]), imaginary powers of the Ornstein-Uhlenbeck operator (see, e.g.,
[16]), and some square functions (see [11, 17]).

Example 6.2 (Nondoubling measure metric spaces in [18, 19]). Carbonaro, et al. [18, 19]
developed an H1-BMO theory on the metric space (M,d, μ)ρ withholding the following
properties:

(i) ρ ≡ 1 on M, and the locally doubling property (2.2) holds;

(ii) isoperimetric property when μ(M) = ∞: there exist positive constants κ0 and C such
that for every bounded open set A,

μ
({

x ∈ A : d
(
x,A�

)
≤ κ

})
≥ Cκμ(A), ∀κ ∈ (0, κ0]; (6.4)

complementary isoperimetric property when μ(M) < ∞: there exists a ball B0 ⊂ M,
κ0 > 0, and C > 0 such that (6.4) holds for every open set A contained in M \ B0;

(iii) approximation midpoint property: there exist R0 ∈ [0,∞) and β ∈ (1/2, 1) such that for
every pair of points x, y ∈ Mwith d(x, y) > R0, there exists a point z ∈ M such that
d(x, z) < βd(x, y) and d(z, y) < βd(x, y).

Applying Proposition 2.3(vi), we can easily show that (M,d, μ)ρ satisfying (i) and (ii)
as above falls into the scope of Definition 2.1; however, (iii) is not necessary.

Example 6.3 (Complete Riemannian manifold with Ricci curvature bounded from below).
Let (M,d, μ)ρ be an n-dimensional complete Riemannian manifold M endowed with
Riemannian distance d and Riemannian density μ, and also ρ(x) ≡ 1 for all x ∈ M. Let g
denote the Riemannian metric tensor. WhenM has the Ricci curvature bounded from below,
namely, RicM ≥ −Kg for some K ≥ 0, the Bishop-Gromov comparison theorem implies that
for all x ∈ M and r > 0,

μ(B(x, 2r)) ≤ 2n exp
(
2r
√
(n − 1)K

)
μ(B(x, r)); (6.5)

see [36] or [37]. This implies that (M,d, μ)ρ satisfies the locally doubling condition (2.2).
It is well known that any Riemannian manifold has a differentiable structure of C∞, and
hence the annulus (2B) \ B /= ∅ for all balls B contained in M. Then Proposition 2.3(vi)
implies that the locally reverse doubling condition (2.3) holds for (M,d, μ)ρ. Therefore,
any complete Riemannian manifold with Ricci curvature bounded from below is a locally
doubling measure metric space in the sense of Definition 2.1. Some curvature-dimension
conditions also guarantee the locally doubling condition (2.2); see, for example, [38].

Example 6.4 (Rn with certain admissible function associated to Schrödinger operators). Let
V be a nonnegative function on R

n (n ≥ 3) satisfying some reverse Hölder inequality
RHq(Rn) with q ≥ n/2, namely, there exists a positive constant C, depending on q and
V , such that {(1/|B|) ∫B V (x)qdx}1/q ≤ (C/|B|) ∫B V (x)dx for all balls B ⊂ R

n. Function
spaces and operators related to Schrödinger operators L ≡ −Δ + V have been the subject
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of many literatures; see, for example, [21–25, 39–41]. The admissible function associated to L
is defined by setting, for all x ∈ R

n,

ρ(x, V ) ≡ sup

{

r > 0 :
1

rn−2

∫

B(x,r)
V
(
y
)
d
(
y
) ≤ 1

}

; (6.6)

see Shen [39] for more details. It was proved in [39, Lemma 1.4] that for every positive
constant C, there exists a constant C̃ ≥ 1 such that for all |x − y| ≤ Cρ(x, V ),

C̃−1ρ
(
y, V

) ≤ ρ(x, V ) ≤ C̃ρ
(
y, V

)
, (6.7)

which implies that ρ(·, V ) satisfies (2.1). Thus, (Rn, | · |, dx)ρ(·,V ) is a locally doubling measure
metric space in the sense of Definition 2.1.

Dziubański [21] also developed a theory of Hardy spaces associated to a class of
degenerated Schrödinger operators

Lf(x) ≡ − 1
w(x)

∑

i,j

∂i
(
aij(·)∂jf

)
(x) + V (x)f(x), (6.8)

where aij(x) is a real symmetric matrix satisfying that there exists a positive constant C such
that for all ξ ∈ C

n and x ∈ R
n,

C−1w(x)|ξ|2 ≤
∑

i,j

aij(x)ξiξj ≤ Cw(x)|ξ|2, (6.9)

with w being a nonnegative weight from the Muckenhoupt class A2, and V ≥ 0 belonging to
a reverse Hölder class RHq(Rn,w(x)dx) with certain large q. The corresponding admissible
function is defined by setting, for all x ∈ R

n,

ρ̃(x, V ) ≡ sup

{

r > 0 :
r2

∫
B(x,r) w(z)dz

∫

B(x,r)
V
(
y
)
w
(
y
)
d
(
y
) ≤ 1

}

. (6.10)

By [21, Lemma 4.3], the underlying space (Rn, | · |, w(x)dx)ρ̃(·,V ) is also a locally doubling
measure metric space in the sense of Definition 2.1.

We remark that ρ(·, V ) or ρ̃(·, V ) as above plays a crucial role in dealing with
function spaces such as Hardy spaces or BMO spaces associated to Schrödinger operators;
see [22, 41] and the references therein. In a general setting of the RD-space (X, d, μ) (see
[6, 10]), a theory of Hardy spaces H1 related to a certain class of admissible functions
ρ satisfying (2.4) was developed in [25], which applies to Schrödinger operators on
(Rn, | · |, dx)ρ(·,V ), degenerated Schrödinger operators on (Rn, | · |, w(x)dx)ρ̃(·,V ), sub-Laplace
Schrödinger operators on Heisenberg groups (see [23, 25]), and sub-Laplace Schrödinger
operators on nilpotent Lie groups of polynomial growth (see [24, 25]).

Obviously, when ρ satisfies (2.4) and (X, d, μ) is an RD-space, (X, d, μ)ρ in [25] is
another typical example of locally doubling measure metric space in Definition 2.1.
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Example 6.5. Dziubański [40] studied Hardy spaces on (R+, | · |, dx) associated to admissible
functions ρ1(y) ≡ min{1, y} and ρ2(y) ≡ min{y, y−1} for y ∈ R

+. It is easy to show that (2.4)
fails for ρ1 and ρ2, while both ρ1 and ρ2 satisfy (2.1). Thus, (R+, | · |, dx)ρi with i = 1, 2 are
all locally doubling measure metric spaces in the sense of Definition 2.1, and the notion of
admissible function here is more general than the one in [25].

Remark 6.6. When ρ is the constant function 1, as in Examples 6.2 and 6.3, the approximation
of the identity constructed in Proposition 3.2 can be easily obtained from [6, 20].

The construction of the approximation of the identity for Example 6.1 can be deduced
from the case ρ = 1 by changing the metric d. In fact, by [19, Proposition 8.2], for every a > 0,
there exists a positive constant C depending on a such that for all x, y ∈ R

n with d(x, y) < a,

C−1∣∣x − y
∣
∣[ρ(x)

]−1 ≤ d0
(
x, y

) ≤ C
∣
∣x − y

∣
∣[ρ(x)

]−1
, (6.11)

where ρ(x) = min{1, |x|−1} for all x ∈ R
n, and d0 is the distance function defined by the

length element ds2 ≡ (1 + |∇ϕ|)2(dx2
1 + · · · + dx2

n) with ϕ(x) = |x|2. Then, the approximation
of the identity on (Rn, | · |, dγ)ρ follows from (6.11) and the approximation of the identity on
(Rn, d0, dγ)1.

Remark 6.7. By [42], with the modified Agmon metric ds2 ≡ ρ(x, V )−1(dx2
1 + · · · + dx2

n), we
define the corresponding distance function

d̃
(
x, y

)
= inf

γ

∫1

0
ρ(Γ(t), V )−1

∣∣Γ′(t)
∣∣dt, (6.12)

where Γ : [0, 1] → R
n is absolutely continuous and Γ(0) = x and Γ(1) = y. For any given

a ∈ (0,∞), using [42, Proposition 1.8(c)] and an argument similar to [42, (3.19)], there exist
positive constants C and C̃ such that for all x ∈ R

n and r ∈ (0, a],

∣∣x − y
∣∣ < rρ(x, V ) implies that d̃

(
x, y

) ≤ Cr,

d̃
(
x, y

) ≤ r implies that
∣∣x − y

∣∣ ≤ C̃rρ(x, V ).
(6.13)

Obviously, (6.13) is weaker than (6.11). However, (6.13) is not sufficient to deduce an
approximation of the identity on (Rn, | · |, dx)ρ(·,V ) from the constructed approximation of the

identity on (Rn, d̃, dx)1; the problem lies in how to derive (ii) and (iii) of Definition 3.1. So
far, it is not clear whether there is an argument as in Remark 6.6 also works for Example 6.4.
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[22] J. Dziubański and J. Zienkiewicz, “Hardy spaceH1 associated to Schrödinger operator with potential
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