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We prove some results for convex combination of nonnegative functionals, and some corollaries
are established.

1. Introduction

Inequalities have been used in almost all the branches of mathematics. It is an important tool
in the study of convex functions in seminormed space and seminormed algebras. Recently
some works have been done by Altin et al. [1, 2], Tripathy et al. [1–6], Tripathy and Sarma
[3, 4], Chandra and Tripathy [5], Tripathy and Mahanta [6], and many others involving
inequalities in seminormed spaces and convex functions like the Orlicz function.

In this paper, inequalities for convex combinations of functionals satisfying conditions
(a) and (b) are formulated in the theorems, and some corollaries are proved, using the
theorems. Condition (a) relates to nonnegative functionals over which the inequalities in
Theorems 1.1 and 1.4 on seminorm are proved. In Theorem 1.1, we consider seminormed
spaces, and in Theorem 1.4 seminormed algebras. Condition (b) relates generally to the
representations between seminormed spaces and seminormed algebras. The inequalities
formulated in this way are proved in Corollaries 1.2 and 1.5. In this paper we consider
the following generalization of the convexity in seminormed algebras. A : γf(

∑m
i=1 pixi) ≤

(
∑m

i=1 ‖pi‖f(xi)), where
∑m

i=1 ‖pi‖ = 1, pi, xi ∈ 1 for i = 1, 2, . . . , m, ‖ · ‖ is the norm in A, and
γ is a real number.

In order to justify our study, we have provided an example related to real functions
of one variable, similar examples can be constructed. This has been used in the geometry
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of Banach spaces as found in [7, 8]. Similar statements related to functionals in finite-
dimensional spaces and countable dimensional spaces have been provided in [9]. These
results can be applied in the mentioned areas.

Theorem 1.1. Let X be a seminormed space over R and the nonnegative functional f satisfy the
following condition:

(a) g(t) · f(y) ≤ f(x) ≤ r(t) · f(y), for all x,y with ‖x‖/‖y‖ = t ∈ [0, 1], where g, r :
[0, 1] → [0, 1] are nondecreasing functions such that g(t) ≤ r(t). Then,

(1) there exists infα,t∈[0,1]δ(α, t) = γ , where

δ(α, t) = α · g
(

t
(
α · t + β

)

)

+
β

r
(
α · t + β

) , for α ∈ [0, 1] with α + β = 1, (1.1)

(2) the functions g(t) : [0, 1] → [0, 1] and r−1(r−1) : [0,∼] → [0,∼] are convex.
Then, if αi ≥ 0,

∑m
i=1 αi = 1, xi ∈ X, (i = 1, n) for i = 1, 2, . . . , n, the inequality

γ · f(∑m
i=1 αi · xi) ≤

∑m
i=1 αi · f(xi) is satisfied.

Proof. Let x, y ∈ X, as ‖x‖ ≤ ‖y‖. We putΔ = (α ·f(x)+β ·f(y))/f(z), where z = α ·x+β ·y, α ∈
[0, 1], α + β = 1.

(a) Let ‖x‖ ≤ ‖z‖ ≤ ‖y‖. According to condition (a), we obtain

Δ ≥ α · g
(‖x‖
‖z‖

)

+
β

r
(‖z‖/∥∥y∥∥) . (1.2)

Knowing that g and r are nondecreasing, we obtain

Δ ≥ α · g
(

‖x‖
(
α · ‖x‖ + β · ∥∥y∥∥)

)

+ β · r−1 ·
((

α · ‖x‖ + β · ∥∥y∥∥)
∥
∥y

∥
∥

)

= α · g
(

t
(
α · t + β

)

)

+ β · r−1 · (α · t + β
)
= δ(α, t),

(1.3)

where t = ‖x‖/‖y‖.
There exists infα,t∈[0,1]δ(α, t) = γ in compliance with (1). Therefore Δ ≥ γ .
If we put x = y the result is 1 = Δ ≥ γ , that is, 1 ≥ γ .
(b) Let ‖z‖ ≤ ‖x‖. Then, in view of (a), we have

Δ ≥ α · r−1
( ‖z‖
‖x‖

)

+ β · r−1
( ‖z‖
‖x‖

)

≥ α + β = 1 ≥ γ. (1.4)

Let us consider n elements xi ∈ X, (i = 1, n), and we suppose ‖x1‖ ≤ ‖x2‖ ≤ · · · ≤ ‖xn‖.
Let Δ = (

∑m
i=1 αi · f(xi))/f(z), where z =

∑m
i=1 αi · xi, and ti = ‖xi‖/‖z‖, ‖xk−1‖ ≤ ‖z‖ <

‖xk‖, as 1 ≤ k ≤ n.
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According to condition (a), we get

Δ ≥
m∑

i=1

αi · g(ti) +
m∑

i=1

αi · r−1
(
t−1i

)
= ρn(α, x), (1.5)

where α = (α1, α2, . . . , αn), x = (x1, x2, . . . , xn).
Using the principle of induction over n,we will probe that infn,α,xρn(α,x) ≥ γ .
We know that ρ2(α,x) = δ(α, t), and therefore about n = 2 the statement is proved. We

assume the assertion about (n − 1) is correct.
(1) Let k ≤ 2. Then, ρn(α, x) = S + (αn−1 + αn) · (α · r−1(t−1n−1) + β · r−1(t−1n )), where S is

the rest of the sum, and α = αn−1/(αn−1 + αn), β = αn/(αn−1 + αn). With condition (2)we have
ρn(α, x) ≥ S+(αn−1 +αn) · r−1((αtn−1)+βtn)−1, but ‖α ·xn−1 +β ·xn‖ ≤ α · ‖xn−1‖+β · ‖xn‖. Setting
xn−1 = α · xn−1 + β · xn, t

′
n−1 = ‖xn−1‖/‖z‖ and knowing r is nondecreasing function, we obtain

ρn(α, x) ≥ S + (αn−1 + αn) · r−1
((

t′n
)−1) = ρn−1

(
α′, x′), (1.6)

where α′ = (α1, α2, . . . , αn−2, αn−1 + αn) and x′ = (x1, x2, . . . , xn−2, xn−1). With the inductive
assumption, ρn−1(α

′, x′) ≥ γ , that is, ρn(α, x) ≥ γ , that is, Δ ≥ γ .
(2) Let k ≥ 3. Then ρn(α, x) = (α1 + α2) · (α · g(t1) + β · g(t2)) + S, where S is the

rest of the sum, and α = α1/(α1 + α2), β = α2/(α1 + α2). According to condition (2), we
obtain ρn(α, x) ≥ (α1 + α2) · (α · g(t1) + β · g(t2)) + S. Let us place t′1 = ‖x′

1‖/‖z‖, where
x′
1 = αx1 +βx2, but ‖x′

1‖ = ‖α ·x1 +β ·x2‖ ≤ α · ‖x1‖+β · ‖x2‖ and g is a nondecreasing function.
Then, ρn(α, x) ≥ (α1 + α2) · g(t′1) + S = ρn−1(α

′, x′), where α′ = (α1 + α2, α3, . . . , αn−1, αn), and
x′ = (x1, x2, . . . , xn−1, xn).

Applying the induction, we get Δ ≥ γ .

Corollary 1.2. Let X and Y be seminormed spaces over R and f : X → Y. Then in Theorem 1.1, one
replaces condition (a) by condition (b): g(t)·‖f(y)‖y ≤ ‖f(x)‖y ≤ r(t)·‖f(y)‖Y , for all x, y ∈ Xwith
‖x‖X/‖y‖X = t ∈ [0, 1], and all the rest of the conditions are satisfied. Then, with αi ≥ 0,

∑m
i=1 αi =

1, xi = X, (i = 1, n), the inequality γ · ‖f(∑m
i=1 αi · xi)‖y ≤ ∑m

i=1 αi · ‖f(xi)‖y is satisfied.

Proof. We consider the functional φ = ‖f‖y : X
f−→ Y

‖·‖y−−−→ R+. Then, knowing (b), we conclude
that φ satisfies Theorem 1.1’s conditions and hence the needed inequality.

Example 1.3. If we put in the conditions of Theorem 1.1, g(t) = tp, p > 1, p ∈ R, r(t) = t, and
f : R → R, tpf(y) ≤ f(ty) ≤ tf(y), t ∈ [0, 1], then about α1 ≥ 0,

∑m
i=1 αi = 1, xi = X, (i = 1, n),

we will obtain the inequality

γ · f(α1 · x1 + · · · + αn · xn) ≤
[
α1 · f(x1) + · · · + αn · f(xn)

]
, (1.7)

where

γ = 1 − p−(p−1)
−1
+ p−p(p−1)

−1
. (1.8)
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Proof. Let us consider δ(α, t) = α · g(t/(αt + β)) + β/r(α · t + β), where

g(t) = tp, r(t) = t, α ∈ [0, 1], t ∈ [0, 1], β = 1 − α. (1.9)

Then, δ(α, t) = α · (t/(α · t + β))p + β/(α · t + β) = h(t),

∂δ(α, t)
∂t

= h′(t) = αp

(
t

α · t + β

)p−1 β
(
α · t + β

)2 − αβ
(
α · t + β

)2 = 0, (1.10)

when (t/(α · t + β))p−1 = p−1, that is, (t/(α · t + β)) = p−(p−1)
−1
; hence, (α · t + β)/t = p(p−1)

−1
.

Further, we obtain t = β(p(p−1)
−1 − α)

−1
. It is obvious that we have a minimum at this point in

the interval [0, 1].
Then, we obtain (1/(α · t + β)) = β−1p(p−1)

−1
(p(p−1)

−1 − α), and hence at the same point t

δ(α, t) = α ·
(

t

α · t + β

)p

+
β

(
α · t + β

) = α · p−p(p−1)−1 +
(
p(p−1)

−1 − α
)
p−p(p−1)

−1

= 1 + α ·
(
p−p(p−1)

−1 − p−(p−1)
−1) ≥ 1 +

(
p−p(p−1)

−1 − p−(p−1)
−1)

= γ,

(1.11)

since

(
p−p(p−1)

−1 − p−(p−1)
−1) ≤ 0. (1.12)

This confirms the assertion.

If we put p = 2 in the condition of the example, we receive γ = 3/4. Therefore, 3f(α1x1+
· · · + αnxn) ≤ 4[α1f(x1) + · · · + αnf(xn)], when αi ≥ 0,

∑n
i=1 αi = 1, xi ∈ X, (i = 1, n).

Theorem 1.4. Let A be a seminormed algebra over R with a unit. The functional f : A → R+

satisfies condition (a): g(t) · f(y) ≤ f(x) ≤ r(t) · f(y), for x, y as ‖x‖/‖y‖ = t ∈ [0, 1], where
g, r : [0, 1] → [0, 1] are nondecreasing functions such that g(t) ≤ r(t).

Besides, the following requirements are fulfilled

(1) There exists infα,t∈[0,1]δ(α, t) = λ, where

δ(α, t) = α · g
(

t
(
α · t + β

)

)

+
β

r
(
α · t + β

) , for α ∈ [0, 1], with α + β = 1. (1.13)

(2) The function, g(t) : [0, 1] → [0, 1] and r−1(t−1) : [1,∼] → [1,∼] are convex. Then, if
pi, xi ∈ A, (i = 1 · n),∑m

i=1 ‖pi‖ = 1, one receives the inequality

γ · f
(

m∑

i=1

pixi

)

≤
m∑

i=1

∥
∥pi

∥
∥ · f(xi). (1.14)
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Proof. Let p, q, x, y ∈ A, as ‖x‖ ≤ ‖y‖, ‖p‖ + ‖q‖ = 1.
We put Δ = (‖p‖ · f(x) + ‖q‖ · f(y))/f(z), where z = p · x + q · y.
(a) Let ‖x‖ ≤ ‖z‖ ≤ ‖y‖. According to condition (a), we have Δ ≥ ‖p‖ · g(‖x‖/‖z‖) +

‖q‖/r(‖z‖/‖y‖ ≥ ‖p‖ · g(‖x‖/‖p‖ · ‖x‖)).
Here, we have ‖p · x + q · y‖ ≤ ‖p‖ · ‖x‖ + ‖q‖ · ‖y‖, and g, r are nondecreasing.
If α = ‖p‖, β = ‖q‖, then Δ ≥ α · g(t/(α · t + β)) + β · r−1 · (α · t + β) = δ(α, t), where

t = ‖x‖/‖y‖.
Then, infα,t∈[0,1]δ(α, t) = γ exist in compliance with (1). Therefore Δ ≥ γ .
If we put x = y, the result is 1 = Δ ≥ γ , that is, 1 ≥ γ .
(b) Let ‖z‖ ≤ ‖x‖. Then, in view of the fact that (a), we get

Δ ≥ ∥
∥p

∥
∥ · r−1 ·

( ‖z‖
‖x‖

)

+

∥
∥q

∥
∥

r
(‖z‖/∥∥y∥∥) ≥ ∥

∥p
∥
∥ +

∥
∥q

∥
∥ = 1 ≥ γ. (1.15)

Let pi, xi ∈ A, (i = 1 · n), as∑m
i=1 ‖pi‖ = 1. Let us put Δ = (

∑m
i=1 ‖pi‖ · f(xi))/f(z), where

z =
∑m

i=1 pi · xi.
We can accept ‖x1‖ ≤ ‖x2‖ ≤ · · · ≤ ‖xn‖. Let 1 ≤ k ≤ n and ‖xk−1‖ ≤ ‖z‖ ≤ ‖xk‖.
We have Δ ≥ ∑m

i=1 ‖p‖i · g(ti) +
∑m

i=1 ‖p‖i · r−1 · t−1i = ρn(p, x), where

p =
(
p1, p2, . . . , pn

)
, x = (x1, x2, . . . , xn), i =

‖xi‖
‖z‖ . (1.16)

Applying the principle of induction over nwe will prove that ρn(p, x) ≥ γ . In view of the fact
that was mentioned at the beginning, we get ρ2(p, x) = δ(α, t) ≥ γ . Assuming the statement
for (n − 1) holds, we will prove it for n.

(1) Let k ≤ 2.
Putting α = ‖pn−1‖/(‖pn−1‖ + ‖pn‖), β = ‖pn‖/(‖pn−1‖ + ‖pn‖), we have ρn(p, x) =

S + (‖pn−1‖ + ‖pn‖) · (α · r−1(t−1n−1) + β · r−1(t−1n ))where S is the rest of the sum. Using condition
(2), we get

ρn
(
p, x

) ≥ S +
(∥
∥pn−1

∥
∥ +

∥
∥pn

∥
∥
)
r−1

(
(α · tn−1) + β · tn) −1

)
. (1.17)

Let x′
n−1 = (pn−1 · xn−1 + pn · xn)/(‖pn−1‖ + ‖pn‖), t′n−1 = ‖x′

n−1‖/‖z‖).
Since r does not decrease, and ‖x′

n−1‖ ≤ α · ‖xn−1‖+β · ‖xn‖, then ρn(p, x) ≥ S+(‖pn−1‖+
‖pn‖) · r−1((t′n−1)−1) = ρn−1(p

′, x′), where p′ = (p1, p2, . . . , pn−2, p
′
n−1), p

′
n−1 = (‖pn−1‖ + ‖pn‖) · e,

and x′ = (x1, x2, . . . , xn−2, x′
n−1).

By e we denote the unit of the algebra A. According to the inductive suggestion, we
obtain ρn(p, x) ≥ ρn−1(p

′, x′) ≥ γ .
(2) Let k ≥ 3.
We set α = ‖p1‖/(‖p1‖ + ‖p2‖), β = ‖p2‖/(‖p1‖ + ‖p2‖). As (2), we have ρn(p, x) ≥

(‖p1‖ + ‖p2‖) · g(α · t1 + β · t2) + S, where S is the rest of the sum.
Let x′

1 = (p1 · x1 + p2 · x2)/(‖p1‖ + ‖p2‖), t′1 = ‖x′
1‖/‖z‖.

Since g does not decrease, and ‖x′
1‖ ≤ α · ‖x1‖ + β · ‖x2‖, then ρn(p, x) ≥ (‖p1‖ +

‖p2‖) · g(t′1) + S = ρn−1(p
′, x′), where p′ = (p′1, p3, . . . , pn−1, pn), p

′
1 = (‖p1‖ + ‖p2‖) · e,

and x′ = (x1, x2, . . . , xn−2, x′
n−1). According to the induction principle, we obtain ρn(p, x) ≥

ρn−1(p
′, x′) ≥ γ .
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Corollary 1.5. Let A be a seminormed algebra above R with a unit, and let X be a seminormed space
over R, and f : A → X.

Then, if one replaces the condition (a) in Theorem 1.4 by condition (c): g(t) · ‖f(y)‖X ≤
‖f(x)‖X ≤ r(t) · ‖f(y)‖X , for all x, y ∈ A with ‖x‖a/‖y‖a = t ∈ [0, 1], and all the rest of the
conditions are satisfied. One denotes by ‖ · ‖x the norm in X, and the norm in A with ‖ · ‖a. Then if
pi, xi ∈ A, (i = 1, n)

∑m
i=1 ‖pi‖a = 1 one receives the inequality

γ ·
∥
∥
∥
∥
∥
f

(
m∑

i=1

pi · xi

)∥
∥
∥
∥
∥
x

≤
m∑

i=1

∥
∥pi

∥
∥
α ·

∥
∥f(xi)

∥
∥
x. (1.18)

Proof. We consider the functional φ = ‖f‖x : A
f−→ X

‖·‖x−−−→ R+. Then, knowing (c), we get that φ
satisfies Theorem 1.1’s conditions and hence the needed inequality.
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