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Wiman’s theorem says that an entire holomorphic function of order less than 1/2 has a minimum
modulus converging to∞ along a sequence. Arima’s theorem is a refinement of Wiman’s theorem.
Here we generalize both results to quasiregular mappings in the manifold setup. The so called
fundamental frequency has an important role in this study.

1. Main Results

It follows from the Ahlfors theorem that an entire holomorphic function f of order ρ has no
more than [2ρ] distinct asymptotic curves where [r] stands for the largest integer ≤ r. This
theorem does not give any information if ρ < 1/2, This case is covered by two theorems: if
an entire holomorphic function f has order ρ < 1/2 then lim supr→∞min|z|=r |f(z)| = ∞ (Wiman
[1]) and if f is an entire holomorphic function of order ρ > 0 and l is a number satisfying the
conditions 0 < l ≤ 2π, l < π/ρ, then there exists a sequence of circular arcs {|z| = rk, θk ≤ arg z ≤
θk + l}, rk → ∞, 0 ≤ θk < 2π, along which |f(z)| tends to ∞ uniformly with respect to arg z
(Arima [2]).

Below we prove generalizations of these theorems for quasiregular mappings for n ≥
2. The next two theorems are generalizations of the theorems of Wiman and of Arima for
quasiregular mappings on manifolds.

Theorem 1.1. Let M,N be n-dimensional noncompact Riemannian manifolds without boundary.
Assume that h : M → (0,∞) is a special exhaustion function of the manifold M and u is a
nonnegative growth function on the manifold N, which is a subsolution of (3.4) with the structure
conditions (3.2), (3.3) and the structure constants p = n, ν1, ν2.
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Let f : M → N be a nonconstant quasiregular mapping. Suppose that the manifold M is
such that

∫∞
λn(Σh(t); 1)dt = ∞. (1.1)

If now

lim inf
τ →∞

max
h(m)=τ

u
(
f(m)

)
exp
{
−C
∫ τ

λn(Σh(t); 1)dt
}

= 0, (1.2)

then

lim sup
τ →∞

min
h(m)=τ

u
(
f(m)

)
= ∞. (1.3)

Here

C =

⎛
⎝n − 1 + n

((
ν2
ν1

)2

K2(f) − 1

)1/2
⎞
⎠

−1

(1.4)

is a constant, K(f) is the maximal dilatation of f , Σh(t) is an h-sphere in the manifold M, λn(U)
is a fundamental frequency of an open subset U ⊂ Σh(t), and λn(Σh(t); 1) = inf λn(U), where the
infimum is taken over all open setsU ⊂ Σh(t) withU/=Σh(t). (See Sections 4 and 6.)

Theorem 1.2. Let M,N be n-dimensional noncompact Riemannian manifolds without boundary.
Assume that h : M → (0,∞) is a special exhaustion function of the manifold M and u is a
nonnegative growth function on the manifold N, which is a subsolution of (3.4) with the structure
conditions (3.2), (3.3) and the structure constants p = n, ν1, ν2.

Let f : M → N be a quasiregular mapping andM(τ) = maxΣh(τ)u(f(m)). If for some γ > 0
the mapping f satisfies the condition

lim inf
τ →∞

M(τ + 1) exp
{
−γ
∫ τ

λn(Σh(t); 1)dt
}

= 0, (1.5)

then for each k = 1, 2, . . . there exists an h-sphere Σh(tk) and an open setU ⊂ Σh(tk), for which

u
(
f
)
|U ≥ k, λn(U) <

nγ

C
λn(Σh(tk); 1). (1.6)

The proofs of these results are based upon Phragmén-Lindelöf’s andAhlfors’ theorems
for differential forms of WT-classes obtained in [3].

For n-harmonic functions on abstract cones, similar theorems were obtained in [4].
Our notation is as in [3, 5]. We assume that the results of [3] are known to the reader

and we only recall some results on qr-mappings.
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2. Quasiregular Mappings

LetM andN be Riemannian manifolds of dimension n. A continuous mapping F : M → N
of the class W1

n,loc(M) is called a quasiregular mapping if F satisfies

∣∣F ′(m)
∣∣n ≤ KJF(m) (2.1)

almost everywhere onM. Here F ′(m) : Tm(M) → TF(m)(N) is the formal derivative of F(m),
further, |F ′(m)| = max|h|=1|F ′(m)h|. We denote by JF(m) the Jacobian of F at the pointm ∈ M,
that is, the determinant of F ′(m).

The best constant K ≥ 1 in the inequality (2.1) is called the outer dilatation of F and
denoted by KO(F). If F is quasiregular, then the least constant K ≥ 1 for which we have

JF(m) ≤ Kl
(
F ′(m)

)n (2.2)

almost everywhere on M is called the inner dilatation and denoted by KI(F). Here

l
(
F ′(m)

)
= min

|h|=1

∣∣F ′(m)h
∣∣. (2.3)

The quantity

K(F) = max{KO(F), KI(F)} (2.4)

is called the maximal dilatation of F and if K(F) ≤ K, then the mapping F is called K-
quasiregular.

If F : M → N is a quasiregular homeomorphism, then the mapping F is called
quasiconformal. In this case, the inverse mapping F−1 is also quasiconformal in the domain
F(M) ⊂ N and K(F−1) = K(F).

Let A and B be Riemannian manifolds of dimensions dimA = k and dimB = n − k,
1 ≤ k < n, and with scalar products 〈, 〉A, 〈, 〉B, respectively. The Cartesian productN = A×B
has the natural structure of a Riemannian manifold with the scalar product

〈, 〉 = 〈, 〉A + 〈, 〉B. (2.5)

We denote by π : A × B → A and η : A × B → B the natural projections of the manifold N
onto submanifolds.

If wA and wB are volume forms on A and B, respectively, then the differential form
wN = π∗wA ∧ η∗wB is a volume form on N.

Theorem 2.1 (see [5]). Let F : M → N be a quasiregular mapping and let f = π ◦ F : M → A.
Then the differential form f∗wA is of the class WT2 on M with the structure constants p = n/k,
ν1 = ν1(n, k,KO), and ν2 = ν2(n, k,KO).
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Remark 2.2. The structure constants can be chosen to be

ν−11 =
(
k +

n − k

c2

)−n/2
nn/2 KO, ν−12 = cn−k, (2.6)

where c = c(k, n,KO) and c = c(k, n,KO) are, respectively, the greatest and smallest positive
roots of the equation

(
kξ2 + (n − k)

)n/2
− nn/2KOξ

k = 0. (2.7)

3. Domains of Growth

Let D ⊂ C be an unbounded domain and let w = f(z) be a holomorphic function continuous
on the closure D. The Phragmén-Lindelöf principle [6] traditionally refers to the alternatives
of the following type:

(α) if Re f(z) ≤ 1 everywhere on ∂D, then either Re f(z) grows with a certain rate as
z → ∞ or Re f(z) ≤ 1 for all z ∈ D;

(β) if |f(z)| ≤ 1 on ∂D, then either |f(z)| grows with a certain rate as |z| → ∞ or
|f(z)| ≤ 1 for all z ∈ D.

Here the rate of growth of the quantities Re f(z) and |f(z)| depends on the “width”
of the domain D near infinity.

It is not difficult to prove that these conditions are equivalent with the following
conditions:

(α1) if Re f(z) = 1 on ∂D and Re f(z) ≥ 1 in D, then either Re f(z) grows with a
certain rate as z → ∞ or f ≡ const;

(β1) if |f(z)| = 1 on ∂D and |f(z)| ≥ 1 in D, then either |f(z)| grows with a certain rate
as z → ∞ or f ≡ const.

Let D be an unbounded domain in Rn and let f = (f1, f2, . . . , fn) : D → Rn be a
quasiregular mapping. We assume that f ∈ C0(D). It is natural to consider the Phragmén-
Lindelöf alternative under the following assumptions:

(a) f1(x)|∂D = 1 and f1(x) ≥ 1 everywhere in D;

(b)
∑p

i=1 f
2
i (x)|∂D = 1 and

∑p

i=1 f
2
i (x) ≥ 1 on D, 1 < p < n;

(c) |f(x)| = 1 on ∂D and |f(x)| ≥ 1 on D.

Several formulations of the Phragmén-Lindelöf theorem under various assumptions
can be found in [7–11]. However, these results are mainly of qualitative character. Here
we give a new approach to Phragmén-Lindelöf type theorems for quasiregular mappings,
based on isoperimetry, that leads to almost sharp results. Our approach can be used to prove
Phragmén-Lindelöf type results for quasiregular mappings of Riemannian manifolds.

Let N be an n-dimensional noncompact Riemannian C2-manifold with piecewise
smooth boundary ∂N (possibly empty). A function u ∈ C0(N) ∩ W1

n,loc(N) is called a
growth function with N as a domain of growth if (i) u ≥ 1, (ii) u | ∂N = 1 if ∂N/= ∅, and
supy∈Nu(y) = +∞.
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We consider a quasiregular mapping f : M → N, f ∈ C0(M ∪ ∂M), where M is a
noncompact RiemannianC2-manifold, dimM = n, and ∂M/= ∅. We assume that f(∂M) ⊂ ∂N.
In what follows, we mean by the Phragmén-Lindelöf principle an alternative of the form:
either the function u(f(m)) has a certain rate of growth in M or f(m) ≡ const.

By choosing the domain of growth N and the growth function u in a special way, we
can obtain several formulations of Phragmén-Lindelöf theorems for quasiregular mappings.
In view of the examples in [7], the best results are obtained if an n-harmonic function is
chosen as a growth function. In the case (a), the domain of growth is N = {y = (y1, . . . , yn) ∈
Rn : y1 ≥ 0} and as the function of growth, it is natural to choose u(y) = y1 + 1; in the
case (b), the domain N is the set {y = (y1, . . . , yn) ∈ Rn :

∑p

i=1 y
2
i ≥ 1}, 1 < p < n, and

u(y) = (
∑p

i=1 y
2
i )

(n−p)/2(n−1)
; in the case (c), the domain of growth is N = {y ∈ Rn : |y| > 1}

and u(y) = log |y| + 1.
In the general case, we shall consider growth functions which are A-solutions of

elliptic equations [12]. Namely, letM be a Riemannian manifold and let

A : T(M) −→ T(M) (3.1)

be a mapping defined a.e. on the tangent bundle T(M). Suppose that for a.e. m ∈ M the
mapping A is continuous on the fiber Tm, that is, for a.e. m ∈ M, the function A(m, ·) : Tm →
Tm is defined and continuous; the mapping m �→ Am(X) is measurable for all measurable
vector fields X (see [12]).

Suppose that for a.e. m ∈ M and for all ξ ∈ Tm, the inequalities

ν1|ξ|p ≤ 〈ξ,A(m, ξ)〉, (3.2)

|A(m, ξ)| ≤ ν2|ξ|p−1 (3.3)

hold with p > 1 and for some constants ν1, ν2 > 0. It is clear that we have ν1 ≤ ν2.
We consider the equation

divA
(
m,∇f

)
= 0. (3.4)

Solutions to (3.4) are understood in the weak sense, that is, A-solutions are W1
p,loc-functions

satisfying the integral identity

∫
M

〈
∇θ,A

(
m,∇f

)〉
∗ 1M = 0 (3.5)

for all θ ∈ W1
p(M)with compact support inM.

A function f inW1
p,loc(M) is an A-subsolution of (3.4) inM if

divA
(
m,∇f

)
≥ 0 (3.6)
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weakly in M, that is,

∫
M

〈
∇θ,A

(
m,∇f

)〉
∗ 1M ≤ 0, (3.7)

whenever θ ∈ W1
p(M), is nonnegative with compact support in M.

A basic example of such an equation is the p-Laplace equation

div
(∣∣∇f

∣∣p−2∇f
)
= 0. (3.8)

4. Exhaustion Functions

Below we introduce exhaustion and special exhaustion functions on Riemannian manifolds
and give illustrating examples.

4.1. Exhaustion Functions of Boundary Sets

Let h : M → (0, h0), 0 < h0 ≤ ∞, be a locally Lipschitz function such that

ess inf
Q
|∇h| > 0 ∀Q ⊂⊂ M. (4.1)

For arbitrary t ∈ (0, h0), we denote by

Bh(t) = {m ∈ M : h(m) < t}, Σh(t) = {m ∈ M : h(m) = t} (4.2)

the h-balls and h-spheres, respectively.
Let h : M → R be a locally Lipschitz function such that there exists a compact K ⊂ M

with |∇h(x)| > 0 for a.e.m ∈ M\K. We say that the function h is an exhaustion function for a
boundary set Ξ of M if for an arbitrary sequence of points mk ∈ M, k = 1, 2, . . . , the function
h(mk) → h0 if and only if mk → ξ.

It is easy to see that this requirement is satisfied if and only if for an arbitrary increasing
sequence t1 < t2 < · · · < h0, the sequence of the open sets Vk = {m ∈ M : h(m) > tk} is a chain,
defining a boundary set ξ. Thus the function h exhausts the boundary set ξ in the traditional
sense of the word.

The function h : M → (0, h0) is called the exhaustion function of the manifold M if
the following two conditions are satisfied:

(i) for all t ∈ (0, h0), the h-ball Bh(t) is compact;

(ii) for every sequence t1 < t2 < · · · < h0 with limk→∞tk = h0, the sequence of h-balls
{Bh(tk)} generates an exhaustion of M, that is,

Bh(t1) ⊂ Bh(t2) ⊂ · · · ⊂ Bh(tk) ⊂ · · · ,
⋃
k

Bh(tk) = M. (4.3)
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Example 4.1. Let M be a Riemannian manifold. We set h(m) = dist(m,m0) where m0 ∈ M
is a fixed point. Because |∇h(m)| = 1 almost everywhere on M, the function h defines an
exhaustion function of the manifold M.

4.2. Special Exhaustion Functions

Let M be a noncompact Riemannian manifold with the boundary ∂M (possibly empty). Let
A satisfy (3.2) and (3.3) and let h : M → (0, h0) be an exhaustion function, satisfying the
following additional conditions:

(a1) there is h′ > 0 such that h−1((0, h′)) is compact and h is a solution of (3.4) in the
open set K = h−1((h′, h0));

(a2) for a.e. t1, t2 ∈ (h′, h0), t1 < t2,

∫
Σh(t2)

〈 ∇h

|∇h| , A(x,∇h)
〉
dHn−1 =

∫
Σh(t1)

〈 ∇h

|∇h| , A(x,∇h)
〉
dHn−1. (4.4)

Here dHn−1 is the element of the (n − 1)-dimensional Hausdorff measure on Σh. Exhaustion
functions with these properties will be called the special exhaustion functions of M with respect
toA. In most cases, the mappingAwill be the p-Laplace operator (3.8) and, unless otherwise
stated, A is the p-Laplace operator.

Since the unit vector ν = ∇h/|∇h| is orthogonal to the h-sphere Σh, the condition (a2)
means that the flux of the vector field A(m,∇h) through h-spheres Σh(t) is constant.

In the following, we consider domains D in Rn as manifolds M. However, the
boundaries ∂D ofD are allowed to be rather irregular. To handle this situation, we introduce
(A, h)-transversality property for M.

Let h : M → (0, h0) be a C2-exhaustion function. We say that M satisfies the (A, h)-
transversality property if for a.e. t1, t2, h < t1 < t2 < h0, and for every ε > 0, there exists an
open set

G = Gε(t1, t2) ⊂ Bh(t2) \ Bh(t1) (4.5)

with piecewise regular boundary such that

Hn−1(Σh(t1) ∩ Σh(t2) \ ∂G) < ε, (4.6)

Hn
((

Bh(t2)/Bh(t1)
)
\G
)
< ε, (4.7)

〈A(m,∇h(m), v)〉 = 0, (4.8)

where v is the unit inner normal to ∂G.
We say that M satisfies the h-transversality condition if M satisfies the (A, h)-

transversality condition for the p-Laplace operatorA(m, ξ) = |ξ|p−2ξ. In this case, (4.8) reduces
to

〈∇h(m), v〉 = 0. (4.9)
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Example 4.2. Let D be a bounded domain in R2 and let

M =
{
(x1, x2, x3) ∈ R3 : (x1, x2) ∈ D,x3 > 0

}
(4.10)

be a cylinder with base D. The function h : (0,∞) → R, h(x) = x3, is an exhaustion function
forM. Since every domain D in R2 can be approximated by smooth domains D′ from inside,
it is easy to see that for 0 < t1 < t2 < ∞ the domain G = D′ × (t1, t2) can be used as an
approximating domain Gε(t1, t2). Note that the transversality condition (4.8) is automatically
satisfied for the p-Laplace operator A(m, ξ) = |ξ|p−2ξ.

Lemma 4.3. Suppose that an exhaustion function h ∈ C2(M\K) satisfies (3.4) in M\K and that
the function A(m, ξ) is continuously differentiable. If M satisfies the (A, h)-transversality condition,
then h is a special exhaustion function on the manifold M.

Proof. It suffices to show (a2). Let h′ < t1 < t2 < h0 and ε > 0. Choose an open set G as in the
definition of the (A, h)-transversality condition. |A(m,∇h(m))| ≤ M < ∞ for every m ∈ M,
and (4.6)–(4.8) together with the Gauss formula imply for a.e. t1, t2

∣∣∣∣∣
∫
Σh(t2)

〈 ∇h

|∇h| , A(m,∇h)
〉
dHn−1 −

∫
Σh(t1)

〈 ∇h

|∇h| , A(m,∇h)
〉
dHn−1

∣∣∣∣∣

≤
∣∣∣∣∣
∫
∂G∪Σh(t2)

〈 ∇h

|∇h| , A(m,∇h)
〉
dHn−1 −

∫
∂G∪Σh(t1)

〈 ∇h

|∇h| , A(m,∇h)
〉
dHn−1

∣∣∣∣∣ + εM

=
∣∣∣∣
∫
∂G

〈 ∇h

|∇h| , A(m,∇h)
〉
dHn−1

∣∣∣∣ + εM =
∣∣∣∣
∫
∂G

〈v,A(m,∇h)〉dHn−1
∣∣∣∣ + εM

=
∣∣∣∣
∫
G

divA(m,∇h)dHn

∣∣∣∣ + εM = εM.

(4.11)

Since ε > 0 is arbitrary, (a2) follows.

Example 4.4. Fix 1 ≤ n ≤ p. Let x1, x2, . . . , xn be an orthonormal system of coordinates in
Rn, 1 ≤ n < p. Let D ⊂ Rn be an unbounded domain with piecewise smooth boundary and
let B be a (p − n)-dimensional compact Riemannian manifold with or without boundary. We
consider the manifold M = D × B.

We denote by x ∈ D, b ∈ B, and (x, b) ∈ M the points of the corresponding manifolds.
Let π : D × B → D and η : D × B → B be the natural projections of the manifold M.

Assume now that the function h is a function on the domain D satisfying the
conditions (b1), (b2), and (3.8). We consider the function h∗ = h ◦ π : M → (0,∞).

We have

∇h∗ = ∇(h ◦ π) = (∇xh) ◦ π,

div
(
|∇h∗|p−2∇h∗

)
= div

(
|∇(h ◦ π)|p−2∇(h ◦ π)

)

= div
(
|∇xh|p−2 ◦ π(∇xh) ◦ π

)
=

(
n∑
i=1

∂

∂xi

(
|∇xh|p−2

∂h

∂xi

))
◦ π.

(4.12)
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Because h is a special exhaustion function of D, we have

div
(
|∇h∗|p−2∇h∗

)
= 0. (4.13)

Let (x, b) ∈ ∂M be an arbitrary point where the boundary ∂M has a tangent
hyperplane and let ν be a unit normal vector to ∂M.

If x ∈ ∂D, then ν = ν1 + ν2 where the vector ν1 ∈ Rk is orthogonal to ∂D and ν2 is a
vector from Tb(B). Thus

〈∇h∗, ν〉 = 〈(∇xh) ◦ π, ν1〉 = 0, (4.14)

because h is a special exhaustion function onD and satisfies the property (b2) on ∂D. If b ∈ ∂B,
then the vector ν is orthogonal to ∂B × Rn and

〈∇h∗, ν〉 = 〈(∇xh) ◦ π, ν〉 = 0, (4.15)

because the vector (∇xh) ◦ π is parallel to Rn.
The other requirements for a special exhaustion function for the manifold M are easy

to verify.
Therefore, the function

h∗ = h∗(x, b) = h ◦ π : M −→ (0,∞) (4.16)

is a special exhaustion function on the manifold M = D × B.

Example 4.5. We fix an integer k, 1 ≤ k ≤ n, and set

dk(x) =

(
k∑
i=1

x2
i

)1/2

. (4.17)

It is easy to see that |∇dk(x)| = 1 everywhere in Rn \ Σ0, where Σ0 = {x ∈ Rn : dk(x) = 0}. We
shall call the set

Bk(t) = {x ∈ Rn : dk(x) < t} (4.18)

a k-ball and the set

Σk(t) = {x ∈ Rn : dk(x) = t} (4.19)

a k-sphere in Rn.
We shall say that an unbounded domain D ⊂ Rn is k-admissible if for each t >

infx∈Ddk(x), the set D ∩ Bk(t) has compact closure.
It is clear that every unbounded domain D ⊂ Rn is n-admissible. In the general case,

the domainD is k-admissible if and only if the function dk(x) is an exhaustion function ofD.



10 Journal of Inequalities and Applications

It is not difficult to see that if a domain D ⊂ Rn is k-admissible, then it is l-admissible for all
k < l < n.

Fix 1 ≤ k < n. Let Δ be a bounded domain in the (n − k)-plane x1 = · · · = xk = 0 and let

D = {x = (x1, . . . , xk, xk+1, . . . , xn) ∈ Rn : (xk+1, . . . , xn) ∈ Δ}. (4.20)

The domainD is k-admissible. The k-spheres Σk(t) are orthogonal to the boundary ∂D
and therefore 〈∇dk, ν〉 = 0 everywhere on the boundary. The function

h(x) =

⎧⎨
⎩
logdk(x), p = k,

d
(p−k)/(p−1)
k (x), p /= k,

(4.21)

satisfies (3.4). By Lemma 4.3, the function h is a special exhaustion function of the domainD.
Therefore, the domain D has p-parabolic type for p ≥ k and p-hyperbolic type for p < k.

Example 4.6. Fix 1 ≤ k < n. Let Δ be a bounded domain in the plane x1 = · · · = xk = 0 with a
(piecewise) smooth boundary and let

D = {x = (x1, . . . , xn) ∈ Rn : (xk+1, . . . , xn) ∈ Δ} = Rn−k ×Δ (4.22)

be the cylinder domain with base Δ.
The domainD is k-admissible. The k-spheres Σk(t) are orthogonal to the boundary ∂D

and therefore 〈∇dk, ν〉 = 0 everywhere on the boundary, where dk is as in Example 4.5.

Let h = φ(dk) where φ is a C2-function with φ′ ≥ 0. We have ∇h = φ′∇dk and since
|∇dk| = 1, we obtain

n∑
i=1

∂

∂xi

(
|∇h|n−2 ∂h

∂xi

)
=

k∑
i=1

∂

∂xi

((
φ′)n−1 ∂dk

∂xi

)

= (n − 1)
(
φ′)n−2φ′′ +

k − 1
dk

(
φ′)n−1.

(4.23)

From the equation

(n − 1)φ′′ +
k − 1
dk

φ′ = 0, (4.24)

we conclude that the function

h(x) = (dk(x))
(n−k)/(n−1) (4.25)

satisfies (3.8) in D \K and thus it is a special exhaustion function of the domain D.
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Example 4.7. Let (r, θ), where r ≥ 0, θ ∈ Sn−1(1), be the spherical coordinates in Rn. Let U ⊂
Sn−1(1), ∂U/= ∅, be an arbitrary domain with a piecewise smooth boundary on the unit sphere
Sn−1(1). We fix 0 ≤ r1 < ∞ and consider the domain

D = {(r, θ) ∈ Rn : r1 < r < ∞, θ ∈ U}. (4.26)

As above it is easy to verify that the given domain is n-admissible and the function

h(|x|) = log
|x|
r1

(4.27)

is a special exhaustion function of the domain D for p = n.

Example 4.8. Let A be a compact Riemannian manifold, dimA = k, with piecewise smooth
boundary or without boundary. We consider the Cartesian product M = A × Rn, n ≥ 1. We
denote by a ∈ A, x ∈ Rn, and (a, x) ∈ M the points of the corresponding spaces. It is easy to
see that the function

h(a, x) =

⎧⎨
⎩
log|x|, p = n,

|x|(p−n)/(p−1), p /=n,
(4.28)

is a special exhaustion function for the manifold M. Therefore, for p ≥ n, the given manifold
has p-parabolic type and for p < n, p-hyperbolic type.

Example 4.9. Let (r, θ), where r ≥ 0, θ ∈ Sn−1(1), be the spherical coordinates in Rn. Let U ⊂
Sn−1(1) be an arbitrary domain on the unit sphere Sn−1(1). We fix 0 ≤ r1 < r2 < ∞ and consider
the domain

D = {(r, θ) ∈ Rn : r1 < r < r2, θ ∈ U} (4.29)

with the metric

ds2M = α2(r)dr2 + β2(r)dl2θ, (4.30)

where α(r), β(r) > 0 are C0-functions on [r1, r2) and dlθ is an element of length on Sn−1(1).
The manifold M = (D,ds2M) is a warped Riemannian product. In the cases, α(r) ≡ 1,

β(r) = 1, andU = Sn−1 the manifoldM is isometric to a cylinder in Rn+1. In the cases, α(r) ≡ 1,
β(r) = r, U = Sn−1 the manifold M is a spherical annulus in Rn.

The volume element in the metric (4.30) is given by the expression

dσM = α(r)βn−1(r)dr dSn−1(1). (4.31)
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If φ(r, θ) ∈ C1(D), then the length of the gradient ∇φ inM takes the form

∣∣∇φ
∣∣2 = 1

α2

(
φ′
r

)2 + 1
β2
∣∣∇θφ

∣∣2, (4.32)

where ∇θφ is the gradient in the metric of the unit sphere Sn−1(1).
For the special exhaustion function h(r, θ) ≡ h(r), (3.8) reduces to the following form:

d

dr

((
1

α(r)

)p−1(
h′
r(r)
)p−1

βn−1(r)

)
= 0. (4.33)

Solutions of this equation are the functions

h(r) = C1

∫ r

r1

α(t)
β(n−1)/(p−1)(t)

dt + C2, (4.34)

where C1 and C2 are constants.
Because the function h satisfies obviously the boundary condition (a2) as well as

the other conditions of special exhaustion functions listed in (4.2), we see that under the
assumption

∫ r2 α(t)
β(n−1)/(p−1)(t)

dt = ∞, (4.35)

the function

h(r) =
∫ r

r1

α(t)
β(n−1)/(p−1)(t)

dt (4.36)

is a special exhaustion function on the manifold M.

Theorem 4.10. Let h : M → (0, h0) be a special exhaustion function of a boundary set ξ of the
manifold M. Then

(i) if h0 = ∞, the set ξ has p-parabolic type,

(ii) if h0 < ∞, the set ξ has p-hyperbolic type.

Proof. Choose 0 < t1 < t2 < h0 such that K ⊂ Bh(t1). We need to estimate the p-capacity of the
condenser (Bh(t1),M\ Bh(t2);M). We have

capp

(
Bh(t1),M\ Bh(t2);M

)
=

J

(t2 − t1)p−1
, (4.37)

where

J =
∫
Σh(t)

|∇h|p−1dHn−1
M (4.38)
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is a quantity independent of t > h(K) = sup{h(m) : m ∈ K}. Indeed, for the variational
problem [3, (2.9)], we choose the function ϕ0, ϕ0(m) = 0 form ∈ Bh(t1),

ϕ0(m) =
h(m) − t1
t2 − t1

, m ∈ Bh(t2) \ Bh(t1), (4.39)

and ϕ0(m) = 1 for m ∈ M \ Bh(t2). Using the Kronrod-Federer formula [13, Theorem 3.2.22],
we get

capp(Bh(t1),M\ Bh(t2);M) ≤
∫
M

∣∣∇ϕ0
∣∣p ∗ 1M

≤ 1
(t2 − t1)p

∫
t1<h(m)<t2

|∇h(m)|p ∗ 1M

=
∫ t2

t1

dt

∫
Σh(t)

|∇h(m)|p−1dHn−1
M .

(4.40)

Because the special exhaustion function satisfies (3.8) and the boundary condition (a2),
one obtains for arbitrary τ1, τ2, h(K) < τ1 < τ2 < h0

∫
Σh(t2)

|∇h|p−1dHn−1
M −

∫
Σh(t1)

|∇h|p−1dHn−1
M

=
∫
Σh(t2)

|∇h|p−2〈∇h, ν〉dHn−1
M −

∫
Σh(t1)

|∇h|p−2〈∇h, ν〉dHn−1
M

=
∫
t1<h(m)<t2

divM
(
|∇h|p−2∇h

)
∗1M = 0.

(4.41)

Thus we have established the inequality

capp(Bh(t1),M\ Bh(t2);M) ≤ J

(t2 − t1)p−1
. (4.42)

By the conditions, imposed on the special exhaustion function, the function ϕ0 is an
extremal in the variational problem [3, (2.9)]. Such an extremal is unique and therefore the
preceding inequality holds as an equality. This conclusion proves (4.37).

If h0 = ∞, then letting t2 → ∞ in (4.37) we conclude the parabolicity of the type of
ξ. Let h0 < ∞. Consider an exhaustion {Uk} and choose t0 > 0 such that the h-ball Bh(t0)
contains the compact set K.

Set tk = supm∈∂Uk
h(m). Then for tk > t0, we have

capp

(
Uk0 ,Uk;M

)
≥ capp(Bh(t0), Bh(tk);M) =

J

(tk − t0)p−1
, (4.43)
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and hence

lim inf
k→∞

capp

(
Uk0 ,Uk;M

)
≥ J

(h0 − t0)
p−1 > 0, (4.44)

and the boundary set ξ has p-hyperbolic type.

5. Wiman Theorem

Now we will prove Theorem 1.1.

5.1. Fundamental Frequency

Let U ⊂ Σh(τ) be an open set. We need further the following quantity:

λp(U) = inf

(∫
U |∇h|−1

∣∣∇2ϕ
∣∣pdHn−1

M

)1/p
(∫

U |∇h|p−1
∣∣ϕ∣∣pdHn−1

M

)1/p , (5.1)

where the infimum is taken over all functions ϕ ∈ W1
p(U)with suppϕ ⊂ U (By the definition,

ϕ is a W1
p -function on an open set U, if ϕ belongs to this class on every component of U.).

Here ∇2ϕ is the gradient of ϕ on the surface Σh(τ).
In the case |∇h| ≡ 1, this quantity is well-known and can be interpreted, in particular,

as the best constant in the Poincaré inequality. Following [14], we shall call this quantity the
fundamental frequency of the rigidly supported membrane U.

Observe a useful property of the fundamental frequency.

Lemma 5.1. LetU ⊂ Σh(τ) be an open set and letUi be the components of U, i = 1, 2, . . .. Then

λp(U) = inf
i
λp(Ui). (5.2)

Proof. To prove this property, we fix arbitrary functions ϕi with suppϕi ⊂ Ui. Set ϕ(m) =
ϕi(m) for m ∈ Ui and ϕ = 0 for U \ (

⋃
i Ui). Hence

λ
p
p(Ui)

∫
Ui

|∇h|p−1
∣∣ϕi

∣∣pdHn−1 ≤
∫
Ui

|∇h|−1
∣∣∇2ϕi

∣∣pdHn−1. (5.3)

Summation yields

(
inf
i
λ
p
p(Ui)

) ∑
i

∫
Ui

|∇h|p−1
∣∣ϕi

∣∣pdHn−1 ≤
∑
i

∫
Ui

|∇h|−1
∣∣∇2ϕi

∣∣pdHn−1 (5.4)
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and we obtain
(
inf
i
λ
p
p(Ui)

) ∫
U

|∇h|p−1
∣∣ϕ∣∣pdHn−1 ≤

∫
U

|∇h|−1
∣∣∇2ϕ

∣∣pdHn−1. (5.5)

This gives

inf
i
λp(Ui) ≤ λp(U). (5.6)

The reverse inequality is evident. Indeed, if Ui is a component of U, then evidently

λp(U) ≤ λp(Ui) (5.7)

and hence

λp(U) ≤ inf
i
λp(Ui). (5.8)

We also need the following statement.

Lemma 5.2. Under the above assumptions for a.e. τ ∈ (0, h0), we have

ε(τ ;FB) ≥
λp(Σh(τ))

c
, (5.9)

where λp is the fundamental frequency of the membrane Σh(τ) defined by formula (5.1) and

c = c
(
ν1, ν2, p

)
=

⎧⎨
⎩
c1 for p ≤ 2,

c2 for p ≥ 2,
(5.10)

where

c1 =
√
ν22 − ν21 + 2(2−p)/2 ν1p

−1(p − 1
)(p−1)/p

,

c2 =
√
ν22 − ν21 + ν1

p − 1
p

.

(5.11)

For the proof, see Lemma 4.3 in [10].
We now use these estimates for proving Phragmén-Lindelöf type theorems for the

solutions of quasilinear equations on manifolds.

Theorem 5.3. Let h : M → (0,∞) be an exhaustion function. Suppose that the manifoldM satisfies
the condition

∫∞
λp(Σh(t))dt = ∞. (5.12)
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Let f be a continuous solution of (3.4) with (3.2) and (3.3) on M such that

lim sup
m→m0

f(m) ≤ 0, ∀m0 ∈ ∂M. (5.13)

Then either f(m) ≤ 0 everywhere onM or

lim inf
τ →∞

∫
τ<h(m)<τ+1

∣∣∇h
∥∥f(m)

∥∥∇f(m)
∣∣p−1 ∗ 1 exp

{
−c3
∫ τ

λp(Σh(t))dt
}

> 0, (5.14)

lim inf
τ →∞

∫
τ<h(m)<τ+1

|∇h(m)|p
∣∣f(m)

∣∣p ∗ 1 exp
{
−c3
∫ τ

λp(Σh(t))dt
}

> 0. (5.15)

In particular, if h is a special exhaustion function on M, then

lim inf
τ−→∞

M(τ + 1) exp
{
−c3
p

∫ τ

λp(Σh(t))dt
}

> 0. (5.16)

Here

M(t) = sup
m∈Σh(t)

∣∣f(m)
∣∣

(5.17)

and c3 = ν1c
−1 where c is the constant of Lemma 5.2.

Proof. We assume that at some point m1 ∈ intM we have f(m1) > 0. We consider the set

O =
{
m ∈ M : f(m) > f(m1)

}
. (5.18)

By, [3, Corollary 4.57] the set O is noncompact.
The function h is an exhaustion function on O. Using the relation [3, 6.74] for the

function f(m) − f(m1) on O, we have

lim inf
τ →∞

∫
O(τ)

|∇h|
∣∣f(m) − f(m1)

∣∣∣∣A(m,∇f
)∣∣ ∗ 1 exp

{
−ν1
∫ τ

τ0

ε(t;FO)dt

}
> 0, (5.19)

where O(τ) = {m ∈ O : τ < h(m) < τ + 1}.
By Lemma 5.2, the following inequality holds

ε(t;FO) ≥
λp(Σh(t) ∩ O)

c
. (5.20)

Because Σh(t) ∩ O ⊂ Σh(t), it follows that λp(Σh(t) ∩ O) ≥ λp(Σh(t)) and hence

ε(t;FO) ≥
λp(Σh(t))

c
. (5.21)
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Thus using the requirement (3.3) for (3.4), we arrive at the estimate

lim inf
τ →∞

∫
O(τ)

|∇h(m)|
∣∣f(m) − f(m1)

∣∣∣∣∇f(m)
∣∣p−1 ∗ 1 exp

{
−c3
∫ τ

λp(Σh(t))dt
}

> 0. (5.22)

Further we observe that from the condition f(m) > f(m1) > 0 on O, it follows that

∫
O(τ)

|∇h|
∣∣f(m) − f(m1)

∣∣∣∣∇f(m)
∣∣p−1 ∗ 1 =

∫
O(τ)

f(m)|∇h|
∣∣∇f(m)

∣∣p−1 ∗ 1

− f(m1)
∫
O(τ)

|∇h|
∣∣∇f(m)

∣∣p−1 ∗ 1

≤
∫
τ<h(m)<τ+1

|∇h|
∣∣f(m)

∣∣∣∣∇f(m)
∣∣p−1 ∗ 1.

(5.23)

From this relation, we arrive at (5.14).
The proof of (5.15) is carried out exactly in the same way by means of the inequality

[3, 5.75].
In order to convince ourselves of the validity of (5.16), we observe that by the

maximum principle we have

∫
τ<h(m)<τ+1

|∇h(m)|p
∣∣f(m)

∣∣p ∗ 1 ≤ Mp(τ + 1)
∫
τ<h(m)<τ+1

|∇h(m)|p ∗ 1. (5.24)

But h is a special exhaustion function and therefore by (4.37) we can write

∫
τ<h(m)<τ+1

|∇h(m)|p ∗ 1 = J, (5.25)

where J is a number independent of τ .
The relation (5.15) implies then that (5.16) holds.

Example 5.4. Let A be a compact Riemannian manifold with nonempty piecewise smooth
boundary, dimA = k ≥ 1, and let M = A × Rn, n ≥ 1. Choosing as a special exhaustion
function of M the function h(a, x), defined in Example 4.8, we have

Σh(t) = A × Sn−1(t). (5.26)

Then using the fact that h(a, x)|Σh(t) = t, we find

|∇h(a, x)|Σh(t) = h′(t) =

⎧⎪⎨
⎪⎩
e−t for p = n

p − n

p − 1
t(1−n)/(p−n) for p /=n.

(5.27)
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Therefore, on the basis of (5.1) we get

λp(Σh(t)) =
1

h′(t)
inf

(∫
A×Sn−1(t)

∣∣∇2φ
∣∣pdHn−1

M

)1/p
(∫

A×Rn

∣∣φ∣∣pdHn−1
M

)1/p . (5.28)

Computation yields

∣∣∇2φ(a, x)
∣∣2 = ∣∣∇Aφ(a, x)

∣∣2 + ∣∣∇Sn−1(t)φ(a, x)
∣∣2

=
∣∣∇Aφ(a, x)

∣∣2 + 1
t2

∣∣∣∣∇Sn−1(1)φ

(
a,

x

|x|

)∣∣∣∣
2

.

dHn−1
M = dσAdS

n−1(t),

(5.29)

where dσA is an element of k-dimensional area onA. Therefore,

λp(Σh(t))

=
1

h′(t)
inf

(∫
A dσA

∫
Sn−1(t)

(∣∣∇Aφ(a, x)
∣∣2 + ∣∣∇Sn−1(t)φ(a, x)

∣∣2)p/2dSn−1(t)
)1/p

(∫
A dσA

∫
Sn−1(t) φ

p(a, x)dSn−1(t)
)1/p

=
1

h′(t)
inf

(∫
A dσA

∫
Sn−1(1)

(∣∣∇Aφ(a, x/|x|)
∣∣2 + (1/t2)

∣∣∇Sn−1(t)φ(a, x/|x|)
∣∣2)p/2dSn−1(1)

)1/p

(∫
A dσA

∫
Sn−1(1) φ

p(a, x/|x|) dSn−1(1)
)1/p

(5.30)

and we obtain

λp(Σh(t)) =
1

h′(t)
inf

(∫
A dσA

∫
Sn−1(1)

(∣∣∇Aψ
∣∣2 + (1/t2)

∣∣∇Sn−1(1)ψ
∣∣2)p/2dSn−1(1)

)1/p

(∫
A dσA

∫
Sn−1(1) ψ

pdSn−1(1)
)1/p , (5.31)

where the infimum is taken over all functions ψ = ψ(a, x) with

ψ(a, x) ∈ W1
p

(
A × Sn−1(1)

)
, ψ(a, x)|a∈∂A = 0, ∀x ∈ Sn−1(1). (5.32)

In the particular case n = 1, Theorem 5.3 has a particularly simple content. Here h(x)
is a function of one variable, and Σh(t) = A × S0(t) is isometric to Σh(1). Therefore, h′(t) ≡ 1
and by (5.31)we have

λp(Σh(t)) ≡ λp(Σh(1)) ≡ λp(A) ∀t ∈ R1. (5.33)
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In the same way, (5.16) can be written in the form

lim inf
t→∞

max
|x|=t

∣∣f(a, x)∣∣ exp
{
−c3
p

λn(A)
}

> 0. (5.34)

Let n ≥ 2. We do not know of examples where the quantity (5.31) had been
exactly computed. Some idea about the rate of growth of the quantity M(τ) in the
Phragmén-Lindelöf alternative can be obtained from the following arguments. Simplifying
the numerator of (5.31) by ignoring the second summand, we get the estimate

λp(Σh(t)) ≥
1

h′(t)
inf
ψ

(∫
A dσA

∫
Sn−1(1)

∣∣∇Aψ(a, x)
∣∣pdSn−1(1)

)1/p
(∫

A dσA
∫
Sn−1(1) ψ

p(a, x)dSn−1(1)
)1/p . (5.35)

For each fixed x ∈ Sn−1(1), the function ψ(a, x) is finite on A, because from the definition of
the fundamental frequency it follows that

(∫
A

∣∣∇Aψ(a, x)
∣∣p dσA

)1/p

≥ λp(A)
(∫

A
ψp(a, x)dσA

)1/p

. (5.36)

From this we get

λp(Σh(t)) ≥
1

h′(t)
λp(A). (5.37)

Thus

∫ τ

τ0

λp(Σh(r))dr ≥
∫ τ

τ0

λp(A)
dh(r)
h′(r)

= λp(A)
∫ τ

τ0

r ′(h)dh = λp(A)(r(τ) − r(τ0)). (5.38)

Here r(h) is the inverse function of h(r). Because

max
h(|x|)=τ

∣∣f(a, x)∣∣ exp
{
−c3
p
λp(A)r(τ)

}
= max

|x|=r(τ)

∣∣f(a, x)∣∣ exp
{
−c3
p
λp(A)r(τ)

}
, (5.39)

the relation (5.16) can be written in the form (5.34).

Example 5.5. Let U ⊂ Sn−1 be an arbitrary domain with nonempty boundary. We consider a
warped Riemannian product M = (r1, r2) ×U equipped with the metric (4.30) of the domain
D. We now analyze Theorem 5.3 in this case.
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The function h(r), given by (4.36) under the requirement (4.35), is a special exhaustion
function on M. We compute the quantity λp(Σh(τ)) as follows:

|∇h(|x|)|Σh(τ) = h′(r(τ)) =
α(r(τ))

βn−1(r(τ))
,

∣∣∇2φ
∣∣
Σh(τ)

=

∣∣∇Sn−1(1)φ
∣∣

β(r(τ))
,

dHn−1
M = βn−1(r(τ))dSn−1(1), r(τ) = h−1(τ).

(5.40)

Therefore, observing that

1
h′(r(τ))

= r ′(τ), (5.41)

we have

λp(Σh(τ)) =
1

h′(r(τ))
inf
φ

(∫
Σh(τ)

∣∣∇2φ
∣∣pdHn−1

M

)1/p
(∫

Σh(τ)
φpdHn−1

M

)1/p

=
r ′(τ)

β(r(τ))
inf

(∫
U

∣∣∇Sn−1(1)φ
∣∣pdSn−1(1)

)1/p
(∫

U φpdSn−1(1)
)1/p .

(5.42)

Thus

λp(Σh(τ)) =
r ′(τ)

β(r(τ))
λp(U). (5.43)

Further we get

∫ τ

τ0

λh(Σh(τ))dτ = λp(U)
∫ r(τ)

r(τ0)

dr

β(r)
,

max
h(|x|)=τ

∣∣f(x)∣∣ exp
{
−c3
p
λp(U)

∫ r(τ) dr

β(r)

}
= max

|x|=r(τ)

∣∣f(x)∣∣ exp
{
−c3
p
λp(U)

∫ r(τ) dr

β(r)

}
.

(5.44)

Thus the relation (5.16) attains the form

lim inf
r−→∞

max
|x|=r

∣∣f(x)∣∣ exp
{
−c3
p
λp(U)

∫ r dr

β(r)

}
> 0. (5.45)
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5.2. Proof of Theorem 1.1

We assume that

lim sup
τ →∞

min
m∈Σh(τ)

u
(
f(m)

)
= K < ∞. (5.46)

Consider the set

O =
{
m ∈ X : u

(
f(m)

)
> qK

}
, q < 1. (5.47)

It is clear that for a suitable choice of q, the set O is not empty.
By assumptions, the function u satisfies (3.4) with (3.2), (3.3) and structure constants

p = n, ν1, ν2. Since f is quasiregular, by Lemma 14.38 of [12] the function u(f(m)) is a
subsolution of another equation of the form (3.4) with structure constants ν′1 = ν1/KO,
ν′2 = ν2KI , where KO and KI are outer and inner dilatations of f . In view of the maximum
principle for subsolutions, the set O does not have relatively compact components. Without
restricting generality, we may assume thatO is connected. Because for sufficiently large τ , the
condition

O ∩ Σh(τ)/= ∅ (5.48)

holds; we see that

λn(O ∩ Σh(τ)) ≥ λn(Σh(τ); 1). (5.49)

Therefore, the condition (1.1) on the manifold X implies the following property:

∫∞
λn(O ∩ Σh(τ))dτ = ∞. (5.50)

Observing that

max
m∈Σh(τ)

u
(
f(m)

)
≥ max

m∈Σh(τ)∩O
u
(
f(m)

)
, (5.51)

we see that by (1.2)

lim inf
τ →∞

max
Σh(τ)∩O

u
(
f(m)

)
exp
{
−C
∫ τ

λn(O ∩ Σh(t))dt
}

= 0 (5.52)

with the constant C of Theorem 1.1.
It is easy to see that C = c3/n. Using (5.16) with p = n for the function u(f(m)) in the

domainO, we see that u(f(m)) ≡ qK onO. This contradicts with the definition of the domain
O.
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Example 5.6. As the first corollary, we shall now prove a generalization of Wiman’s theorem
for the case of quasiregular mappings f : M → Rn where M is a warped Riemannian
product.

For 0 ≤ r1 < r2 ≤ ∞, let

D =
{
m = (r, θ) ∈ Rn : r1 < r < r2, θ ∈ Sn−1(1)

}
(5.53)

be a ring domain in Rn and let M = (r1, r2) × Sn−1(1) be an n-dimensional Riemannian
manifold on D with the metric

ds2M = α2(r)dr2 + β2(r)dl2n−1, (5.54)

where α(r), β(r) > 0 are continuously differentiable on [r1, r2) and dln−1 is an element of
length on Sn−1(1).

As we have proved in Example 4.9, under condition (4.35), the function

h(r) =
∫ r

r1

α(t)
β(t)

dt (5.55)

is a special exhaustion function onM.
Let f : M → Rn be a quasiregular mapping. We set u(y) = log+|y|. This function is

a subsolution of (3.4) with p = n and also satisfies all the other requirements imposed on a
growth function.

We find

λn
(
Sn−1(τ); 1

)
=

1
β(r(τ))

λn
(
Sn−1(1); 1

)
(5.56)

and further

λn(Σh(τ); 1) =
λn
(
Sn−1(1); 1

)
β(r(τ))h′(r(τ))

. (5.57)

Therefore, the requirement (1.1) on the manifold will be fulfilled if

∫ r2 dr

β(r)
= ∞ (5.58)

holds.
Because

max
Σh(τ)=τ

log+
∣∣f(r, θ)∣∣exp

{
−C
∫ τ

λn(Σh(t); 1)dt
}

≤ max
r=h−1(τ)

log+
∣∣f(r, θ)∣∣ exp

{
−Cλn

(
Sn−1(1); 1

)∫h−1(τ) dr

β(r)

}
,

(5.59)
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we see that, in view of (1.2), it suffices that

lim inf
τ → r2

max
Σh(τ)

log+
∣∣f(r, θ)∣∣ exp

{
−Cλn

(
Sn−1(1); 1

)∫ τ dt

β(t)

}
= 0. (5.60)

In this way, we get the following corollary.

Corollary 5.7. Let f : M → Rn be a nonconstant quasiregular mapping from the warped
Riemannian productM = (r1, r2)×Sn−1(1) and h a special exhaustion function ofM. If the manifold
M has property (5.58) and the mapping f has property (5.60), then

lim sup
τ → r2

min
Σh(τ)

∣∣f(r, θ)∣∣ = ∞. (5.61)

Example 5.8. Suppose that under the assumptions of Example 5.6, we have (in addition) r1 =
0, r2 = ∞, and the functions α(r) = β(r) ≡ 1, that is, M = (0,∞) × Sn−1(1) with the metric
ds2M = dr2 + dl2n−1 is an n-dimensional half-cylinder. As the special exhaustion function of the
manifold M, we can take h ≡ r. The condition (5.58) is obviously fulfilled for the manifold.

The condition (5.60) for the mapping f attains the form

lim inf
r→∞

max
θ∈Sn−1(1)

log+
∣∣f(r, θ)∣∣e−Cλn(Sn−1(1);1)r = 0. (5.62)

Corollary 5.9. If M = (0,∞) × Sn−1(1) is a half-cylinder and f : M → Rn is a nonconstant
quasiregular mapping satisfying (5.62), then

lim sup
r→∞

min
θ∈Sn−1(1)

∣∣f(r, θ)∣∣ = ∞. (5.63)

We assume that in Example 5.8 the quantities r1 = 0, r2 = ∞, and the functions α(r) ≡ 1,
β(r) = r, that is, the manifold is Rn. As the special exhaustion function, we choose h = log |x|. This
function satisfies (3.6) with p = n and ν1 = ν2 = 1. The condition (5.58) for the manifold is obviously
fulfilled.

The condition (5.62) attains the form

lim inf
r→∞

max
|x|=r

log+
∣∣f(x)∣∣r−C′λn(Sn−1(1);1) = 0, (5.64)

where

C′ =
(
n − 1 + n

(
K2(f) − 1

)1/2)−1
. (5.65)

We have the following corollary.

Corollary 5.10. Let f : Rn → Rn be a nonconstant quasiregular mapping satisfying (5.64). Then

lim sup
r→∞

min
|x|=r

∣∣f(x)∣∣ = ∞. (5.66)
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6. Asymptotic Tracts and Their Sizes

Wiman’s theorem for the quasiregular mappings f : Rn → Rn asserts the existence of a
sequence of spheres Sn−1(rk), rk → ∞, along which the mapping f(x) tends to ∞. It is
possible to further strengthen the theorem and to specify the sizes of the sets along which
such a convergence takes place. For the formulation of this result it is convenient to use the
language of asymptotic tracts discussed by MacLane [15].

6.1. Tracts

Let D be a domain in the complex plane C and let f be a holomorphic function on D. A
collection of domains {D(s) : s > 0} is called an asymptotic tract of f if

(a) each of the sets D(s) is a component of the set

{
z ∈ D :

∣∣f(z)∣∣ > s > 0
}
; (6.1)

(b) for all s2 > s1 > 0, we have D(s2) ⊂ D(s1) and
⋂

s>0 D(s) = ∅.

Two asymptotic tracts {D′(s)} and {D′′(s)} are considered to be different if for some
s > 0 we have D′(s) ∩ D′′(s) = ∅.

Below we shall extend this notion to quasiregular mappings f : M → N of
Riemannian manifolds. We study the existence of an asymptotic tract and its size.

Let M,N be n-dimensional connected noncompact Riemannian manifolds and let
u = u(y) be a growth function on N, which is a positive subsolution of (3.4) with structure
constants p = n, ν1, ν2.

A family {M(s)} is called an asymptotic tract of a quasiregular mapping f : M → N
if

(a) each of the sets {M(s)} is a component of the set

{
m ∈ M : u

(
f(m)

)
> s > 0

}
; (6.2)

(b) for all s2 > s1 > 0, we have M(s2) ⊂ M(s1) and
⋂

s>0 M(s) = ∅.

Let f : M → Rn be a quasiregular mapping having a point a ∈ Rn as a Picard
exceptional value, that is, f(m)/=a and f(m) attains onM all values of B(a, r) \ {a} for some
r > 0.

The set {∞} ∪ {a} has n-capacity zero in Rn and there is a solution g(y) in Rn \ {a}
of (3.4) such that g(y) → ∞ as y → a or y → ∞ (cf. [12, Chapter 10, polar sets] ). As the
growth function on Rn \ {a}, we choose the function u(y) = max(0, g(y)). It is clear that this
function is a subsolution of (3.4) in Rn \ {a}.

The function u(f(m)) also is a subsolution of an equation of the form (3.4) on M.
Because the mapping f(m) attains all values in the punctured ball B(a, r), then among the
components of the set

{
m ∈ M : u

(
f(m)

)
> s
}

(6.3)
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there exists at least one M(s) having a nonempty intersection with f−1(B(a, r)). Then by the
maximum principle for subsolutions, such a component cannot be relatively compact.

Letting s → ∞, we find an asymptotic tract {M(s)}, along which a quasiregular
mapping tends to a Picard exceptional value a ∈ Rn.

Because one can find in every asymptotic tract a curve Γ along which u(f(m)) → ∞,
we obtain the following generalization of Iversen’s theorem [16].

Theorem 6.1. Every Picard exceptional value of a quasiregular mapping f : M → Rn is an
asymptotic value.

The classical form of Iversen’s theorem asserts that if f is an entire holomorphic function of the
plane, then there exists a curve Γ tending to infinity such that

f(z) −→ ∞ as z −→ ∞ on Γ. (6.4)

We prove a generalization of this theorem for quasiregular mappings f : M → N of Riemannian
manifolds.

The following result holds.

Theorem 6.2. Let f : M → N be a nonconstant quasiregular mapping between n-dimensional
noncompact Riemannian manifolds without boundaries. If there exists a growth function u on N
which is a positive subsolution of (3.4) with p = n and on M a special exhaustion function, then the
mapping f has at least one asymptotic tract and, in particular, at least one curve Γ onM along which
u(f(m)) → ∞.

Proof. Let h : M → (0,∞) be a special exhaustion function of the manifold M. Set

lim inf
τ →∞

min
h(m)=τ

u
(
f(m)

)
= K. (6.5)

If K = ∞, then u(f(m)) tends uniformly on M to ∞ for h(m) → ∞. The asymptotic
tract {M(s)} generates mutual inclusion of the components of the set {m ∈ M : h(m) > s}.

Let K < ∞. For an arbitrary s > K, we consider the set

O(s) =
{
m ∈ M : u

(
f(m)

)
> s
}
. (6.6)

Because u(f(m)) is a subsolution, the nonempty set O(s) does not have relatively compact
components. By a standard argument, we choose for each s > K, asM(s), a component of the
set O(s) having property (b) of the definition of an asymptotic tract. We now easily complete
the proof for the theorem.

6.2. Proof of Theorem 1.2

Wefix a growth function u and a special exhaustion function h as in Section 4. Let f : M → N
be a nonconstant quasiregular mapping. We set

M(τ) = max
h(m)=τ

u
(
f(m)

)
. (6.7)
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LetK be the quantity defined in (6.5). The caseK = ∞ is degenerate and has no interest
in the present case.

Suppose now thatK < ∞. For s > K, we consider the setM(s), defined in the proof of
the preceding theorem. Define

τ0 = τ0(s) > inf
m∈M(s)

h(m). (6.8)

Because u(f(m)) is a subsolution of an equation of the form (3.4) onM by [3, Theorem 5.59],
we have for an arbitrary τ > τ0

∫
Bh(τ0)∩M(s)

∣∣∇u
(
f(m)

)∣∣n ∗ 1 ≤ exp

{
−ν1
∫ τ

τ0

ε(t)dt

}∫
Bh(τ)∩M(s)

∣∣∇u
(
f(m)

)∣∣n ∗ 1. (6.9)

Using the inequality (4.5) of [10] for the quantity ε(t), we get

∫
Bh(τ0)∩M(s)

∣∣∇u
(
f(m)

)∣∣n ∗ 1

≤ exp

{
−ν1
c

∫ τ

τ0

λn(Σh(t) ∩M(s))dt

}∫
Bh(τ)∩M(s)

∣∣∇u
(
f(m)

)∣∣n ∗ 1,
(6.10)

where

c =
√
ν−22 − ν−21 +

n − 1
n

ν1. (6.11)

By [3, 5.71], we have

(
ν1
ν2

)n ∫
Bh(τ)

∣∣∇u
(
f(m)

)∣∣n ∗ 1 ≤ nn

∫
Bh(τ+1)\Bh(τ)

|∇h|n
∣∣u(f(m)

)∣∣n ∗ 1

≤ nnMn(τ + 1)V (τ),

(6.12)

where

V (τ) =
∫
Bh(τ+1)\Bh(τ)

|∇Mh|n ∗ 1. (6.13)

But h is a special exhaustion function and as in the proof of (4.37)we get

V (τ) ≤ J ≡ const (6.14)

for all sufficiently large τ . Hence

∫
Bh(τ)

∣∣∇u
(
f(m)

)∣∣n ∗ 1 ≤ JMn(τ + 1) (6.15)
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and further

∫
Bh(τ0)∩M(s)

∣∣∇u
(
f(m)

)∣∣n ∗ 1 ≤ JMn(τ + 1) exp

{
−C
∫ τ

τ0

λn(Σh(t) ∩M(s))dt

}
, (6.16)

where C = ν1/c and c is defined in Lemma 5.2.
Under these circumstances, from the condition (1.5) for the growth ofM(τ), it follows

that for all ε > 0 and for all sufficiently large τ , we have

∫
Bh(τ0)∩M(s)

∣∣∇u
(
f(m)

)∣∣n ∗ 1 ≤ Jε exp

{∫ τ

τ0

(
nγλn(Σh(t); 1) − Cλn(Σh(t) ∩M(s))

)
dt

}
. (6.17)

If we assume that for all τ > τ0

∫ τ

τ0

(
nγλn(Σh(t); 1) − Cλn(Σh(t) ∩M(s))

)
dt ≤ 0, (6.18)

then because ε > 0 was arbitrary, it would follow from (6.17) that |∇u(f(m))| ≡ 0 on Bh(τ0) ∩
M(s)which is impossible.

Hence there exists τ = τ(K) > τ0(K) for which

λn(Σh(τ) ∩M(s)) <
nγ

C
λn(Σh(τ); 1). (6.19)

Letting K → ∞, we see that τ0 → ∞. Using each time the relation (6.17), we get
Theorem 1.2.

In the formulation of the theorem, we used only a part of the information about the
sizes of the sets M(s) which is contained in (6.17). In particular, the relation (6.17) to some
extent characterizes also the linear measure of those t > τ0 for which the intersection of the
setsM(s)with the h-spheres Σh(t) is not too narrow.

We consider the case of warped Riemannian product M = (r1, r2) × Sn−1(1) with the
metric ds2M described in Example 5.6. Let h be a special exhaustion function of the manifold
M of the type (4.36)with p = n, satisfying condition (4.35).

Here, as in Example 5.6,

λn(Σh(τ); 1) =
λn
(
Sn−1(1); 1

)
β(r(τ))h′(r(τ))

, λn(U) =
λn(U∗)

β(r(τ))h′(r(τ))
, (6.20)

where r(τ) = h−1(τ) and U∗ ⊂ Sn−1(1) is the image of the set U under the similarity mapping

x �−→ x

β(r(τ)) (6.21)

of Rn.
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Let f : M → Rn be a nonconstant quasiregular mapping. We choose as a growth
function u the function u = log+|y|. This function satisfies (3.6) with p = n and ν1 = ν2 = 1.
The condition (1.5) can be written as follows:

lim inf
τ → r2

max
r=τ

log+
∣∣f(r, θ)∣∣ exp

{
−γλn

(
Sn−1(1); 1

)∫ r dt

β(t)

}
= 0. (6.22)

Hence we obtain

Corollary 6.3. If a quasiregular mapping f : M → Rn has the property (6.22) for some γ > 0, then
for each k = 1, 2, . . . there are spheres Sn−1(tk), tk ∈ (r1, r2), tk → r2, and open setsU ⊂ Sn−1(tk) for
which

∣∣f(m)
∣∣ > k ∀m ∈ U, λn(U) <

nγ

C′ λn
(
Sn−1(1); 1

)
, (6.23)

where as above

C′ =
(
n − 1 + n

(
K2(f) − 1

)1/2)−1
. (6.24)

Corresponding estimates of the quantities λn(U∗) and λn(Sn−1(1); 1) were given in [7]
in terms of the (n − 1)-dimensional surface area and in terms of the best constant in the
embedding theorem of the Sobolev space W1

n into the space C on open subsets of the sphere.
This last constant can be estimated without difficulties in terms of the maximal radius of balls
contained in the given subset.
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