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Recently, many authors have studied twisted q-Bernoulli polynomials by using the p-adic invariant
q-integral on Zp. In this paper, we define the twisted p-adic q-integral on Zp and extend our result
to the twisted q-Bernoulli polynomials and numbers. Finally, we derive some various identities
related to the twisted q-Bernoulli polynomials.

1. Introduction

Let p be a fixed prime number. Throughout this paper, the symbols Z,Zp,Qp,C, and Cp will
denote the ring of rational integers, the ring of p-adic integers, the field of p-adic rational
numbers, the complex number field, and the completion of the algebraic closure of Qp,
respectively. Let N be the set of natural numbers and Z+ = N ∪ {0}. Let vp be the normalized
exponential valuation of Cp with |p|p = p−vp(p) = 1/p.

When one talks of q-extension, q is variously considered as an indeterminate, a
complex q ∈ C, or p-adic number q ∈ Cp. If q ∈ C, one normally assumes that |q| < 1. If
q ∈ Cp, then we assume that |q − 1|p < 1.

For n ∈ N, let Tp be the p-adic locally constant space defined by

Tp =
⋃

n≥1
Cpn = lim

n→∞
Cpn = Cp∞ , (1.1)

where Cpn = {ζ ∈ Cp | ζpn = 1 for some n ≥ 0} is the cyclic group of order pn.
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Let UD(Zp) be the space of uniformly differentiable function on Zp.
For f ∈ UD(Zp), the p-adic invariant q-integral on Zp is defined as

Iq
(
f
)
=
∫

Zp

f(x)dμq(x) = lim
N→∞

1
[
pN

]
q

pN−1∑

x=0

f(x)qx, (1.2)

compare with [1–3].
It is well known that the twisted q-Bernoulli polynomials of order k are defined as

ext
(

t

etζq − 1

)k

=
∞∑

n=0

β
(k)
n,ζ,q(x)

tn

n!
, ζ ∈ Tp, (1.3)

and βkn,ζ,q = βkn,ζ,q(0) are called the twisted q-Bernoulli numbers of order k. When k = 1,
the polynomials and numbers are called the twisted q-Bernoulli polynomials and numbers,
respectively. When k = 1 and q = 1, the polynomials and numbers are called the twisted
Bernoulli polynomials and numbers, respectively. When k = 1, q = 1, and ζ = 1, the
polynomials and numbers are called the ordinary Bernoulli polynomials and numbers,
respectively.

Many authors have studied the twisted q-Bernoulli polynomials by using the
properties of the p-adic invariant q-integral on Zp (cf. [4]). In this paper, we define the
twisted p-adic q-integral on Zp and extend our result to the twisted q-Bernoulli polynomials
and numbers. Finally, we derive some various identities related to the twisted q-Bernoulli
polynomials.

2. Multivariate Twisted p-Adic q-Integral on Zp Associated with
Twisted q-Bernoulli Polynomials

In this section, we assume that q ∈ Cp with |q−1|p < 1. For ζ ∈ Tp, we define the (q, ζ)-numbers
as

[k]q,ζ =
1 − qkζ

1 − q
, for k ∈ Zp. (2.1)

Note that [k]q = [k]q,1 = (1 − qk)/(1 − q).
Let us define

(
n
k

)

q,ζ

=
[n]q,ζ!

[k]q,ζ![n − k]q,ζ!
, (2.2)

where [k]q,ζ! = [k]q,ζ[k − 1]q,ζ · · · [1]q,ζ. Note that ( n
k ) = ( n

k )1,1 = n!/k!(n − k)!.
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Now we construct the twisted p-adic q-integral on Zp as follows:

Iq,ζ
(
f
)
=
∫

Zp

f(x)dμq,ζ(x)

= lim
N→∞

pN−1∑

x=0

f(x)μq,ζ

(
x + pNZp

)

= lim
N→∞

1
[
pN

]
q

pN−1∑

x=0

f(x)qxζx,

(2.3)

where μq,ζ(x + pNZp) = qxζx/[pN]q. From the definition of the twisted p-adic q-integral on
Zp, we can consider the twisted q-Bernoulli polynomials and numbers of order k as follows:

β
(k)
n,q,ζ(x) =

∫

Z
k
p

[x1 + x2 + · · · + xk + x]nqdμq,ζ(x1)dμq,ζ(x2) · · ·dμq,ζ(xk)

= lim
N→∞

1
[
pN

]k
q

pN−1∑

x1,...,xk=0
[x1 + x2 + · · · + xk + x]nqq

x1+x2+···+xkζx1+x2+···+xk

=
1

(
1 − q

)n
n∑

l=0

(
n
l

)
(−1)lqlx lim

N→∞
1

[
pN

]k
q

pN−1∑

x1,...,xk=0

q(l+1)x1+···+(l+1)xkζx1+···+xk

=
1

(
1 − q

)n
n∑

l=0

(
n
l

)
(−1)lqlx (l + 1)k

[l + 1]kq,ζ
.

(2.4)

In the special case x = 0 in (2.4), β(k)
n,q,ζ

(0) = β
(k)
n,q,ζ

are called the twisted q-Bernoulli
numbers of order k.

If we take k = 1 and ζ = 1 in (2.4), we can easily see that

βn,q(x) =
1

(
1 − q

)n
n∑

l=0

(
n
l

)
(−1)lqlx l + 1

[l + 1]q
. (2.5)

compare with [4].

Theorem 2.1. For k ∈ Z+ and ζ ∈ Tp, we have

β
(k)
n,q,ζ(x) =

1
(
1 − q

)n
n∑

l=0

(
n
l

)
(−1)lqlx (l + 1)k

[l + 1]kq,ζ
. (2.6)
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Moreover, if we take x = 0 in Theorem 2.1, then we have the following identity for the
twisted q-Bernoull numbers

β
(k)
n,q,ζ

=
1

(
1 − q

)n
n∑

l=0

(
n
l

)
(−1)l (l + 1)k

[l + 1]kq,ζ
. (2.7)

From the definition of multivariate twisted p-adic q-integral, we also see that

β
(k)
n,q,ζ(x) =

∫

Z
k
p

[x1 + x2 + · · · + xk + x]nqdμq,ζ(x1)dμq,ζ(x2) · · ·dμq,ζ(xk)

=
n∑

l=0

(
n
l

)
qlx[x]n−lq

∫

Z
k
p

[x1 + x2 + · · · + xk]lqdμq,ζ(x1)dμq,ζ(x2) · · ·dμq,ζ(xk)

=
n∑

l=0

(
n
l

)
qlx[x]n−lq β

(k)
l,q,ζ.

(2.8)

Corollary 2.2. For k ∈ Z+ and ζ ∈ Tp, one obtains

β
(k)
n,q,ζ(x) =

n∑

l=0

(
n
l

)
qlx[x]n−lq β

(k)
l,q,ζ

. (2.9)

Note that

qn(x1+···+xk) =
n∑

l=0

(
n
l

)(
q − 1

)l[x1 + · · · + xk]lq. (2.10)

We have

∫

Z
k
p

qn(x1+···+xk)dμq,ζ(x1)dμq,ζ(x2) · · ·dμq,ζ(xk) =
n∑

l=0

(
n
l

)(
q − 1

)l
β
(k)
l,q,ζ

. (2.11)

It is easy to see that

∫

Z
k
p

qn(x1+···+xk)dμq,ζ(x1)dμq,ζ(x2) · · ·dμq,ζ(xk)

= lim
N→∞

1
[
pN

]k
q

pN−1∑

x1,...,xk=0

qn(x1+···+xk)qx1+···+xkζx1+···+xk =
(n + 1)k

[n + 1]kq,ζ
.

(2.12)

By (2.11) and (2.12), we obtain the following theorem.
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Theorem 2.3. For n ∈ Z+, k ∈ N and ζ ∈ Tp, one has

n∑

l=0

(
n
l

)(
q − 1

)l
β
(k)
l,q,ζ

=
(n + 1)k

[n + 1]kq,ζ
. (2.13)

Now we consider the modified extension of the twisted q-Bernoulli polynomials of
order k as follows:

B
(k)
n,q,ζ(x) =

1
(
1 − q

)n
n∑

i=0
(−1)i

(
n
i

)
qix

∫

Z
k
p

q
∑k

l=1(k−l+i)xidμq,ζ(x1) · · ·dμq,ζ(xk). (2.14)

In the special case x = 0, we write B
(k)
n,q,ζ = B

(k)
n,q,ζ(0), which are called the modified

extension of the twisted q-Bernoulli numbers of order k.
From (2.14), we derive that

B
(k)
n,q,ζ(x) =

1
(
1 − q

)n
n∑

i=0
(−1)i

(
n
i

)
(i + k) · · · (i + 1)

[i + k]q,ζ · · · [i + 1]q,ζ
qix

=
1

(
1 − q

)n
n∑

i=0
(−1)i

(
n
i

) (
i+k
k

)
k!

(
i+k
k

)
q,ζ
[k]q,ζ!

qix.

(2.15)

Therefore, we obtain the following theorem.

Theorem 2.4. For n ∈ Z+, k ∈ N and ζ ∈ Tp, one has

B
(k)
n,q,ζ(x) =

1
(
1 − q

)n
n∑

i=0
(−1)i

(
n
i

) (
i+k
k

)
k!

(
i+k
k

)
q,ζ
[k]q,ζ!

qix. (2.16)

Now, we define B(−k)
n,q,ζ

(x) as follows:

B
(−k)
n,q,ζ(x) =

1
(
1 − q

)n
n∑

i=0

(−1)i( n
i )qix∫

Z
k
p
q
∑k

l=1(k−l+i)xidμq,ζ(x1) · · ·dμq,ζ(xk)
. (2.17)

By (2.17), we can see that

B
(−k)
n,q,ζ(x) =

1
(
1 − q

)n
n∑

i=0
(−1)i

(
n
i

)(
i+k
k

)
q,ζ
[k]q,ζ!

(
i+k
k

)
k!

qix. (2.18)

Therefore, we obtain the following theorem.
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Theorem 2.5. For n ∈ Z+, k ∈ N and ζ ∈ Tp, one has

B
(−k)
n,q,ζ(x) =

1
(
1 − q

)n
n∑

i=0
(−1)i

(
i + k
k

)

q,ζ

(
n+k
n−i

)
[k]q,ζ!

(
n+k
k

)
k!

qix. (2.19)

In (2.19), we can see the relations between the binomial coefficients and the modified
extension of the twisted q-Bernoulli polynomials of order k.
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