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We formulate and prove a converse for a generalization of the classical Minkowski’s inequality.
The case when 0 < p < 1 is also considered. Applying the same technique, we obtain an analog
converse theorem for integral Minkowski’s type inequality.

1. Introduction

If p > 1, ai ≥ 0, and bi ≥ 0 (i = 1, . . . , n) are real numbers, then by the classical Minkowski’s
inequality

(
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. (1.1)

This inequality was published by Minkowski [1, pages 115–117] hundred years ago in his
famous book “Geometrie der Zahlen.”

It is also known (see [2]) that for 0 < p < 1 the above inequality is satisfied with “≥”
instead of “≤”.

Many extensions and generalizations of Minkowski’s inequality can be found in [2, 3].
We want to point out the following inequality:
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where p > 1 and aij ≥ 0 (i = 1, . . . , m; j = 1, . . . , n) are real numbers. Furthermore, if 0 <
p < 1, then the inequality (1.2) is satisfied with “≥” instead of “≤” [2, Theorem 24, page 30].
In both cases, equality holds if and only if all columns (a1j , a2j , . . . , amj), j = 1, 2, . . . , n, are
proportional.

An extension of inequality (1.2) was formulated by Ingham and Jessen (see [2, pages
31-32]). In 1948, Tôyama [4] published a converse of the inequality of Ingham and Jessen
(see also a recent paper [5] for a weighted version of Tôyama’s inequality). Namely, Tôyama
showed that if 0 < q < p and aij ≥ 0 (i = 1, . . . , m; j = 1, . . . , n) are real numbers, then
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The main result of this paper gives a converse of inequality (1.2). On the other hand,
our result may be regarded as a nonsymmetric analogue of the above inequality, and it is
given as follows.

Theorem 1.1. Let p > 0, q > 0, and aij ≥ 0 (i = 1, . . . , m; j = 1, . . . , n) be real numbers. Then for
p ≥ 1 we have
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where C is a positive constant given by

C =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
m1−1/q if 1 ≤ p ≤ q,

(min(m,n))1/q−1/pm1−1/q if 1 ≤ q < p,

m1−1/p if 0 < q ≤ 1 ≤ p.

(1.5)

If 0 < p < 1, then
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where K is a positive constant given by

K =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
m1−1/q if 0 < q ≤ p < 1,

(min(m,n))1/q−1/pm1−1/q if 0 < p < q < 1,

m1−1/p if 0 < p < 1 ≤ q.

(1.7)
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Inequality (1.4) with 1 ≤ p ≤ q and inequality (1.6) with 0 < q ≤ p < 1 are sharp for all m and n,
and they are attained for aij = a, i = 1, . . . , m, j = 1, . . . , n. Ifm ≤ n, then inequality (1.4) is sharp in
the cases when 1 ≤ q < p and 0 < q ≤ 1 ≤ p. In both cases the equalities are attained for

aij =

⎧⎨
⎩
a, if i = j,

0, if i /= j.
(1.8)

Whenm ≤ n, the equalities in (1.6) concerned with 0 < p < q < 1 and 0 < p < 1 ≤ q are also attained
for previously defined values aij .

Remark 1.2. Note that, proceeding as in the proof of Theorem 1.1, we can prove similar
inequalities to (1.4) and (1.6) with
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of these inequalities. For example, such an inequality concerning the case when 1 ≤ q < p
(i.e., (1.4)) is
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The above inequality is sharp if n ≤ m, but it is not in spirit of a converse of Minkowski’s type
inequality.

The following consequence of Theorem 1.1 for m = 2 and q = 2 can be viewed as a
converse of Minkowski’s inequality (1.1).

Corollary 1.3. Let n ≥ 1, p > 0, and let aj ≥ 0, bj ≥ 0 (j = 1, . . . , n) be real numbers. Then for p ≥ 1
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If 0 < p < 1, then
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Remark 1.4. It is well known that Minkowski’s inequality is also true for complex sequences
as well. More precisely, if p ≥ 1 and ui, vi (i = 1, . . . , n) are arbitrary complex numbers, then
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Note that the above inequality with uj = aj ∈ R and vj = ibj , bj ∈ R, for each j = 1, 2, . . . , n,
becomes
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We see that the first inequality of Corollary 1.3 may be actually regarded as a converse of the
previous inequality.

2. Proof of Theorem 1.1

Lemma 2.1 (see [2, page 26]). If u1, u2, . . . uk, s, r are nonnegative real numbers and 0 < s < r,
then

(
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. (2.1)

Proof of Theorem 1.1. In our proof we often use the well-known fact that the scale of power
means is nondecreasing (see [2]). More precisely, if a1, a2, . . . , ak are nonnegative integers
and 0 < α ≤ β < +∞, then
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In all the cases, for each i = 1, 2, . . . , m, we denote that
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We will consider all the six cases related to the inequalities (1.4) and (1.6).

Case 1 (1 ≤ p ≤ q). The inequality between power means of orders q/p ≥ 1 and 1 for m
positive numbers bi, i = 1, 2, . . . , m, states that
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whence after summation over j we find that
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Because p ≥ 1, the inequality between power means of orders p and 1 implies that
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The above inequality and (2.6) immediately yield
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Case 2 (1 ≤ q < p). If m ≤ n, then C = m1−1/p in (1.4), and a related proof is the same as that
for the following case when 0 < q ≤ 1 ≤ p.

Now suppose that m > n. By the inequality for power means of orders p/q ≥ 1 and 1,
we obtain
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Next, by the inequality for power means (of orders q ≥ 1 and 1), we obtain
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For any fixed i ∈ {1, 2, . . . , m} the inequality (2.1) of Lemma 2.1 with s = p > q = r implies
that
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Obviously, inequalities (2.9), (2.10), and (2.11) immediately yield
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which is actually inequality (1.4)with the constant C = n1/q−1/p ·m1−1/q.

Case 3 (0 < q ≤ 1 ≤ p). By inequality (2.1) with r = q and s = p, for each j = 1, 2, . . . , n, we
obtain
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By the inequality for power means (of orders p ≥ 1 and 1), we get
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The above inequality and (2.14) immediately yield
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as desired.

Case 4 (0 < q ≤ p < 1). The proof can be obtained from those of Case 1, by replacing “≥” with
“≤” in each related inequality.
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Case 5 (0 < p < q < 1). If m ≤ n, then the proof is the same as that for Case 6. If m > n, then
the proof can be obtained from those of Case 2, by replacing “≥” with “≤” in each related
inequality.

Case 6 (0 < p < 1 ≤ q). For any fixed j = 1, 2, . . . , n, inequality (2.1) of Lemma 2.1 with r = q
and s = p gives
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As 1/p > 1, for positive integers b1, b2, . . . , bm, there holds
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The above inequality and (2.19) immediately yield
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and the proof is completed.

3. The Integral Analogue of Theorem 1.1

Let (X,Σ, μ) be a measure space with a positive Borel measure μ. For any 0 < p < +∞ let
Lp = Lp(μ) denote the usual Lebesgue space consisting of all μ-measurable complex-valued
functions f : X → C such that

∫
X

∣∣f∣∣pdμ < +∞. (3.1)
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Recall that the usual norm ‖ · ‖p of f ∈ Lp is defined as ‖f‖p = (
∫
X |f |pdμ)1/p if p ≥ 1; ‖f‖p =∫

X |f |pdμ if 0 < p < 1.
The following result is the integral analogue of Theorem 1.1.

Theorem 3.1. For given 0 < p < ∞ let u1, u2, . . . , um be arbitrary functions in Lp. Then, if 1 ≤ p <
+∞, we have

‖u1‖p + · · · + ‖um‖p ≤ m1−min{1/2,1/p}
∥∥∥∥
√
|u1|2 + · · · + |um|2
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If 0 < p < 1, then
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p

. (3.3)

Both inequalities are sharp

For 1 < p ≤ 2 the equality in (3.2) and (3.3) is attained if u1 = u2 = · · · = um a.e. on X. If p > 2
or 0 < p < 1, then the equality is attained for ui = χEi , where Ei are μ-measurable sets with
i = 1, 2, . . . , m, such that μ(E1) = μ(E2) = · · · = μ(En) and Ei ∩ Ej = ∅whenever i /= j.

Proof. The proof of each inequality is completely similar to the corresponding one given in
Theorem 1.1 with a fixed q = 2. For clarity, we give here only a proof related to the case when
1 ≤ p ≤ 2. Applying the inequality between power means of orders 2/p ≥ 1 and 1 to the
functions |ui|p (i = 1, . . . , m), we have
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Integrating the above relation, we obtain
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which can be written in the form
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Obviously, the above inequality yields (3.2) for 1 < p ≤ 2.
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Corollary 3.2. Let p ≥ 1, and let w = u + iv be a complex function in Lp. Then there holds the sharp
inequality

‖u‖p + ‖v‖p ≤ 21−min(1/2,1/p)‖u + iv‖p. (3.7)
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[2] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Univerity Press, Cambridge, UK,

1952.
[3] E. F. Beckenbach and R. Bellman, Inequalities, vol. 30 of Ergebnisse der Mathematik und ihrer Grenzgebiete,

Springer, Berlin, Germany, 1961.
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