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The purpose of this paper is to consider a shrinking projection method for finding a common
element of the set of solutions of generalized mixed equilibrium problems, the set of fixed points
of a finite family of quasi-nonexpansive mappings, and the set of solutions of variational inclusion
problems. Then, we prove a strong convergence theorem of the iterative sequence generated by
the shrinking projection method under some suitable conditions in a real Hilbert space. Our
results improve and extend recent results announced by Peng et al. (2008), Takahashi et al. (2008),
S.Takahashi and W. Takahashi (2008), and many others.

1. Introduction

Throughout this paper, we assume thatH is a real Hilbert space with inner product 〈·, ·〉 and
norm ‖ · ‖, and let C be a nonempty closed convex subset ofH. We denote weak convergence
and strong convergence by notations ⇀ and → , respectively.

Recall that the following definitions.

(1) A mapping T : C → C is said to be nonexpansive if
∥
∥Tx − Ty

∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ C. (1.1)
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(2) A mapping T : C → C is said to be quasi-nonexpansive if

∥
∥Tx − p

∥
∥ ≤ ∥

∥x − p
∥
∥, ∀x ∈ C, p ∈ F(T). (1.2)

We denote F(T) = {x ∈ C : Tx = x} be the set of fixed points of T .
Let B : H → H be a single-valued nonlinear mapping and M : H → 2H to a set-

valued mapping. The variational inclusion problem is to find x̂ ∈ H such that

θ ∈ B(x̂) +M(x̂), (1.3)

where θ is the zero vector in H. The set of solutions of problem (1.3) is denoted by I(B,M).

Definition 1.1. Amapping B : H → H is said to be a ξ-inverse-strongly monotone if there exists
a constant ξ > 0 with the property

〈

Bx − By, x − y
〉 ≥ ξ

∥
∥Bx − By

∥
∥
2
, ∀x, y ∈ C. (1.4)

Remark 1.2. It is obvious that any ξ-inverse-strongly monotone mapping B is monotone and
1/ξ-Lipschitz continuous. It is easy to see that if any λ constant is in (0, 2ξ], then the mapping
I − λB is nonexpansive, where I is the identity mapping on H.

A set-valued mapping M : H → 2H is called monotone if for all x, y ∈ H, f ∈ M(x),
and g ∈ M(y) implying 〈x − y, f − g〉 ≥ 0. A monotone mapping; M is maximal if its graph
G(M) := {(f, x) ∈ H × H : f ∈ M(x)} of M is not properly contained in the graph of any
other monotone mapping. It is known that a monotone mappingM is maximal if and only if
for (x, f) ∈ H ×H, 〈x − y, f − g〉 ≥ 0 for all (y, g) ∈ G(M) imply f ∈ M(x).

Definition 1.3. LetM : H → 2H be a set-valuedmaximal monotonemapping, then the single-
valued mapping JM,λ : H → H defined by

JM,λ(x̂) = (I + λM)−1(x̂), x̂ ∈ H (1.5)

is called the resolvent operator associated with M, where λ is any positive number and I is
the identity mapping.

Remark 1.4. (R1) The resolvent operator JM,λ is single-valued and nonexpansive for all λ > 0,
that is,

∥
∥JM,λ(x) − JM,λ

(

y
)∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ H, ∀λ > 0. (1.6)

(R2) The resolvent operator JM,λ is 1-inverse strongly monotone; see [1], that is,

∥
∥JM,λ(x) − JM,λ(y)

∥
∥
2 ≤ 〈

JM,λ(x) − JM,λ

(

y
)

, x − y
〉

, ∀x, y ∈ H. (1.7)
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(R3) The solution of problem (1.3) is a fixed point of the operator JM,λ(I − λB) for all
λ > 0; see also [2], that is,

I(B,M) = F(JM,λ(I − λB)), ∀λ > 0. (1.8)

(R4) If 0 < λ ≤ 2ξ, then the mapping JM,λ(I − λB) : H → H is nonexpansive.

(R5) I(B,M) is closed and convex.

Let A : C → H be a nonlinear mapping, let ϕ : C → R ∪ {+∞} be a real-valued
function and F a bifunction from C × C to R. We consider the following generalized mixed
equilibrium problem.

Finding x ∈ C such that

F
(

x, y
)

+ 〈Ax, y − x〉 + ϕ
(

y
) − ϕ(x) ≥ 0, ∀y ∈ C. (1.9)

The set of such x ∈ C is denoted by GMEP(F, ϕ,A), that is,

GMEP
(

F, ϕ,A
)

=
{

x ∈ C : F
(

x, y
)

+
〈

Ax, y − x
〉

+ ϕ
(

y
) − ϕ(x) ≥ 0, ∀y ∈ C

}

. (1.10)

It is easy to see that x is solution of problem (1.9) implies that x ∈ domϕ = {x ∈ C : ϕ(x) <
+∞}.

(i) In the case of A ≡ 0(:the zero mapping), then the generalized mixed equilibrium
problem (1.9) is reduced to the mixed equilibrium problem. Finding x ∈ C such that

F
(

x, y
)

+ ϕ
(

y
) − ϕ(x) ≥ 0, ∀y ∈ C. (1.11)

The set of solution of (1.11) is denoted by MEP(F, ϕ).

(ii) In the case of ϕ ≡ 0, then the generalized mixed equilibrium problem (1.9) is
reduced to the generalized equilibrium problem. Finding x ∈ C such that

F
(

x, y
)

+
〈

Ax, y − x
〉 ≥ 0, ∀y ∈ C. (1.12)

The set of solution of (1.12) is denoted by GEP(F,A).

(iii) In the case of A ≡ 0(:the zero mapping) and ϕ ≡ 0, then the generalized mixed
equilibrium problem (1.9) is reduced to the equilibrium problem. Finding x ∈ C such
that

F
(

x, y
) ≥ 0, ∀y ∈ C. (1.13)

The set of solution of (1.13) is denoted by EP(F).
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(iv) In the case of F ≡ 0, ϕ ≡ 0 and A ≡ B then the generalized mixed equilibrium
problem (1.9) is reduced to the variational inequality problem. Finding x ∈ C such that

〈Bx, y − x〉 ≥ 0, ∀y ∈ C. (1.14)

The set of solution of (1.14) is denoted by VI(C,B).
The generalized mixed equilibrium problem include fixed point problems, optimiza-

tion problems, variational inequalities problems, Nash equilibrium problems, noncooper-
ative games, economics and the equilibrium problems as special cases (see, e.g., [3–8]).
Some methods have been proposed to solve the generalized mixed equilibrium problems,
generalized equilibrium problems and equilibrium problems; see, for instance, [9–22].

In 2007, Takahashi et al. [23] proved the following strong convergence theorem
for a nonexpansive mapping by using the shrinking projection method in mathematical
programming. For a C1 = C and x1 = PC1x0, they defined a sequence as follows

yn = αnxn + (1 − αn)Txn,

Cn+1 =
{

z ∈ Cn :
∥
∥yn − z

∥
∥ ≤ ‖xn − z‖},

xn+1 = PCn+1x0, ∀n ≥ 1,

(1.15)

where 0 ≤ αn < a < 1. They proved that the sequence {xn} generated by (1.15) converges
weakly to z ∈ F(T), where z = PF(T)x0.

In 2008, S. Takahashi and W. Takahashi [24] introduced the following iterative scheme
for finding a common element of the set of solutions of mixed equilibrium problems and
the set of fixed points of a nonexpansive mapping in a Hilbert space. Starting with arbitrary
x1 = u ∈ C, define sequences {xn}, {yn} and {un} by

F
(

un, y
)

+ 〈Axn, y − un〉 + 1
rn
〈y − u, un − xn〉 ≥ 0, ∀ y ∈ C

yn = αnu + (1 − αn)un,

xn+1 = βnxn +
(

1 − βn
)

Tyn.

(1.16)

They proved that under certain appropriate conditions imposed on {αn},{βn} and {rn}, the
sequence {xn} generated by (1.16) converges strongly to z = PF(T)∩GEP(F,A)u.

In 2008, Zhang et al. [25] introduced the following new iterative scheme for finding a
common element of the set of solutions to the problem (1.3) and the set of fixed points of a
nonexpansive mapping in a real Hilbert space. Starting with an arbitrary x1 = x ∈ H, define
sequences {xn} and {yn} by

yn = JM,λ(xn − λBxn),

xn+1 = αnx + (1 − αn)Tyn, ∀n ≥ 0,
(1.17)

where JM,λ = (I + λM)−1 is the resolvent operator associated with M and a positive number
λ, {αn} is a sequence in the interval [0, 1].
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In 2008, Peng et al. [26] introduced the following iterative scheme by the viscosity
approximation method for finding a common element of the set of solutions to the problem
(1.3), the set of solutions of an equilibrium problems and the set of fixed points of
nonexpansive mappings in a Hilbert space. Starting with an arbitrary x1 ∈ H, define
sequences {xn}, {yn} and {un} by

F
(

un, y
)

+
1
rn

〈

y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = JM,λ(un − λBun),

xn+1 = αnf(xn) + (1 − αn)Tyn, ∀n ≥ 0.

(1.18)

They proved that under certain appropriate conditions imposed on {αn} and {rn}, the
sequence {xn} generated by (1.18) converges strongly to z = PF(T)∩EP(F)∩I(B,M)f(z).

In 2010, Katchang and Kumam [27] introduced an iterative scheme for finding a
common element of the set of solutions for mixed equilibrium problems, the set of solutions
of the variational inclusions with set-valued maximal monotone mappings, and inverse
strongly monotone mappings and the set of fixed points of a finite family of nonexpansive
mappings in a real Hilbert space.

In this paper, motivated and inspired by the previously mentioned results, we
introduce an iterative scheme by the shrinking projection method for finding a common
element of the set of solutions of generalized mixed equilibrium problems, the set of
fixed points of a finite family of quasi-nonexpansive mappings and the set of solutions of
variational inclusion problems in a real Hilbert space. Then, we prove a strong convergence
theorem of the iterative sequence generated by the proposed shrinking projection method
under some suitable conditions. The results obtained in this paper extend and improve
several recent results in this area.

2. Preliminaries

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Recall that
the (nearest point) projection PC from H onto C assigns to each x ∈ H the unique point in
PCx ∈ C satisfying the property

‖x − PCx‖ = min
y∈C

∥
∥x − y

∥
∥. (2.1)

We recall some lemmas which will be needed in the rest of this paper.

Lemma 2.1. For a given x ∈ H and z ∈ C,

z = PCx ⇐⇒ 〈

x − z, z − y
〉 ≥ 0, ∀y ∈ C. (2.2)

It is well known that PC is a firmly nonexpansive mapping of H onto C and satisfies

∥
∥PCx − PCy

∥
∥
2 ≤ 〈

PCx − PCy, x − y
〉

, ∀x, y ∈ H. (2.3)
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Lemma 2.2 (see [1]). Let M : H → 2H be a maximal monotone mapping and let B : H → H be
a Lipshitz continuous mapping. Then the mapping S = M + B : H → 2H is a maximal monotone
mapping.

Lemma 2.3 (see [28]). Let C be a closed convex subset of H and let {xn} be a bounded sequence in
H. Assume that

(1) the weak ω-limit set ωw(xn) ⊂ C,

(2) for each z ∈ C, limn→∞‖xn − z‖ exists.

Then {xn} is weakly convergent to a point in C.

Lemma 2.4 (see [29]). Each Hilbert space H satisfies Opial’s condition, that is, for any sequence
{xn} ⊂ H with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

∥
∥xn − y

∥
∥ (2.4)

holds for each y ∈ H with y /=x.

Lemma 2.5 (see [30]). Each Hilbert space H satisfies the Kadec-Klee property, that is, for any
sequence {xn} with xn ⇀ x and ‖xn‖ → ‖x‖ together imply ‖xn − x‖ → 0.

For solving the generalized equilibrium problems, let us give the following assump-
tions for F, ϕ, and the set C:

(A1) F(x, x) = 0 for all x ∈ C;

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each y ∈ C, x �→ F(x, y) is weakly upper semicontinuous;

(A4) for each x ∈ C, y �→ F(x, y) is convex and lower semicontinuous;

(B1) for each x ∈ H and r > 0, there exists a bounded subsetDx ⊆ C and yx ∈ C ∩domϕ
such that for any z ∈ C \Dx,

F
(

z, yx

)

+ ϕ
(

yx

) − ϕ(z) +
1
r

〈

yx − z, z − x
〉 ≥ 0; (2.5)

(B2) C is bounded set.

Lemma 2.6 (see [31]). Let C be a nonempty closed convex subset of H and let F be a bifunction of
C × C into R satisfying (A1)–(A4). Let ϕ : H → R ∪ {+∞} be a proper lower semicontinuous and
convex function such that C ∩ dom /= ∅. For r > 0 and x ∈ H, define a mapping Tr : H → C as
follows:

Tr(x) =
{

z ∈ C : F
(

z, y
)

+ ϕ
(

y
) − ϕ(z) +

1
r

〈

y − z, z − x
〉 ≥ 0, ∀y ∈ C

}

. (2.6)
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Assume that either (B1) or (B2) holds. Then, the following conclusions hold:

(1) for each x ∈ H, Tr(x)/= ∅;
(2) Tr is single-valued;

(3) Tr is firmly nonexpansive, that is, for any x, y ∈ H,

∥
∥Tr(x) − Tr(y)

∥
∥
2 ≤ 〈

Tr(x) − Tr
(

y
)

, x − y
〉

; (2.7)

(4) F(Tr) = GEP(F, ϕ);

(5) GEP(F, ϕ) is closed and convex.

Remark 2.7. Replacing x with x − rAx ∈ H in (2.5), then there exists z ∈ C \Dx, such that

F
(

z, yx

)

+
〈

Ax, yx − z
〉

+ ϕ
(

yx

) − ϕ(z) +
1
r

〈

yx − z, z − x
〉 ≥ 0, ∀y ∈ C. (2.8)

3. Main Results

In this section, wewill introduce an iterative scheme by using shrinking projectionmethod for
finding a common element of the set of solutions of generalized mixed equilibrium problems,
the set of fixed points of a finite family of quasi-nonexpansive mappings and the set of
solutions of variational inclusion problems in a real Hilbert space.

Let {Ti}Ni=1 be a finite family of nonexpansive mappings of C into itself, and let
γ1, . . . , γN be real numbers such that 0 ≤ γi ≤ 1 for every i = 1, . . . ,N. We define a mapping
K : C → C as follows:

U1 = γ1T1 +
(

1 − γ1
)

I,

U2 = γ2T2U1 +
(

1 − γ2
)

I,

U3 = γ3T3U2 +
(

1 − γ3
)

I,

...

UN−1 = γN−1TN−1UN−2 +
(

1 − γN−1
)

I,

K = UN = γNTNUN−1 +
(

1 − γN
)

I.

(3.1)

Such a mapping K is called the K-mapping generated by T1, . . . , TN and γ1, . . . , γN ; see [32].
We have the following crucial Lemma 3.1 and Lemma 3.2 concerning K-mapping

which can be found in [14]. Nowwe only need the following similar version inHilbert spaces.

Lemma 3.1. LetC be a nonempty closed convex subset of a real Hilbert spaceH. Let {Ti}Ni=1 be a finite
family of quasi-nonexpansive mappings and Li-Lipschitz mappings of C into itself with

⋂N
i=1 F(Ti)/= ∅

and let γ1, . . . , γN be real numbers such that 0 < γi < 1 for every i = 1, . . . ,N − 1, 0 < γN ≤ 1 and
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∑N
i=1 = 1. LetK be the K-mapping generated by T1, . . . , TN and γ1, . . . , γN . Then, the followings hold:

(1) K is quasi-nonexpansive and Lipschitz,

(2) F(K) =
⋂N

i=1 F(Ti).

Lemma 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let {Ti}Ni=1 be a
finite family of quasi-nonexpansive mappings and Li-Lipschitz mappings of C into itself and {γn,i}Ni=1
sequences in [0, 1] such that γn,i → γi, as n → ∞, (i = 1, 2, . . . ,N). Moreover, for every n ∈ N, let
K and Kn be the K-mappings generated by T1, T2, . . . , TN and γ1, γ2, . . . , γN , and T1, T2, . . . , TN and
γn,1, γn,2, . . . , γn,N , respectively. Then, for every x ∈ C, we have limn→∞‖Knx −Kx‖ = 0.

Now we study the strong convergence theorem concerning the shrinking projection
method.

Theorem 3.3. LetC be a nonempty closed convex subset of a real Hilbert spaceH, let F be a bifunction
from C × C to R satisfying (A1)–(A4), and let ϕ : C → R ∪ {+∞} be a proper lower semicontinuous
and convex function with assumption (B1) or (B2). Let {Ti}Ni=1 be a finite family of quasi-nonexpansive
and Li-Lipschitz mappings of C into itself, and let A be a β-inverse-strongly monotone mapping of C
into H, let B a ξ-inverse-strongly monotone mapping of C into H and M : H → 2H be a maximal
monotone mapping. Assume that

Θ :=
N⋂

i=1

F(Ti) ∩GMEP
(

F, ϕ,A
) ∩ I(B,M)/= ∅. (3.2)

Let Kn be the K-mapping generated by T1, T2, . . . , TN and γn,1, γn,2, . . . , γn,N . Let {xn}, {yn}, {vn},
{zn} and {un} be sequences generated by x0 ∈ H, C1 = C, x1 = PC1x0, un ∈ C and let

F
(

un, y
)

+ ϕ
(

y
) − ϕ(un) + 〈Axn, y − un〉 + 1

rn

〈

y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = JM,δn(un − δnBun),

vn = JM,λn

(

yn − λnByn

)

,

zn = αnxn + (1 − αn)Knvn,

Cn+1 = {z ∈ Cn : ‖zn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, n ∈ N,

(3.3)

where {αn} ⊂ (0, 1) satisfy the following conditions:

(i) {αn} ⊂ [0, e] for some e with 0 ≤ e < 1;

(ii) {δn}, {λn} ⊂ [a, b] for some a, b with 0 < a < b < 2ξ;

(iii) {rn} ⊂ [c, d] for some c, d with 0 < c < d < 2β.

Then, {xn} and {un} converge strongly to z = PΘx0.
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Proof. In the light of the definition of the resolvent, un can be rewritten as un = Trn(xn −
rnAxn). Let p ∈ Θ := ∩N

i=1F(Ti) ∩ GMEP(F, ϕ,A) ∩ I(B,M), and using the fact {Trn} be a
sequence of mappings defined as in Lemma 2.6, A is an β-inverse-strongly monotone and
that p = Trn(p − rnAp), where {rn} ⊂ [c, d] for some c, d with 0 < c < d < 2β, we can
write

∥
∥un − p

∥
∥
2 =

∥
∥Trn(xn − rnAxn) − Trn(p − rnAp)

∥
∥
2

≤ ∥
∥(xn − rnAxn) − (p − rnAp)

∥
∥
2

=
∥
∥(xn − p) − rn(Axn −Ap)

∥
∥
2

=
∥
∥xn − p

∥
∥
2 − 2rn

〈

xn − p,Axn −Ap
〉

+ r2n
∥
∥Axn −Ap

∥
∥
2

≤ ∥
∥xn − p

∥
∥
2 − 2rnβ

∥
∥Axn −Ap

∥
∥
2 + r2n

∥
∥Axn −Ap

∥
∥
2

=
∥
∥xn − p

∥
∥
2 + rn

(

rn − 2β
)∥
∥Axn −Ap

∥
∥
2

≤ ∥
∥xn − p

∥
∥
2
.

(3.4)

Next, we will divide the proof into six steps.

Step 1. We first show that {xn} is well defined and Cn is closed and convex for any
n ∈ N.

From the assumption, we see that C1 = C is closed and convex. Suppose that Ck is
closed and convex for some k ≥ 1. Next, we show that Ck+1 is closed and convex for some k.
For any p ∈ Ck, we obtain that

∥
∥zk − p

∥
∥ ≤ ∥

∥xk − p
∥
∥ (3.5)

is equivalent to

‖zk − xk‖2 + 2
〈

zk − xk, xk − p
〉 ≤ 0. (3.6)

Thus Ck+1 is closed and convex. Then, Cn is closed and convex for any n ∈ N. This implies
that {xn} is well defined.

Step 2. Next, we show by induction that Θ ⊂ Cn for each n ≥ 1.
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Taking p ∈ Θ and by condition (ii), we get that p = JM,δk(p − δkBp) = JM,λk(p − λkBp)
is nonexpansive for all n ≥ 1. From the assumption, we see that Θ ⊂ C = C1. Suppose Θ ⊂ Ck

for some k ≥ 1. For any p ∈ Θ = Ck, we have

∥
∥yk − p

∥
∥ =

∥
∥JM,δk(uk − δkBuk) − JM,δk

(

p − δkBp
)∥
∥

≤ ∥
∥(uk − δkBuk) −

(

p − δkBp
)∥
∥

=
∥
∥(I − δkB)uk − (I − δkB)p

∥
∥

≤ ∥
∥uk − p

∥
∥ ≤ ∥

∥xk − p
∥
∥,

∥
∥vk − p

∥
∥ =

∥
∥JM,λk

(

yk − λkByk

) − JM,λk

(

p − λkBp
)∥
∥

≤ ∥
∥
(

yk − λkByk

) − (

p − λkBp
)∥
∥

=
∥
∥(I − λkB)yk − (I − λkB)p

∥
∥

≤ ∥
∥yk − p

∥
∥ ≤ ∥

∥xk − p
∥
∥.

(3.7)

Thus, we have

∥
∥zk − p

∥
∥ =

∥
∥αk

(

xk − p
)

+ (1 − αk)
(

Kkvk − p
)∥
∥

≤ αk

∥
∥xk − p

∥
∥ + (1 − αk)

∥
∥vk − p

∥
∥

≤ αk

∥
∥xk − p

∥
∥ + (1 − αk)

∥
∥xk − p

∥
∥ =

∥
∥xk − p

∥
∥.

(3.8)

It follows that p ∈ Ck+1. This implies that Θ ⊂ Cn for each n ≥ 1.

Step 3. Next, we show that limn→∞‖xn+1 − xn‖ = 0 and limn→∞‖xn − zn‖ = 0.
From xn = PCnx0, we have

〈

x0 − xn, xn − y
〉 ≥ 0 (3.9)

for each y ∈ Cn. Using Θ ⊂ Cn,we also have

〈

x0 − xn, xn − p
〉 ≥ 0, ∀p ∈ Θ, n ∈ N. (3.10)

So, for p ∈ Θ, we have

0 ≤ 〈

x0 − xn, xn − p
〉

=
〈

x0 − xn, xn − x0 + x0 − p
〉

= −〈x0 − xn, x0 − xn〉 +
〈

x0 − xn, x0 − p
〉

≤ −‖x0 − xn‖2 + ‖x0 − xn‖
∥
∥x0 − p

∥
∥.

(3.11)
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This implies that

‖x0 − xn‖ ≤ ∥
∥x0 − p

∥
∥, ∀p ∈ Θ, n ∈ N. (3.12)

From xn = PCnx0 and xn+1 = PCn+1x0 ∈ Cn+1 ⊂ Cn, we obtain

〈x0 − xn, xn − xn+1〉 ≥ 0. (3.13)

From (3.13), we have, for n ∈ N,

0 ≤ 〈x0 − xn, xn − xn+1〉
= 〈x0 − xn, xn − x0 + x0 − xn+1〉
= −〈x0 − xn, x0 − xn〉 + 〈x0 − xn, x0 − xn+1〉

≤ −‖x0 − xn‖2 + ‖x0 − xn‖‖x0 − xn+1‖.

(3.14)

It follows that

‖x0 − xn‖ ≤ ‖x0 − xn+1‖. (3.15)

Thus the sequence {‖xn −x0‖} is a bounded and nonincreasing sequence, so limn→∞‖xn −x0‖
exists, that is,

lim
n→∞

‖xn − x0‖ = m. (3.16)

Indeed, from (3.13), we get

‖xn − xn+1‖2 = ‖xn − x0 + x0 − xn+1‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − xn+1〉 + ‖x0 − xn+1‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − xn + xn − xn+1〉 + ‖x0 − xn+1‖2

= ‖xn − x0‖2 − 2〈xn − x0, xn − x0〉 + 2〈xn − x0, xn − xn+1〉 + ‖x0 − xn+1‖2

= −‖xn − x0‖2 + 2〈xn − x0, xn − xn+1〉 + ‖x0 − xn+1‖2

≤ −‖xn − x0‖2 + ‖x0 − xn+1‖2.

(3.17)

From (3.16), we obtain

lim
n→∞

‖xn − xn+1‖ = 0. (3.18)
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Since xn+1 = PCn+1 ∈ Cn+1 ⊂ Cn, we have

‖xn − zn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − zn‖ ≤ 2‖xn − xn+1‖. (3.19)

By (3.18), we obtain

lim
n→∞

‖xn − zn‖ = 0. (3.20)

Step 4. Next, we show that limn→∞‖Knvn − vn‖ = 0.
For any given p ∈ Θ, λn ∈ (0, 2ξ]. It is easy to see that p = JM,λn(p − λnBp). As p − λnBp

is nonexpansive, we have

‖vn − p‖2 = ∥
∥JM,λn(yn − λnByn) − JM,λn(p − λnBp)

∥
∥
2

≤ ∥
∥(yn − λnByn) − (p − λnBp)

∥
∥
2

=
∥
∥(yn − p) − λn(Byn − Bp)

∥
∥
2

=
∥
∥yn − p

∥
∥
2 − 2λn〈yn − p, Byn − Bp〉 + λ2n

∥
∥Byn − Bp

∥
∥
2

≤ ∥
∥xn − p

∥
∥
2 − 2λn〈yn − p, Byn − Bp〉 + λ2n

∥
∥Byn − Bp

∥
∥
2

≤ ∥
∥xn − p

∥
∥
2 + λn(λn − 2ξ)

∥
∥Byn − Bp

∥
∥
2
.

(3.21)

Similarly, we can prove that

∥
∥yn − p

∥
∥
2 ≤ ∥

∥xn − p
∥
∥
2 + δn(δn − 2ξ)

∥
∥Bun − Bp

∥
∥
2
. (3.22)

Observe that

∥
∥zn − p

∥
∥
2 ≤ αn

∥
∥xn − p

∥
∥
2 + (1 − αn)

∥
∥Knvn − p

∥
∥
2

≤ αn

∥
∥xn − p

∥
∥
2 + (1 − αn)

∥
∥vn − p

∥
∥
2
.

(3.23)

Substituting (3.21) into (3.23), and using conditions (i) and (ii), we have

∥
∥zn − p

∥
∥
2 ≤ αn

∥
∥xn − p

∥
∥
2 + (1 − αn)

∥
∥vn − p

∥
∥
2

≤ αn

∥
∥xn − p

∥
∥
2 + (1 − αn)

{∥
∥xn − p

∥
∥
2 + λn(λn − 2ξ)

∥
∥Byn − Bp

∥
∥
2
}

=
∥
∥xn − p

∥
∥
2 + (1 − αn)λn(λn − 2ξ)

∥
∥Byn − Bp

∥
∥
2
.

(3.24)
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It follows that

(1 − e)a(2ξ − b)
∥
∥Byn − Bp

∥
∥
2 ≤ (1 − αn)λn(2ξ − λn)

∥
∥Byn − Bp

∥
∥
2

≤ ∥
∥xn − p

∥
∥
2 − ∥

∥zn − p
∥
∥
2

=
(∥
∥xn − p

∥
∥ − ∥

∥zn − p
∥
∥
)(∥
∥xn − p

∥
∥ +

∥
∥zn − p

∥
∥
)

≤ ‖xn − zn‖
(∥
∥xn − p

∥
∥ +

∥
∥zn − p

∥
∥
)

.

(3.25)

Since limn→∞‖xn − zn‖ = 0, we obtain

lim
n→∞

∥
∥Byn − Bp

∥
∥ = 0. (3.26)

Since the resolvent operator JM,λn is 1-inverse strongly monotone, we obtain

∥
∥vn − p

∥
∥
2 =

∥
∥JM,λn(yn − λnByn) − JM,λn(p − λnBp)

∥
∥
2

=
∥
∥JM,λn(I − λnB)yn − JM,λn(I − λnB)p

∥
∥
2

≤ 〈

(I − λnB)yn − (I − λnB)p, vn − p
〉

=
1
2

{∥
∥(I − λnB)yn − (I − λnB)p

∥
∥
2 +

∥
∥vn − p

∥
∥
2

− ∥
∥(I − λnB)yn − (I − λnB)p − (vn − p)

∥
∥
2
}

≤ 1
2

{∥
∥yn − p

∥
∥
2 +

∥
∥vn − p

∥
∥
2 − ∥

∥
(

yn − vn

) − λn
(

Byn − Bp
)∥
∥
2
}

≤ 1
2

{∥
∥xn − p

∥
∥
2 +

∥
∥vn − p

∥
∥
2 − ∥

∥yn − vn

∥
∥
2

− λ2n
∥
∥Byn − Bp

∥
∥
2 + 2λn

〈

yn − vn, Byn − Bp
〉}

,

(3.27)

which yields that

∥
∥vn − p

∥
∥
2 ≤ ∥

∥xn − p
∥
∥
2 − ∥

∥yn − vn

∥
∥
2 + 2λn

∥
∥yn − vn

∥
∥
∥
∥Byn − Bp

∥
∥. (3.28)

Similarly, we obtain

∥
∥yn − p

∥
∥
2 ≤ ∥

∥xn − p
∥
∥
2 − ∥

∥un − yn

∥
∥
2 + 2δn

∥
∥un − yn

∥
∥
∥
∥Bun − Bp

∥
∥. (3.29)
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Substituting (3.28) into (3.23), and using condition (i), we have

∥
∥zn − p

∥
∥
2 ≤ αn

∥
∥xn − p

∥
∥
2 + (1 − αn)

∥
∥vn − p

∥
∥
2

≤ αn

∥
∥xn − p

∥
∥
2 + (1 − αn)

{∥
∥xn − p

∥
∥
2 − ∥

∥yn − vn

∥
∥
2 + 2λn

∥
∥yn − vn

∥
∥
∥
∥Byn − Bp

∥
∥

}

=
∥
∥xn − p

∥
∥
2 − (1 − αn)

∥
∥yn − vn

∥
∥
2 + 2(1 − αn)λn

∥
∥yn − vn

∥
∥
∥
∥Byn − Bp

∥
∥.

(3.30)

It follows that

(1 − αn)
∥
∥yn − vn

∥
∥
2 ≤ ∥

∥xn − p
∥
∥
2 − ∥

∥zn − p
∥
∥
2 + 2(1 − αn)λn

∥
∥yn − vn

∥
∥
∥
∥Byn − Bp

∥
∥

≤ ‖xn − zn‖
(∥
∥xn − p

∥
∥ +

∥
∥zn − p

∥
∥
)

+ 2(1 − αn)λn
∥
∥yn − vn

∥
∥
∥
∥Byn − Bp

∥
∥.

(3.31)

Applying ‖xn − zn‖ → 0 and ‖Byn − Bp‖ → 0 as n → ∞ to the last inequality, we get

lim
n→∞

∥
∥yn − vn

∥
∥ = 0. (3.32)

Note that

∥
∥zn − p

∥
∥
2 ≤ αn

∥
∥xn − p

∥
∥
2 + (1 − αn)

∥
∥Knvn − p

∥
∥
2

≤ αn

∥
∥xn − p

∥
∥
2 + (1 − αn)

∥
∥vn − p

∥
∥
2

≤ αn

∥
∥xn − p

∥
∥
2 + (1 − αn)

∥
∥yn − p

∥
∥
2
.

(3.33)

Substituting (3.22) into (3.33), and using conditions (i) and (ii), we have

∥
∥zn − p

∥
∥
2 ≤ αn

∥
∥xn − p

∥
∥
2 + (1 − αn)

∥
∥yn − p

∥
∥
2

≤ αn

∥
∥xn − p

∥
∥
2 + (1 − αn)

{∥
∥xn − p

∥
∥
2 + δn(δn − 2ξ)

∥
∥Bun − Bp

∥
∥
2
}

=
∥
∥xn − p

∥
∥
2 + (1 − αn)δn(δn − 2ξ)

∥
∥Bun − Bp

∥
∥
2
.

(3.34)

It follows that

(1 − e)a(2ξ − b)
∥
∥Bun − Bp

∥
∥
2 ≤ (1 − αn)δn(2ξ − δn)

∥
∥Bun − Bp

∥
∥
2

≤ ∥
∥xn − p

∥
∥
2 − ∥

∥zn − p
∥
∥
2

≤ ‖xn − zn‖
(∥
∥xn − p

∥
∥ +

∥
∥zn − p

∥
∥
)

.

(3.35)
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Since limn→∞‖xn − zn‖ = 0, we obtain

lim
n→∞

∥
∥Bun − Bp

∥
∥ = 0. (3.36)

Substituting (3.29) into (3.33), and using conditions (i) and (ii), we have

∥
∥zn − p

∥
∥
2 ≤ αn

∥
∥xn − p

∥
∥
2 + (1 − αn)

∥
∥yn − p

∥
∥
2

≤ αn

∥
∥xn − p

∥
∥
2 + (1 − αn)

{∥
∥xn − p

∥
∥
2 − ∥

∥un − yn

∥
∥
2 + 2δn

∥
∥un − yn

∥
∥
∥
∥Bun − Bp

∥
∥

}

=
∥
∥xn − p

∥
∥
2 − (1 − αn)

∥
∥un − yn

∥
∥
2 + 2(1 − αn)δn

∥
∥un − yn

∥
∥
∥
∥Bun − Bp

∥
∥.

(3.37)

It follows that

(1 − αn)
∥
∥un − yn

∥
∥
2 ≤ ∥

∥xn − p
∥
∥
2 − ∥

∥zn − p
∥
∥
2 + 2(1 − αn)δn

∥
∥un − yn

∥
∥
∥
∥Bun − Bp

∥
∥

≤ ‖xn − zn‖
(∥
∥xn − p

∥
∥ +

∥
∥zn − p

∥
∥
)

+ 2(1 − αn)δn
∥
∥un − yn

∥
∥
∥
∥Bun − Bp

∥
∥.

(3.38)

Applying ‖xn − zn‖ → 0 and ‖Bun − Bp‖ → 0 as n → ∞ to the last inequality, we get

lim
n→∞

∥
∥un − yn

∥
∥ = 0. (3.39)

From (3.32) and (3.39), we have

lim
n→∞

‖un − vn‖ = 0. (3.40)

From (3.33), (3.4), and condition (iii), we have

∥
∥zn − p

∥
∥
2 ≤ αn

∥
∥xn − p

∥
∥
2 + (1 − αn)

∥
∥yn − p

∥
∥
2

≤ αn

∥
∥xn − p

∥
∥
2 + (1 − αn)

∥
∥un − p

∥
∥
2

≤ αn

∥
∥xn − p

∥
∥
2 + (1 − αn)

{∥
∥xn − p

∥
∥
2 + rn

(

rn − 2β
)∥
∥Axn −Ap

∥
∥
2
}

=
∥
∥xn − p

∥
∥
2 + (1 − αn)rn

(

rn − 2β
)∥
∥Axn −Ap

∥
∥
2
.

(3.41)

It follows that

(1 − e)c
(

2β − d
)∥
∥Axn −Ap

∥
∥
2 ≤ (1 − αn)rn

(

2β − rn
)∥
∥Axn −Ap

∥
∥
2

≤ ∥
∥xn − p

∥
∥
2 − ‖zn − v‖2

≤ ‖xn − zn‖
(∥
∥xn − p

∥
∥ +

∥
∥zn − p

∥
∥
)

.

(3.42)
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Since limn→∞‖xn − zn‖ = 0, we obtain

lim
n→∞

∥
∥Axn −Ap

∥
∥ = 0. (3.43)

On the other hand, in the light of Lemma 2.6(3), Trn is firmly nonexpansvie, so we have

∥
∥un − p

∥
∥
2 =

∥
∥Trn(xn − rnAxn) − Trn

(

p − rnAp
)∥
∥
2

≤ 〈

Trn(xn − rnAxn) − Trn
(

p − rnAp
)

, un − p
〉

=
〈

xn − rnAxn −
(

p − rnAp
)

, un − p
〉

=
1
2

{∥
∥(xn − rnAxn) −

(

p − rnAp
)∥
∥
2 +

∥
∥un − p

∥
∥
2

−∥∥(xn − rnAxn) − (p − rnAp) − (un − p)
∥
∥
2
}

≤ 1
2

{∥
∥xn − p

∥
∥
2 +

∥
∥un − p

∥
∥
2 − ∥

∥xn − p
∥
∥
2 − rn

(

Axn −Ap
)∥
∥
2
}

=
1
2

{∥
∥xn − p

∥
∥
2 +

∥
∥un − p

∥
∥
2 − ‖xn − un‖2

+2rn
〈

xn − un,Axn −Ap
〉 − r2n

∥
∥Axn −Ap

∥
∥
2
}

,

(3.44)

which implies that

∥
∥un − p

∥
∥
2 ≤ ∥

∥xn − p
∥
∥
2 − ‖xn − un‖2 + 2rn‖xn − un‖

∥
∥Axn −Ap

∥
∥. (3.45)

Using (3.41) again and (3.45), we have

∥
∥zn − p

∥
∥
2 ≤ αn

∥
∥xn − p

∥
∥
2 + (1 − αn)

∥
∥un − p

∥
∥
2

≤ αn

∥
∥xn − p

∥
∥
2 + (1 − αn)

{∥
∥xn − p

∥
∥
2 − ‖xn − un‖2 + 2rn‖xn − un‖

∥
∥Axn −Ap

∥
∥

}

=
∥
∥xn − p

∥
∥
2 − (1 − αn)‖xn − un‖2 + 2(1 − αn)rn‖xn − un‖

∥
∥Axn −Ap

∥
∥.

(3.46)

It follows from the condition (i) that

(1 − e)‖xn − un‖2 ≤ (1 − αn)‖xn − un‖2

≤ ∥
∥xn − p

∥
∥
2 − ∥

∥zn − p
∥
∥
2 + 2(1 − αn)rn‖xn − un‖

∥
∥Axn −Ap

∥
∥

≤ ‖xn − zn‖
(∥
∥xn − p

∥
∥ +

∥
∥zn − p

∥
∥
)

+ 2(1 − αn)rn‖xn − un‖
∥
∥Axn −Ap

∥
∥.

(3.47)
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Since limn→∞‖xn − zn‖ = 0 and limn→∞‖Axn −Ap‖ = 0, it is implied that

lim
n→∞

‖xn − un‖ = 0. (3.48)

From (3.39) and (3.48), we have

lim
n→∞

∥
∥xn − yn

∥
∥ = 0. (3.49)

By (3.3), we get

zn − xn = (1 − αn)(Knvn − xn). (3.50)

Since {αn} ⊂ [0, e] for some e with 0 ≤ e < 1, and ‖xn − zn‖ → ∞ as n → ∞, we also have

lim
n→∞

‖Knvn − xn‖ = 0. (3.51)

From (3.40) and (3.48), we have

lim
n→∞

‖xn − vn‖ = 0. (3.52)

Furthermore, by the triangular inequality, we also have

‖Knvn − vn‖ ≤ ‖Knvn − xn‖ + ‖xn − vn‖. (3.53)

Applying (3.51) and (3.52), we obtain

lim
n→∞

‖Knvn − vn‖ = 0. (3.54)

Let K be the mapping defined by (3.1). Since {vn} is bounded, applying Lemma 3.2 and
(3.54), we have

‖Kvn − vn‖ ≤ ‖Kvn −Knvn‖ + ‖Knvn − vn‖ −→ 0 as n −→ ∞. (3.55)

Step 5. Next, we show that q ∈ Θ := ∩N
i=1F(Ti) ∩GMEP(F, ϕ,A) ∩ I(B,M).

Since {vn} is bounded, there exists a subsequence {vni} of {vn} which converges
weakly to q. Without loss of generality, we can assume that vni ⇀ q. Since vni ⊂ C and C
is closed and convex, C is weakly closed and hence q ∈ C. From ‖Kvn − vn‖ → 0, we obtain
Kvni ⇀ q.

(a) First, we prove that q ∈ I(B,M).
We observe that B is a 1/ξ-Lipschitz monotone mapping and D(B) = H. From

Lemma 2.2, we know that M + B is maximal monotone. Let (v, g) ∈ G(M + B), that is,
g − Bv ∈ M(v). Since vni = JM,λni

(yni − λniByni), we have

yni − λniByni ∈ (I + λniM)(vni), (3.56)
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that is,

1
λni

(

yni − vni − λniByni

) ∈ M(vni). (3.57)

By virtue of the maximal monotonicity of M + B, we have

〈

v − vni , g − Bv − 1
λni

(

yni − vni − λniByni

)
〉

≥ 0, (3.58)

and so

〈v − vni , g〉 ≥
〈

v − vni , Bv +
1
λni

(

yni − vni − λniByni

)
〉

=
〈

v − vni , Bv − Bzn + Bvni − Byni +
1
λni

(

yni − vni

)
〉

≥ 0 + 〈v − vni , Bvni − Byni〉 +
〈

v − vni ,
1
λni

(

yni − vni

)
〉

.

(3.59)

It follows from ‖yn − vn‖ → 0, ‖Byn − Bvn‖ → 0 and vni ⇀ q that

lim
n→∞

〈

v − vni , g
〉

=
〈

v − q, g
〉 ≥ 0. (3.60)

It follows from the maximal monotonicity of M + B that θ ∈ (M + B)(q), that is, q ∈ I(B,M).
(b) Next, we show that q ∈ GMEP(F, ϕ,A). Since un = Trn(xn − rnAxn) ∈ dom ϕ, we

have

F
(

un, y
)

+
〈

Axn, y − un

〉

+ ϕ
(

y
) − ϕ(un) +

1
rn

〈

y − un, un − xn

〉 ≥ 0, ∀y ∈ C. (3.61)

From (A2), we also have

〈

Axn, y − un

〉

+ ϕ
(

y
) − ϕ(un) +

1
rn

〈

y − un, un − xn

〉 ≥ F
(

y, un

)

, ∀y ∈ C. (3.62)

And hence

〈

Axni , y − uni

〉

+ ϕ
(

y
) − ϕ(uni) +

〈

y − uni ,
uni − xni

rni

〉

≥ F
(

y, uni

)

, ∀y ∈ C. (3.63)
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For twith 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)q. Since y ∈ C and q ∈ C,we have yt ∈ C. So,
from (3.63), we have

〈

yt − uni , Ayt

〉 ≥ 〈

yt − uni , Ayt

〉 − ϕ
(

yt

)

+ ϕ(uni) −
〈

yt − uni , Axni

〉

−
〈

yt − uni ,
uni − xni

rni

〉

+ F
(

yt, uni

)

=
〈

yt − uni , Ayt −Auni

〉

+
〈

yt − uni , Auni −Axni

〉 − ϕ
(

yt

)

+ ϕ(uni)

−
〈

yt − uni ,
uni − xni

rni

〉

+ F
(

yt, uni

)

.

(3.64)

Since ‖uni − xni‖ → 0, we have ‖Auni −Axni‖ → 0. Further, from the inverse strongly
monotonicity of A, we have 〈yt − uni , Ayt − Auni〉 ≥ 0. So, from (A5), the weakly lower
semicontinuity of ϕ, (uni − xni)/rni → 0 and uni ⇀ q, we have

〈

yt − q,Ayt

〉 ≥ −ϕ(yt

)

+ ϕ
(

q
)

+ F
(

yt, q
)

(3.65)

as i → ∞. From (A1), (A4) and (3.65), we also get

0 = F
(

yt, yt

)

+ ϕ
(

yt

) − ϕ
(

yt

)

≤ tF
(

yt, y
)

+ (1 − t)F
(

yt, q
)

+ tϕ
(

y
) − (1 − t)ϕ

(

q
) − ϕ

(

yt

)

= t
[

F
(

yt, y
)

+ ϕ
(

y
) − ϕ

(

yt

)]

+ (1 − t)
[

F
(

yt, q
)

+ ϕ
(

q
) − ϕ

(

yt

)]

≤ t
[

F
(

yt, y
)

+ ϕ
(

y
) − ϕ

(

yt

)]

+ (1 − t)
〈

yt − q,Ayt

〉

= t
[

F
(

yt, y
)

+ ϕ
(

y
) − ϕ

(

yt

)]

+ (1 − t)t
〈

y − q,Ayt

〉

,

0 ≤ F
(

yt, y
)

+ ϕ
(

y
) − ϕ

(

yt

)

+ (1 − t)〈y − q,Ayt〉.

(3.66)

Letting t → 0, we have, for each y ∈ C,

F
(

q, y
)

+ ϕ
(

y
) − ϕ

(

q
)

+ 〈y − q,Aq〉 ≥ 0. (3.67)

This implies that q ∈ GMEP(F, ϕ,A).
(c) Now, we prove that q ∈ F(K) =

⋂N
i=1 F(Ti).
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Assume q /∈F(K). Since ‖xn−vn‖ → 0 and we know that vni ⇀ q (i → ∞) and q /=Kq,
it follows by the Opial’s condition (Lemma 2.4) that

lim inf
i→∞

∥
∥vni − q

∥
∥ < lim inf

i→∞

∥
∥vni −Kq

∥
∥

≤ lim inf
i→∞

(‖vni −Kvni‖ +
∥
∥Kvni −Kq

∥
∥
)

< lim inf
i→∞

∥
∥vni − q

∥
∥,

(3.68)

which is a contradiction. Thus, we get q ∈ F(K) =
⋂N

i=1 F(Ti).
The conclusion is q ∈ Θ := ∩N

i=1F(Ti) ∩GMEP(F, ϕ,A) ∩ I(B,M).

Step 6. Finally, we show that xn → z and un → z, where z = PΘx0.
Since Θ is nonempty closed convex subset of H, there exists a unique z′ ∈ Θ such that

z′ = PΘx0. Since z′ ∈ Θ ⊂ Cn and xn = PCnx0, we have

‖x0 − xn‖ = ‖x0 − PCnx0‖ ≤ ∥
∥x0 − z′

∥
∥ (3.69)

for all n ∈ N. From (3.69), {xn} is bounded, so ωw(xn)/= ∅. By the weak lower semicontinuity
of the norm, we have

‖x0 − z‖ ≤ lim inf
i→∞

‖x0 − xni‖ ≤ ∥
∥x0 − z′

∥
∥. (3.70)

However, Since z ∈ ωw(xn) ⊂ Θ, we have

∥
∥x0 − z′

∥
∥ ≤ ‖x0 − PCnx0‖ ≤ ‖x0 − z‖. (3.71)

Using (3.69) and (3.70), we obtain z′ = z. Thus ωw(xn) = {z} and xn ⇀ z. So, we have

∥
∥x0 − z′

∥
∥ ≤ ‖x0 − z‖ ≤ lim inf

n→∞
‖x0 − xn‖ ≤ lim sup

n→∞
‖x0 − xn‖ ≤ ∥

∥x0 − z′
∥
∥. (3.72)

Thus, we obtain that

‖x0 − z‖ = lim
n→∞

‖x0 − xn‖ =
∥
∥x0 − z′

∥
∥. (3.73)

From xn ⇀ z, we obtain (x0 − xn) ⇀ (x0 − z). Using the Kadec-Klee property (Lemma 2.5) of
H, we obtain that

‖xn − z‖ = ‖(xn − x0) − (z − x0)‖ −→ 0 as n −→ ∞ (3.74)

and hence xn → z in norm. Finally, noticing ‖un − z‖ = ‖Trn(xn − rnAxn) − Trn(z − rnAz)‖ ≤
‖xn − z‖. we also conclude that un → z in norm. This completes the proof.
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Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H, let F be a
bifunction from C × C to R satisfying (A1)–(A4), and let ϕ : C → R ∪ {+∞} be a proper lower
semicontinuous and convex function with assumption (B1) or (B2). Let {Ti}Ni=1 be a finite family of
nonexpansive mappings of C into itself, letA be a β-inverse-strongly monotone mapping of C intoH,
let B be a ξ-inverse-strongly monotone mapping of C intoH andM : H → 2H a maximal monotone
mapping. Assume that

Θ :=
N⋂

i=1

F(Ti) ∩GMEP
(

F, ϕ,A
) ∩ I(B,M)/= ∅. (3.75)

Let Kn be the K-mapping generated by T1, T2, . . . , TN and γn,1, γn,2, . . . , γn,N . Let {xn}, {yn}, {vn},
{zn} and {un} be sequences generated by (3.3) satisfying the following conditions in Theorem 3.3.
Then, {xn} and {un} converge strongly to z = PΘx0.

From Theorem 3.3, we can obtain the following results.

Theorem 3.5. LetC be a nonempty closed convex subset of a real Hilbert spaceH, let F be a bifunction
from C × C to R satisfying (A1)–(A4), and let ϕ : C → R ∪ {+∞} be a proper lower semicontinuous
and convex function with assumption (B1) or (B2). Let {Ti}Ni=1 be a finite family of quasi-nonexpansive
and Li-Lipschitz mappings of C into itself, let A be a β-inverse-strongly monotone mapping of C into
H and let B be a ξ-inverse-strongly monotone mapping of C intoH. Assume that

Θ :=
N⋂

i=1

F(Ti) ∩ GMEP
(

F, ϕ,A
) ∩ V I(C,B)/= ∅. (3.76)

Let Kn be the K-mapping generated by T1, T2, . . . , TN and γn,1, γn,2, . . . , γn,N . Let {xn}, {yn}, {vn},
{zn} and {un} be sequences generated by x0 ∈ H, C1 = C, x1 = PC1x0, un ∈ C and let

F
(

un, y
)

+ ϕ
(

y
) − ϕ(un) + 〈Axn, y − un〉 + 1

rn

〈

y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = PC(un − δnBun),

vn = PC

(

yn − λnByn

)

,

zn = αnxn + (1 − αn)Knvn,

Cn+1 = {z ∈ Cn : ‖zn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, n ∈ N,

(3.77)

where {αn} ⊂ (0, 1) satisfy the following conditions:

(i) {αn} ⊂ [0, e] for some e with 0 ≤ e < 1;

(ii) {δn}, {λn} ⊂ [a, b] for some a, b with 0 < a < b < 2ξ;

(iii) {rn} ⊂ [c, d] for some c, d with 0 < c < d < 2β.

Then, {xn} and {un} converge strongly to z = PΘx0.
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Proof. In Theorem 3.3 take M = ∂δC : H → 2H , where δC : 0 → [0,∞] is the indicator
function of C, that is,

δC(x) =

⎧

⎨

⎩

0, x ∈ C,

+∞, x /∈C.
(3.78)

Then the variational inclusion problem (1.3) is equivalent to variational inequality problem
(1.14), that is, to find x̂ ∈ C such that

〈Bx̂, y − x̂〉 ≥ 0, ∀y ∈ C. (3.79)

Again, since M = δC, then

JM,λn = JM,δn = PC, (3.80)

and so we have

yn = PC(un − δnBun) = JM,δn(PC(un − δnBun)),

vn = PC

(

yn − λnByn

)

= JM,λn

(

PC

(

yn − λnByn

))

.
(3.81)

We can obtain the desired conclusion from Theorem 3.3 immediately.

Next, we consider another class of important nonlinear mappings: strict pseudocon-
tractions.

Definition 3.6. A mapping S : C → C is called strictly pseudocontraction if there exists a
constant 0 ≤ κ < 1 such that

∥
∥Sx − Sy

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 + κ

∥
∥(I − S)x − (I − S)y

∥
∥
2
, ∀x, y ∈ C. (3.82)

If κ = 0, then S is nonexpansive.
In this case, let S : C → C a κ-strictly pseudocontraction. Putting B = I − S : C → H,

then B is a (1 − κ)/2-inverse-strongly monotone mapping. In fact, from (3.82) we have

∥
∥(I − B)x − (I − B)y

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 + κ

∥
∥Bx − By

∥
∥
2
, ∀x, y ∈ C. (3.83)

Observe that

∥
∥(I − B)x − (I − B)y

∥
∥
2 =

∥
∥x − y

∥
∥
2 − 2

〈

x − y, Bx − By
〉

+
∥
∥Bx − By

∥
∥
2
, ∀x, y ∈ C. (3.84)
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Hence, we obtain

〈

x − y, Bx − By
〉 ≥ 1 − κ

2
∥
∥Bx − By

∥
∥
2
, ∀x, y ∈ C. (3.85)

This shows that B is (1 − κ)/2-inverse-strongly monotone mapping.

Now, we get the following result.

Theorem 3.7. LetC be a nonempty closed convex subset of a real Hilbert spaceH, let F be a bifunction
from C × C to R satisfying (A1)–(A4) and let ϕ : C → R ∪ {+∞} be a proper lower semicontinuous
and convex function with assumption (B1) or (B2). Let {Ti}Ni=1 be a finite family of quasi-nonexpansive
and Li-Lipschitz mappings ofC into itself, let SA be a κβ-strictly pseudocontraction mapping ofC into
C and let SB be a κξ-strictly pseudocontraction mapping of C into C. Assume that

Θ :=
N⋂

i=1

F(Ti) ∩ GMEP
(

F, ϕ, I − SA

) ∩ F(SB)/= ∅. (3.86)

Let Kn be the K-mapping generated by T1, T2, . . . , TN and γn,1, γn,2, . . . , γn,N . Let {xn}, {yn}, {vn},
{zn} and {un} be sequences generated by x0 ∈ H, C1 = C, x1 = PC1x0, un ∈ C and let

F
(

un, y
)

+ ϕ
(

y
) − ϕ(un) + 〈(I − SA)xn, y − un〉 + 1

rn

〈

y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = (1 − δn)un + δnSBun,

vn = (1 − λn)yn + λnSByn,

zn = αnxn + (1 − αn)Knvn,

Cn+1 = {z ∈ Cn : ‖zn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, n ∈ N,

(3.87)

where {αn} ⊂ (0, 1) satisfy the following conditions:

(i) {αn} ⊂ [0, e] for some e with 0 ≤ e < 1;

(ii) {δn}, {λn} ⊂ [a, b] for some a, b with 0 < a < b < 1 − κξ;

(iii) {rn} ⊂ [c, d] for some c, d with 0 < c < d < 1 − κβ.

Then, {xn} and {un} converge strongly to PΘx0.

Proof. Taking A = I − SA and B = I − SB, respectively. Then we see that A is (1 − κβ)/2-
inverse-strongly monotone and B is (1 − κξ)/2-inverse-strongly monotone, respectively. We
have F(SB) = VI(C,B) and

yn = PC(un − δnBun) = PC((1 − δn)un + δnSBun) = (1 − δn)un + δnSBun ∈ C,

vn = PC

(

yn − λnByn

)

= PC

(

(1 − λn)yn + λnSByn

)

= (1 − λn)yn + λnSByn ∈ C.
(3.88)

By using Theorem 3.5, it is easy to obtain the desired conclusion.
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