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We consider the following problem in the paper of Kim et al. (2010): “Find Witt’s formula for
Carlitz’s type q-Euler numbers.” We give Witt’s formula for Carlitz’s type q-Euler numbers, which
is an answer to the above problem. Moreover, we obtain a new p-adic q-l-function lp,q(s, χ) for
Dirichlet’s character χ, with the property that lp,q(−n, χ) = En,χn,q − χn(p)[p]

n
qEn,χn,qp for n = 0, 1, . . .

using the fermionic p-adic integral on Zp.

1. Introduction

Throughout this paper, let p be an odd prime number. The symbol, Zp,Qp, and Cp denote the
rings of p-adic integers, the field of p-adic numbers, and the field of p-adic completion of the
algebraic closure of Qp, respectively. The p-adic absolute value in Cp is normalized in such
way that |p|p = p−1. Let N be the set of natural numbers and Z

+ = N ∪ {0}.
As the definition of q-number, we use the following notations:

[x]q =
1 − qx

1 − q
, [x]−q =

1 − (−q)x
1 + q

. (1.1)

Note that limq→ 1[x]q = x for x ∈ Zp, where q tends to 1 in the region 0 < |q − 1|p < 1.
When one talks of q-analogue, q is variously considered as an indeterminate,

a complex number q ∈ C, or a p-adic number q ∈ Cp. If q = 1 + t ∈ Cp, one normally assumes
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|t|p < 1.Wewill further suppose that ordp(t) > 1/(p−1), so that qx = exp(x log q) for |x|p ≤ 1.
If q ∈ C, then we assume that |q| < 1.

After Carlitz [1, 2] gave q-extensions of the classical Bernoulli numbers and
polynomials, the q-extensions of Bernoulli and Euler numbers and polynomials have been
studied by several authors (cf. [1–21]). The Euler numbers and polynomials have been
studied by researchers in the field of number theory, mathematical physics, and so on (cf.
[1, 2, 9, 11, 13–16, 22, 23]). Recently, various q-extensions of these numbers and polynomials
have been studied by many mathematicians (cf. [6–8, 10, 12, 17, 18, 20]). Also, some authors
have studied in the several area of q-theory (cf. [3, 4, 16, 19, 24]).

It is known that the generating function of Euler numbers F(t) is given by

F(t) =
2

et + 1
=

∞∑

n=0

En
tn

n!
. (1.2)

From (1.2), we know the recurrence formula of Euler numbers is given by

E0 = 1, (E + 1)n + En = 0 if n > 0, (1.3)

with the usual convention of replacing En by En (see [7, 18]).
In [17], the q-extension of Euler numbers E∗

n,q are defined as

E∗
0,q = 1,

(
qE∗ + 1

)n + E∗
n,q =

⎧
⎨

⎩

2 if n = 0,

0 if n > 0,
(1.4)

with the usual convention of replacing (E∗)n by E∗
n,q.

As the same motivation of the construction in [18], Carlitz’s type q-Euler numbers En,q

are defined as

E0,q =
2

[2]q
, q

(
qE + 1

)n + En,q =

⎧
⎨

⎩

2 if n = 0,

0 if n > 0,
(1.5)

with the usual convention of replacing En by En,q. It was shown that limq→ 1En,q = En, where
En is the nth Euler number. In the complex case, the generating function of Carlitz’s type
q-Euler numbers Fq(t) is given by

Fq(t) =
∞∑

n=0

En,q
tn

n!
= 2

∞∑

n=0

(−q)ne[n]qt, (1.6)

where q is a complex number with |q| < 1 (see [18]). The remark point is that the series on
the right-hand side of (1.6) is uniformly convergent in the wider sense. In p-adic case, Kim
et al. [18] could not determine the generating function of Carlitz’s type q-Euler numbers and
Witt’s formula for Carlitz’s type q-Euler numbers.

In this paper, we obtain the generating function of Carlitz’s type q-Euler numbers
in the p-adic case. Also, we give Witt’s formula for Carlitz’s type q-Euler numbers, which
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is a partial answer to the problem in [18]. Moreover, we obtain a new p-adic q-l-function
lp,q(s, χ) for Dirichlet’s character χ, with the property that

lp,q
(−n, χ) = En,χn,q − χn

(
p
)[
p
]n
qEn,χn,qp, (1.7)

for n ∈ Z
+ using the fermionic p-adic integral on Zp.

2. Carlitz’s Type q-Euler Numbers in the p-Adic Case

Let UD(Zp) be the space of uniformly differentiable functions on Zp. Then, the p-adic q-
integral of a function f ∈ UD(Zp) on Zp is defined by

Iq
(
f
)
=
∫

Zp

f(a)dμq(a) = lim
N→∞

1
[
pN

]
q

pN−1∑

a=0

f(a)qa, (2.1)

(cf. [5–17, 19, 20, 22]). The bosonic p-adic integral on Zp is considered as the limit q → 1, that
is,

I1
(
f
)
=
∫

Zp

f(a)dμ1(a). (2.2)

From (2.1), we have the fermionic p-adic integral on Zp as follows:

I−1
(
f
)
= lim

q→−1
Iq
(
f
)
=
∫

Zp

f(a)dμ−1(a). (2.3)

Using (2.3), we can readily derive the classical Euler polynomials, En(x), namely

2
∫

Zp

e(x+y)tdμ−1
(
y
)
=

2ext

et + 1
=

∞∑

n=0

En(x)
tn

n!
. (2.4)

In particular, when x = 0, En(0) = En is the well-known the Euler numbers (cf. [7, 16, 19]).
By definition of I−1(f),we show that

I−1
(
f1
)
+ I−1

(
f
)
= 2f(0), (2.5)

where f1(x) = f(x + 1) (see [7]). By (2.5) and induction, we obtain

I−1
(
fn
)
+ (−1)n−1I−1

(
f
)
= 2

n−1∑

i=0
(−1)n−i−1f(i), (2.6)
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where n = 1, 2, . . . and fn(x) = f(x + n). From (2.6), we note that

I−1
(
fn
)
+ I−1

(
f
)
= 2

n−1∑

i=0
(−1)if(i) if n is odd

I−1
(
fn
) − I−1

(
f
)
= 2

n−1∑

i=0
(−1)i+1f(i) if n is even.

(2.7)

For x ∈ Zp and any integer i ≥ 0, we define

(
x

i

)

=

⎧
⎪⎨

⎪⎩

x(x − 1) · · · (x − i + 1)
i!

if i ≥ 1,

1, if i = 0.
(2.8)

It is easy to see that ( x
i ) ∈ Zp (see [23, page 172]). We put x ∈ Cp with ordp(x) > 1/(p − 1)

and |1 − q|p < 1. We define qx for x ∈ Zp by

qx =
∞∑

i=0

(
x

i

)
(
q − 1

)i
, [x]q =

∞∑

i=1

(
x

i

)
(
q − 1

)i−1
. (2.9)

If we set f(x) = qx in (2.7), we have

I−1
(
qx
)
=

2
qn + 1

n−1∑

i=0
(−1)iqi = 2

q + 1
if n is odd

I−1
(
qx
)
=

2
qn − 1

n−1∑

i=0
(−1)i+1qi = 2

q + 1
if n is even.

(2.10)

From (2.10), we note that if f(x) = qx, then I−1(qx) = 2/(q + 1), hence there is no need to
consider both (odd and even) cases. Thus, for each l ∈ N, we obtain I−1(qlx) = 2/(ql + 1).
Therefore, we have

I−1
(
qx[x]nq

)
=

1
(
1 − q

)n
n∑

l=0

(
n

l

)

(−1)lI−1
(
q(l+1)x

)

=
1

(
1 − q

)n
n∑

l=0

(
n

l

)

(−1)l 2
ql+1 + 1

.

(2.11)

Also, if f(x) = qlx in (2.5), then

I−1
(
ql(x+1)

)
+ I−1

(
qlx

)
= 2f(0) = 2. (2.12)
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On the other hand, by (2.12), we obtain that

I−1
(
qx+1[x + 1]nq

)
+ I−1

(
qx[x]nq

)
=

1
(
1 − q

)n
n∑

l=0

(
n

l

)

(−1)l
(
I−1

((
ql+1

)x+1
)
+ I−1

((
ql+1

)x))

=
2

(
1 − q

)n
n∑

l=0

(
n

l

)

(−1)l = 0

(2.13)

is equivalent to

0 = I−1
(
qx+1[x + 1]nq

)
+ I−1

(
qx[x]nq

)

= qI−1
(
qx
(
1 + q[x]n

))
+ I−1

(
qx[x]nq

)

= qI−1

(

qx
n∑

l=0

(
n

l

)

ql[x]l
)

+ I−1
(
qx[x]nq

)

= q
n∑

l=0

(
n

l

)

qlI−1
(
qx[x]l

)
+ I−1

(
qx[x]nq

)
.

(2.14)

From the definition of fermionic p-adic integral on Zp and (2.11), we can derive

I−1
(
qx[x]nq

)
=
∫

Zp

[x]nqq
xdμ−1(x)

= lim
N→∞

pN−1∑

a=0

1
(
1 − q

)n
n∑

i=0

(
n

i

)

(−1)iqia(−q)a

=
1

(
1 − q

)n
n∑

i=0

(
n

i

)

(−1)i lim
N→∞

pN−1∑

a=0
(−1)a

(
qi+1

)a

=
1

(
1 − q

)n
n∑

i=0

(
n

i

)

(−1)i 2
1 + qi+1

(2.15)

is equivalent to

∞∑

n=0

I−1
(
qx[x]nq

) tn

n!
=

∞∑

n=0

1
(
1 − q

)n
n∑

i=0

(
n

i

)

(−1)i 2
1 + qi+1

tn

n!

= 2
∞∑

n=0

(−q)ne[n]qt.
(2.16)
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From (2.12), (2.13), (2.14), (2.15), and (2.16), it is easy to show that

q
n∑

l=0

(
n

l

)

qlEl,q + En,q =

⎧
⎨

⎩

2 if n = 0,

0 if n > 0,
(2.17)

where En,q are Carlitz’s type q-Euler numbers defined by (see [18])

Fq(t) = 2
∞∑

n=0

(−q)ne[n]qt =
∞∑

n=0

En,q
tn

n!
. (2.18)

Therefore, we obtain the recurrence formula for the Carlitz’s type q-Euler numbers as follows:

q
(
qE + 1

)n + En,q =

⎧
⎨

⎩

2 if n = 0,

0 if n > 0,
(2.19)

with the usual convention of replacing En by En,q. Therefore, by (2.16), (2.18), and (2.19), we
obtain the following theorem, which is a partial answer to the problem in [18].

Theorem 2.1 (Witt’s formula for En,q). For n ∈ Z
+,

En,q =
1

(
1 − q

)n
n∑

i=0

(
n

i

)

(−1)i 2
1 + qi+1

=
∫

Zp

[x]nqq
xdμ−1(x). (2.20)

Carlitz’s type q-Euler numbers En = En,q can be determined inductively by

q
(
qE + 1

)n + En,q =

⎧
⎨

⎩

2 if n = 0,

0 if n > 0,
(2.21)

with the usual convention of replacing En by En,q.

Carlitz type q-Euler polynomials En,q(x) are defined by means of the generating
function Fq(x, t) as follows:

Fq(x, t) = 2
∞∑

k=0

(−1)kqke[k+x]qt =
∞∑

n=0

En,q(x)
tn

n!
. (2.22)

In the cases x = 0, En,q(0) = En,q will be called Carlitz type q-Euler numbers (cf. [8, 19]). One
also can see that the generating functions Fq(x, t) are determined as solutions of

Fq(x, t) = 2e[x]qt − qetFq

(
x, qt

)
. (2.23)

From (2.22), one gets the following.
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Lemma 2.2. (1)Fq(x, t) = 2et/(1−q)
∑∞

j=0 (1/(q − 1))jqxj(1/(1 + qj+1))(tj/j!).

(2)En,q(x) = 2
∑∞

k=0 (−1)kqk[k + x]nq .

It is clear from (1) and (2) of Lemma 2.2 that

En,q(x) =
2

(
1 − q

)n
n∑

k=0

(
n

k

)
(−1)k
1 + qk+1

qxk,

m−1∑

k=0

(−1)kqk[k + x]nq =
∞∑

k=0

(−1)kqk[k + x]nq −
∞∑

k=0

(−1)k+mqk+m[k +m + x]nq

=
1
2

(
En,q(x) + (−1)m+1qmEn,q(x +m)

)
.

(2.24)

From (2.24), we may state the following.

Proposition 2.3. If m ∈ N and n ∈ Z
+, then

(1) En,q(x) = (2/(1 − q)n)
∑n

k=0(
n
k )((−1)k/(1 + qk+1))qxk,

(2)
∑m−1

k=0 (−1)kqk[k + x]nq = (1/2)(En,q(x) + (−1)m+1qmEn,q(x +m)).

Proposition 2.4. For n ∈ Z
+, the value of

∫
Zp
[x+y]nqq

ydμ−1(y) is n! times the coefficient of tn in the

formal expansion of 2
∑∞

k=0(−1)kqke[k+x]qt in powers of t. That is, En,q(x) =
∫
Zp
[x + y]nqq

ydμ−1(y).

Proof. From (2.3), we have

∫

Zp

qk(x+y)qydμ−1
(
y
)
= qxk lim

N→∞

pN−1∑

a=0

(
−qk+1

)a
=

2qxk

1 + qk+1
, (2.25)

which leads to

∫

Zp

[
x + y

]n
qq

ydμ−1
(
y
)
= 2

n∑

k=0

(
n

k

)
1

(
1 − q

)n (−1)k
∫

Zp

qk(x+y)qydμ−1
(
y
)

=
2

(
1 − q

)n
n∑

k=0

(
n

k

)
(−1)k
1 + qk+1

qxk.

(2.26)

The result now follows by using (1) of Proposition 2.3.

Corollary 2.5. If n ∈ Z
+, then

En,q(x) =
n∑

k=0

(
n

k

)

[x]n−kq qkxEk,q. (2.27)
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Let d ∈ N with d ≡ 1 (mod 2) and p be a fixed odd prime number. One sets

X = lim
←
N

(
Z

dpNZ

)
, X∗ =

⋃

0<a<dp
(a,p)=1

a + dpZp,

a + dpNZp =
{
x ∈ X | x ≡ a

(
mod dpN

)}
,

(2.28)

where a ∈ Z with 0 ≤ a < dpN (cf. [7, 9]). Note that the natural map Z/dpNZ → Z/pNZ

induces

π : X −→ Zp. (2.29)

Hereafter, if f is a function on Zp, one denotes by the same f the function f ◦π on X.Namely
one considers f as a function on X.

Let χ be the Dirichlet character with an odd conductor d = dχ ∈ N. Then, the
generalized Carlitz type q-Euler polynomials attached to χ are defined by

En,χ,q(x) =
∫

X

χ(a)
[
x + y

]n
qq

ydμ−1
(
y
)
, (2.30)

where n ∈ Z
+ and x ∈ Zp. Then, one has the generating function of generalized Carlitz type

q-Euler polynomials attached to χ

Fq,χ(x, t) = 2
∞∑

m=0

χ(m)(−1)mqme[m+x]qt =
∞∑

n=0

En,χ,q(x)
tn

n!
. (2.31)

Now, fixed any t ∈ Cp with ordp(t) > 1/(p − 1) and |1 − q|p < 1. From (2.31), one has

Fq,χ(x, t) = 2
∞∑

m=0

χ(m)
(−q)m

∞∑

n=0

1
(
1 − q

)n
n∑

i=0

(
n

i

)

(−1)iqi(m+x) t
n

n!

= 2
∞∑

n=0

1
(
1 − q

)n
n∑

i=0

(
n

i

)

(−1)iqix

×
d−1∑

j=0

∞∑

l=0

χ
(
j + dl

)(−q)j+dlqi(j+dl) t
n

n!

= 2
∞∑

n=0

1
(
1 − q

)n
d−1∑

j=0

χ
(
j
)(−q)j

n∑

i=0

(
n

i

)

(−1)i qi(x+j)

1 + qd(i+1)
tn

n!
,

(2.32)
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where x ∈ Zp and d ∈ Nwith d ≡ 1 (mod 2). By (2.31) and (2.32), one can derive

En,χ,q(x) =
1

(
1 − q

)n
d−1∑

j=0

χ
(
j
)(−q)j

n∑

i=0

(
n

i

)

(−1)iqi(x+j) 2
1 + qd(i+1)

=
1

(
1 − q

)n
d−1∑

j=0

χ
(
j
)(−q)j

n∑

i=0

(
n

i

)

(−1)iqi(x+j) × lim
N→∞

pN−1∑

l=0

(−1)l
(
qd(i+1)

)l

= lim
N→∞

d−1∑

j=0

pN−1∑

l=0

χ
(
j + dl

) 1
(
1 − q

)n
n∑

i=0

(
n

i

)

(−1)iqi(j+dl+x) × (−1)j+dlqj+dl

= lim
N→∞

dpN−1∑

a=0

χ(a)
1

(
1 − q

)n
n∑

i=0

(
n

i

)

(−1)iqi(a+x)(−q)a

=
∫

X

χ
(
y
)[
x + y

]n
qq

ydμ−1
(
y
)
,

(2.33)

where x ∈ Zp and d ∈ Nwith d ≡ 1 (mod 2). Therefore, one obtains the following.

Theorem 2.6.

En,χ,q(x) =
1

(
1 − q

)n
d−1∑

j=0

χ
(
j
)(−q)j

n∑

i=0

(
n

i

)

(−1)iqi(x+j) 2
1 + qd(i+1)

, (2.34)

where n ∈ Z
+ and x ∈ Zp.

Let ω denote the Teichmüller character mod p. For x ∈ X∗, one sets

〈x〉 = [x]qω
−1(x) =

[x]q
ω(x)

. (2.35)

Note that since |〈x〉 − 1|p < p−1/(p−1), 〈x〉s is defined by exp(slogp〈x〉) for |s|p ≤ 1 (cf. [10, 12,
21]). One notes that 〈x〉s is analytic for s ∈ Zp.

One defines an interpolation function for Carlitz type q-Euler numbers. For s ∈ Zp,

lp,q
(
s, χ

)
=
∫

X∗
〈x〉−sχ(x)qxdμ−1(x). (2.36)

Then, lp,q(s, χ) is analytic for s ∈ Zp.
The values of this function at nonpositive integers are given by the following.
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Theorem 2.7. For integers n ≥ 0,

lp,q
(−n, χ) = En,χn,q − χn

(
p
)[
p
]n
qEn,χn,qp , (2.37)

where χn = χω−n. In particular, if χ = ωn, then lp,q(−n,ωn) = En,q − [p]nqEn,qp .

Proof.

lp,q
(−n, χ) =

∫

X∗
〈x〉nχ(x)qxdμ−1(x)

=
∫

X

[x]nqχn(x)qxdμ−1(x) −
∫

X

[
px

]n
qχn

(
px

)
qpxdμ−1

(
px

)

=
∫

X

[x]nqχn(x)qxdμ−1(x) −
[
p
]n
qχn

(
p
)
∫

X

[x]nqpχn(x)qpxdμ−1(x).

(2.38)

Therefore by (2.30), the theorem is proved.

Let χ be the Dirichlet character with an odd conductor d = dχ ∈ N. Let F be a positive
integer multiple of p and d. Then, by (2.22) and (2.31), we have

Fq,χ(x, t) = 2
∞∑

m=0

χ(m)(−1)mqme[m+x]qt

= 2
F−1∑

a=0

χ(a)
(−q)a

∞∑

k=0

(−q)Fke[F]q[k+((x+a)/F)]qF t

=
∞∑

n=0

(

[F]nq
F−1∑

a=0

χ(a)
(−q)aEn,qF

(x + a

F

)) tn

n!
.

(2.39)

Therefore, we obtain the following

En,χ,q(x) = [F]nq
F−1∑

a=0

χ(a)
(−q)aEn,qF

(x + a

F

)
. (2.40)

If χn(p)/= 0, then (p, dχn) = 1, so that F/p is a multiple of dχn . From (2.40), we derive

χn

(
p
)[
p
]n
qEn,χn,qp = χn

(
p
)[
p
]n
q

[
F

p

]n

qp

F/p−1∑

a=0

χn(a)
(−qp)aEn,(qp)F/p

(
a

F/p

)

= [F]nq
F∑

a=0
p|a

χn(a)
(−q)aEn,qF

(a

F

)
.

(2.41)
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Thus, we have

En,χn,q − χn

(
p
)[
p
]n
qEn,χn,qp = [F]nq

F−1∑

a=0
p�a

χn(a)
(−q)aEn,qF

(a

F

)
. (2.42)

By Corollary 2.5, we easily see that

En,qF

(a

F

)
=

n∑

k=0

(
n

k

)[a
F

]n−k

qF
qkaEk,qF

= [F]−nq [a]nq
n∑

k=0

(
n

k

)[
F

a

]k

qa
qkaEk,qF .

(2.43)

From (2.42) and (2.43), we have

En,χn,q − χn

(
p
)[
p
]n
qEn,χn,qp = [F]nq

F−1∑

a=0
p�a

χn(a)
(−q)aEn,qF

(a

F

)

=
F−1∑

a=0
p�a

χ(a)〈a〉n(−q)a
∞∑

k=0

(
n

k

)[
F

a

]k

qa
qkaEk,qF ,

(2.44)

since χn(a) = χ(a)ω−n(a). From Theorem 2.7 and (2.44), we have

lp,q
(−n, χ) =

F−1∑

a=0
p�a

χ(a)〈a〉n(−q)a
∞∑

k=0

(
n

k

)[
F

a

]k

qa
qkaEk,qF , (2.45)

for n ∈ Z
+. Therefore, we have the following theorem.

Theorem 2.8. Let F be a positive integer multiple of p and d = dχ, and let

lp,q
(
s, χ

)
=
∫

X∗
〈x〉−sχ(x)qxdμ−1(x), s ∈ Zp. (2.46)

Then, lp,q(s, χ) is analytic for s ∈ Zp and

lp,q
(
s, χ

)
=

F−1∑

a=0
p�a

χ(a)〈a〉−s(−q)a
∞∑

k=0

(−s
k

)[
F

a

]k

qa
qkaEk,qF . (2.47)

Furthermore, for n ∈ Z
+

lp,q
(−n, χ) = En,χn,q − χn

(
p
)[
p
]n
qEn,χn,qp . (2.48)
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