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Two-weighted norm estimates with general weights for Hardy-type transforms and potentials
in variable exponent Lebesgue spaces defined on quasimetric measure spaces (X, d, μ) are
established. In particular, we derive integral-type easily verifiable sufficient conditions governing
two-weight inequalities for these operators. If exponents of Lebesgue spaces are constants, then
most of the derived conditions are simultaneously necessary and sufficient for corresponding
inequalities. Appropriate examples of weights are also given.

1. Introduction
We study the two-weight problem for Hardy-type and potential operators in Lebesgue spaces
with nonstandard growth defined on quasimetric measure spaces (X, d, μ). In particular, our
aim is to derive easily verifiable sufficient conditions for the boundedness of the operators
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in weighted Lp(·)(X) spaces which enable us to effectively construct examples of appropriate
weights. The conditions are simultaneously necessary and sufficient for corresponding
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inequalities when the weights are of special type and the exponent p of the space is constant.
We assume that the exponent p satisfies the local log-Hölder continuity condition, and if
the diameter of X is infinite, then we suppose that p is constant outside some ball. In the
framework of variable exponent analysis such a condition first appeared in the paper [1],
where the author established the boundedness of the Hardy-Littlewood maximal operator in
Lp(·)(Rn). As far as we know, unfortunately, an analog of the log-Hölder decay condition (at
infinity) for p : X → [1,∞) is not known even in the unweighted case, which is well-known
and natural for the Euclidean spaces (see [2–5]). Local log-Hölder continuity condition for
the exponent p, together with the log-Hölder decay condition, guarantees the boundedness
of operators of harmonic analysis in Lp(·)(Rn) spaces (see, e.g., [6]). The technique developed
here enables us to expect that results similar to those of this paper can be obtained also
for other integral operators, for instance, for maximal and Calderón-Zygmund singular
operators defined on X.

Considerable interest of researchers is focused on the study of mapping properties
of integral operators defined on (quasi)metric measure spaces. Such spaces with doubling
measure and all their generalities naturally arise when studying boundary value problems
for partial differential equations with variable coefficients, for instance, when the quasimetric
might be induced by a differential operator or tailored to fit kernels of integral operators.
The problem of the boundedness of integral operators naturally arises also in the Lebesgue
spaces with nonstandard growth. Historically the boundedness of the maximal and fractional
integral operators in Lp(·)(X) spaces was derived in the papers [7–14]. Weighted inequalities
for classical operators in L

p(·)
w spaces, wherew is a power-type weight, were established in the

papers [10–12, 15–19], while the same problems with general weights for Hardy, maximal,
and fractional integral operators were studied in [10, 20–25]. Moreover, in the latter paper,
a complete solution of the one-weight problem for maximal functions defined on Euclidean
spaces is given in terms of Muckenhoupt-type conditions.

It should be emphasized that in the classical Lebesgue spaces the two-weight problem
for fractional integrals is already solved (see [26, 27]), but it is often useful to construct
concrete examples of weights from transparent and easily verifiable conditions.

To derive two-weight estimates for potential operators, we use the appropriate
inequalities for Hardy-type transforms on X (which are also derived in this paper) and
Hardy-Littlewood-Sobolev-type inequalities for Tα(·) and Iα(·) in Lp(·)(X) spaces.

The paper is organized as follows: in Section 1, we give some definitions and prove
auxiliary results regarding quasimetric measure spaces and the variable exponent Lebesgue
spaces; Section 2 is devoted to the sufficient governing two-weight inequalities for Hardy-
type operators defined on quasimetric measure spaces, while in Section 3 we study the two-
weight problem for potentials defined on X.

Finally we point out that constants (often different constants in the same series of
inequalities) will generally be denoted by c or C. The symbol f(x) ≈ g(x) means that
there are positive constants c1 and c2 independent of x such that the inequality f(x) ≤
c1g(x) ≤ c2f(x) holds. Throughout the paper is denoted the function p(x)/(p(x) − 1) by the
symbol p′(x).

2. Preliminaries

Let X := (X, d, μ) be a topological space with a complete measure μ such that the space of
compactly supported continuous functions is dense in L1(X, μ) and there exists a nonnegative
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real-valued function (quasimetric) d on X ×X satisfying the conditions:

(i) d(x, y) = 0 if and only if x = y;

(ii) there exists a constant a1 > 0, such that d(x, y) ≤ a1(d(x, z)+d(z, y)) for all x, y, z ∈
X;

(iii) there exists a constant a0 > 0, such that d(x, y) ≤ a0d(y, x) for all x, y,∈ X.

We assume that the balls B(x, r) := {y ∈ X : d(x, y) < r} are measurable and 0 ≤
μ(B(x, r)) < ∞ for all x ∈ X and r > 0; for every neighborhood V of x ∈ X, there exists r > 0,
such that B(x, r) ⊂ V . Throughout the paper we also suppose that μ{x} = 0 and that

B(x,R) \ B(x, r)/= ∅, (2.1)

for all x ∈ X, positive r and R with 0 < r < R < L, where

L := diam(X) = sup
{
d
(
x, y

)
: x, y ∈ X

}
. (2.2)

We call the triple (X, d, μ) a quasimetric measure space. If μ satisfies the doubling
condition μ(B(x, 2r)) ≤ cμ(B(x, r)), where the positive constant c does not depend on x ∈ X
and r > 0, then (X, d, μ) is called a space of homogeneous type (SHT). For the definition,
examples, and some properties of an SHT see, for example, monographs [28–30].

A quasimetric measure space, where the doubling condition is not assumed, is called
a nonhomogeneous space.

Notice that the condition L < ∞ implies that μ(X) < ∞ because we assumed that every
ball in X has a finite measure.

We say that the measure μ is upper Ahlfors Q-regular if there is a positive constant c1
such that μB(x, r) ≤ c1r

Q for for all x ∈ X and r > 0. Further, μ is lower Ahlfors Q-regular
if there is a positive constant c2 such that μB(x, r) ≥ c2r

q for all x ∈ X and r > 0. It is easy
to check that if (X, d, μ) is a quasimetric measure space and L < ∞, then μ is lower Ahlfors
regular (see also, e.g., [8] for the case when d is a metric).

For the boundedness of potential operators inweighted Lebesgue spaces with constant
exponents on nonhomogeneous spaces we refer, for example, to the monograph [31, Chapter
6] and references cited therein.

Let p be a nonnegative μ-measurable function on X. Suppose that E is a μ-measurable
set in X. We use the following notation:

p−(E) := inf
E

p; p+(E) := sup
E

p; p− := p−(X); p+ := p+(X);
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{
y ∈ X : d
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}
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(2.3)
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Assume that 1 ≤ p− ≤ p+ < ∞. The variable exponent Lebesgue space Lp(·)(X)
(sometimes it is denoted by Lp(x)(X)) is the class of all μ-measurable functions f on X for
which Sp(f) :=

∫
X |f(x)|p(x)dμ(x) < ∞. The norm in Lp(·)(X) is defined as follows:

∥
∥f
∥
∥
Lp(·)(X) = inf

{
λ > 0 : Sp

(
f

λ

)
≤ 1
}
. (2.4)

It is known (see, e.g., [8, 15, 32, 33]) that Lp(·) is a Banach space. For other properties of
Lp(·) spaces we refer, for example, to [32–34].

We need some definitions for the exponent p which will be useful to derive the main
results of the paper.

Definition 2.1. Let (X, d, μ) be a quasimetric measure space and let N ≥ 1 be a constant.
Suppose that p satisfies the condition 0 < p− ≤ p+ < ∞. We say that p belongs to the class
P(N,x), where x ∈ X, if there are positive constants b and c (which might be depended on
x) such that

μ(B(x,Nr))p−(B(x,r))−p+(B(x,r)) ≤ c (2.5)

holds for all r, 0 < r ≤ b. Further, p ∈ P(N) if there are positive constants b and c such that
(2.5) holds for all x ∈ X and all r satisfying the condition 0 < r ≤ b.

Definition 2.2. Let (X, d, μ) be an SHT. Suppose that 0 < p− ≤ p+ < ∞. We say that p ∈ LH(X, x)
(p satisfies the log-Hölder-type condition at a point x ∈ X) if there are positive constants b
and c (which might be depended on x) such that

∣∣p(x) − p
(
y
)∣∣ ≤ c

− ln
(
μ
(
Bxy

)) (2.6)

holds for all y satisfying the condition d(x, y) ≤ b. Further, p ∈ LH(X) (p satisfies the log-
Hölder type condition on X) if there are positive constants b and c such that (2.6) holds for
all x, y with d(x, y) ≤ b.

We will also need another form of the log-Hölder continuity condition given by the
following definition.

Definition 2.3. Let (X, d, μ) be a quasimetric measure space, and let 0 < p− ≤ p+ < ∞. We say
that p ∈ LH(X, x) if there are positive constants b and c (which might be depended on x)
such that

∣∣p(x) − p
(
y
)∣∣ ≤ c

− lnd
(
x, y

) (2.7)

for all y with d(x, y) ≤ b. Further, p ∈ LH(X) if (2.7) holds for all x, y with d(x, y) ≤ b.
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It is easy to see that if a measure μ is upper Ahlfors Q-regular and p ∈ LH(X) (resp.,
p ∈ LH(X, x)), then p ∈ LH(X) (resp., p ∈ LH(X, x). Further, if μ is lower Ahlfors Q-regular
and p ∈ LH(X) (resp., p ∈ LH(X, x)), then p ∈ LH(X) (resp., p ∈ LH(X, x)).

Remark 2.4. It can be checked easily that if (X, d, μ) is an SHT, then μBx0x ≈ μBxx0 .

Remark 2.5. Let (X, d, μ) be an SHT with L < ∞. It is known (see, e.g., [8, 35]) that if p ∈
LH(X), then p ∈ P(1). Further, if μ is upper Ahlfors Q-regular, then the condition p ∈ P(1)
implies that p ∈ LH(X).

Proposition 2.6. Let c be positive and let 1 < p−(X) ≤ p+(X) < ∞ and p ∈ LH(X) (resp., p ∈
LH(X)), then the functions cp(·), 1/p(·), and p′(·) belong to LH(X) (resp., LH(X)). Further if
p ∈ LH(X, x) (resp., p ∈ LH(X, x)) then cp(·), 1/p(·), and p′(·) belong to LH(X, x) (resp., p ∈
LH(X, x)).

The proof of the latter statement can be checked immediately using the definitions of
the classes LH(X, x), LH(X), LH(X, x), and LH(X).

Proposition 2.7. Let (X, d, μ) be an SHT and let p ∈ P(1). Then (μBxy)
p(x) ≤ c(μByx)

p(y) for all
x, y ∈ X with μ(B(x, d(x, y))) ≤ b, where b is a small constant, and the constant c does not depend
on x, y ∈ X.

Proof. Due to the doubling condition for μ, Remark 1.1, the condition p ∈ P(1) and
the fact that x ∈ B(y, a1(a0 + 1)d(y, x)) we have the following estimates: μ(Bxy)

p(x) ≤
μ(B(y, a1(a0 + 1)d(x, y)))p(x) ≤ cμB(y, a1(a0 + 1)d(x, y))p(y) ≤ c(μByx)

p(y), which proves the
statement.

The proof of the next statement is trivial and follows directly from the definition of the
classes P(N,x) and P(N). Details are omitted.

Proposition 2.8. Let (X, d, μ) be a quasimetric measure space and let x0 ∈ X. Suppose that N ≥ 1
be a constant. Then the following statements hold:

(i) if p ∈ P(N,x0) (resp., p ∈ P(N)), then there are positive constants r0, c1, and c2 such
that for all 0 < r ≤ r0 and all y ∈ B(x0, r) (resp., for all x0, y with d(x0, y) < r ≤ r0), one
has that μ(B(x0,Nr))p(x0) ≤ c1μ(B(x0,Nr))p(y) ≤ c2μ(B(x0,Nr))p(x0).

(ii) Let p ∈ P(N,x0), then there are positive constants r0, c1, and c2 (in general, depending
on x0) such that for all r (r ≤ r0) and all x, y ∈ B(x0, r) one has μ(B(x0,Nr))p(x) ≤
c1μ(B(x0,Nr))p(y) ≤ c2μ(B(x0,Nr))p(x).

(iii) Let p ∈ P(N), then there are positive constants r0, c1, and c2 such that for all balls B with
radius r (r ≤ r0) and all x, y ∈ B, one has that μ(NB)p(x) ≤ c1μ(NB)p(y) ≤ c2μ(NB)p(x).

It is known that (see, e.g., [32, 33]) if f is a measurable function on X and E is a
measurable subset of X, then the following inequalities hold:

∥∥f
∥∥p+(E)
Lp(·)(E)

≤ Sp

(
fχE

) ≤ ∥∥f∥∥p−(E)
Lp(·)(E)

,
∥∥f
∥∥
Lp(·)(E) ≤ 1;

∥∥f
∥∥p−(E)
Lp(·)(E)

≤ Sp

(
fχE

) ≤ ∥∥f∥∥p+(E)
Lp(·)(E)

,
∥∥f
∥∥
Lp(·)(E) > 1.

(2.8)
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Further, Hölder’s inequality in the variable exponent Lebesgue spaces has the
following form:

∫

E

fgdμ ≤
(

1
p−(E)

+
1

(
p′
)
−(E)

)
∥
∥f
∥
∥
Lp(·)(E)

∥
∥g
∥
∥
Lp′(·)(E). (2.9)

Lemma 2.9. Let (X, d, μ) be an SHT.

(i) If β is a measurable function on X such that β+ < −1 and if r is a small positive number,
then there exists a positive constant c independent of r and x such that

∫

X\B(x0,r)

(
μBx0y

)β(x)
dμ
(
y
) ≤ c

β(x) + 1
β(x)

μ(B(x0, r))β(x)+1. (2.10)

(ii) Suppose that p and α are measurable functions on X satisfying the conditions 1 < p− ≤
p+ < ∞ and α− > 1/p−. Then there exists a positive constant c such that for all x ∈ X the
inequality

∫

B(x0,2d(x0,x))

(
μB
(
x, d

(
x, y

)))(α(x)−1)p′(x)
dμ
(
y
) ≤ c

(
μB(x0, d(x0, x))

)(α(x)−1)p′(x)+1

(2.11)

holds.

Proof. Part (i)was proved in [35] (see also [31, page 372], for constant β). The proof of Part (ii)
is given in [31, (Lemma 6.5.2, page 348)] for constant α and p, but repeating those arguments
we can see that it is also true for variable α and p. Details are omitted.

Lemma 2.10. Let (X, d, μ) be an SHT. Suppose that 0 < p− ≤ p+ < ∞, then p satisfies the condition
p ∈ P(1) (resp., p ∈ P(1, x)) if and only if p ∈ LH(X) (resp., p ∈ LH(X, x)).

Proof. We follow [1].

Necessity. Let p ∈ P(1), and let x, y ∈ X with d(x, y) < c0 for some positive constant c0.
Observe that x, y ∈ B, where B := B(x, 2d(x, y)). By the doubling condition for μ, we have
that (μBxy)

−|p(x)−p(y)| ≤ c(μB)−|p(x)−p(y)| ≤ c(μB)p−(B)−p+(B) ≤ C, where C is a positive constant
which is greater than 1. Taking now the logarithm in the last inequality, we have that p ∈
LH(X). If p ∈ P(1, x), then by the same arguments we find that p ∈ LH(X, x).

Sufficiency. Let B := B(x0, r). First observe that If x, y ∈ B, then μBxy ≤ cμB(x0, r).
Consequently, this inequality and the condition p ∈ LH(X) yield |p−(B) − p+(B)| ≤
C/ − ln(c0μB(x0, r)). Further, there exists r0 such that 0 < r0 < 1/2 and c1 ≤
(ln(μ(B)))/(− ln(c0μ(B))) ≤ c2, 0 < r ≤ r0, where c1 and c2 are positive constants. Hence
(μ(B))p−(B)−p+(B) ≤ (μ(B))C/ ln(c0μ(B)) = exp(C ln(μ(B))/ ln(c0μ(B))) ≤ C.
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Let, now, p ∈ LH(X, x) and let Bx := B(x, r) where r is a small number. We have that
p+(Bx)−p(x) ≤ (c/−ln(c0μB(x, r))) and p(x)−p−(Bx) ≤ (c/−ln(c0μB(x, r))) for some positive
constant c0. Consequently,

(
μ(Bx)

)p−(Bx)−p+(Bx) =
(
μ(Bx)

)p(x)−p+(Bx)(μ(Bx)
)p−(Bx)−p(x) ≤ c

(
μ(Bx)

)(−2c/−ln(c0μBx)) ≤ C.
(2.12)

Definition 2.11. A measure μ on X is said to satisfy the reverse doubling condition (μ ∈
RDC(X)) if there exist constants A > 1 and B > 1 such that the inequality μ(B(a,Ar)) ≥
Bμ(B(a, r)) holds.

Remark 2.12. It is known that if all annulus in X are not empty (i.e., condition (2.1) holds),
then μ ∈ DC(X) implies that μ ∈ RDC(X) (see, e.g., [28, page 11, Lemma 20]).

Lemma 2.13. Let (X, d, μ) be an SHT. Suppose that there is a point x0 ∈ X such that p ∈
LH(X, x0). Let A be the constant defined in Definition 2.11. Then there exist positive constants r0
and C (which might be depended on x0) such that for all r, 0 < r ≤ r0, the inequality

(
μBA

)p−(BA)−p+(BA) ≤ C (2.13)

holds, where BA := B(x0, Ar) \ B(x0, r) and the constant C is independent of r.

Proof. Taking into account condition (2.1) and Remark 2.12, we have that μ ∈ RDC(X).
Let B := B(x0, r). By the doubling and reverse doubling conditions, we have that μBA =
μB(x0, Ar) − μB(x0, r) ≥ (B − 1)μB(x0, r) ≥ cμ(AB). Suppose that 0 < r < c0, where c0
is a sufficiently small constant. Then by using Lemma 2.10 we find that (μBA)

p−(BA)−p+(BA) ≤
c(μ(AB))p−(BA)−p+(BA) ≤ c(μ(AB))p−(AB)−p+(AB) ≤ c.

In the sequel we will use the notation:

I1,k : =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

B

(

x0,
Ak−1L
a1

)

if L < ∞,

B

(

x0,
Ak−1

a1

)

if L = ∞,

I2,k : =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

B
(
x0,Ak+2a1L

)
\ B
(

x0,
Ak−1L
a1

)

if L < ∞,

B
(
x0, A

k+2a1
) \ B

(

x0,
Ak−1

a1

)

if L = ∞,

I3,k : =

⎧
⎨

⎩

X \ B(x0, A
k+2La1

)
if L < ∞,

X \ B(x0, A
k+2a1

)
if L = ∞,
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Ek : =

⎧
⎨

⎩

B
(
x0, A

k+1L
) \ B(x0, A

kL
)

if L < ∞,

B
(
x0, A

k+1) \ B(x0, A
k
)

if L = ∞,

(2.14)

where the constants A and a1 are taken, respectively, from Definition 2.11 and the triangle
inequality for the quasimetric d, and L is a diameter of X.

Lemma 2.14. Let (X, d, μ) be an SHT and let 1 < p−(x) ≤ p(x) ≤ q(x) ≤ q+(X) < ∞. Suppose
that there is a point x0 ∈ X such that p, q ∈ LH(X, x0). Assume that if L = ∞, then p(x) ≡ pc ≡ const
and q(x) ≡ qc ≡ const outside some ball B(x0, a). Then there exists a positive constant C such that

∑

k

∥
∥fχI2,k

∥
∥
Lp(·)(X)

∥
∥gχI2,k

∥
∥
Lq′(·)(X) ≤ C

∥
∥f
∥
∥
Lp(·)(X)

∥
∥g
∥
∥
Lq′(·)(X), (2.15)

for all f ∈ Lp(·)(X) and g ∈ Lq′(·)(X).

Proof. Suppose that L = ∞. To prove the lemma, first observe that μ(Ek) ≈ μB(x0, A
k) and

μ(I2,k) ≈ μB(x0, A
k−1). This holds because μ satisfies the reverse doubling condition and,

consequently,

μEk = μ
(
B
(
x0, A

k+1
)
\ B
(
x0, A

k
))

= μB
(
x0, A

k+1
)
− μB

(
x0, A

k
)

= μB
(
x0, AAk

)
− μB

(
x0, A

k
)
≥ BμB

(
x0, A

k
)
− μB

(
x0, A

k
)
= (B − 1)μB

(
x0, A

k
)
.

(2.16)

Moreover, the doubling condition yields μEk ≤ μB(x0, AAk) ≤ cμB(x0, A
k), where c > 1.

Hence, μEk ≈ μB(x0, A
k).

Further, since we can assume that a1 ≥ 1, we find that

μI2,k = μ

(

B
(
x0, A

k+2a1

)
\ B
(

x0,
Ak−1

a1

))

= μB
(
x0, A

k+2a1

)
− μB

(

x0,
Ak−1

a1

)

= μB
(
x0, AAk+1a1

)
− μB

(

x0,
Ak−1

a1

)

≥ BμB
(
x0, A

k+1a1

)
− μB

(

x0,
Ak−1

a1

)

≥ B2μB

(

x0,
Ak

a1

)

− μB

(

x0,
Ak−1

a1

)

≥ B3μB

(

x0,
Ak−1

a1

)

− μB

(

x0,
Ak−1

a1

)

=
(
B3 − 1

)
μB

(

x0,
Ak−1

a1

)

.

(2.17)

Moreover, using the doubling condition for μ we have that μI2,k ≤ μB(x0, A
k+2r) ≤

cμB(x0, A
k+1r) ≤ c2μB(x0, A

k/a1) ≤ c3μB(x0, A
k−1/a1) . This gives the estimates (B3 −

1)μB(x0, A
k−1/a1) ≤ μ(I2,k) ≤ c3μB(x0, A

k−1/a1).
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For simplicity, assume that a = 1. Suppose thatm0 is an integer such thatAm0−1/a1 > 1.
Let us split the sum as follows:

∑

i

∥
∥fχI2,i

∥
∥
Lp(·)(X) ·

∥
∥gχI2,i

∥
∥
Lq′(·)(X) =

∑

i≤m0

(· · · ) +
∑

i>m0

(· · · ) =: J1 + J2. (2.18)

Since p(x) ≡ pc = const, q(x) = qc = const outside the ball B(x0, 1), by using Hölder’s
inequality and the fact that pc ≤ qc, we have

J2 =
∑

i>m0

∥
∥fχI2,i

∥
∥
Lpc (X) ·

∥
∥gχI2,i

∥
∥
L(qc)′ (X) ≤ c

∥
∥f
∥
∥
Lp(·)(X) ·

∥
∥g
∥
∥
Lq′(·)(X). (2.19)

Let us estimate J1. Suppose that ‖f‖Lp(·)(X) ≤ 1 and ‖g‖Lq′(·)(X) ≤ 1. Also, by
Proposition 2.6, we have that 1/q′ ∈ LH(X, x0). Therefore, by Lemma 2.13 and the fact
that 1/q′ ∈ LH(X, x0), we obtain that μ(I2,k)

1/q+(I2,k) ≈ ‖χI2,k‖Lq(·)(X) ≈ μ(I2,k)
1/q−(I2,k) and

μ(I2,k)
1/q′+(I2,k) ≈ ‖χI2,k‖Lq′(·)(X) ≈ μ(I2,k)

1/q′−(Ik), where k ≤ m0. Further, observe that these
estimates and Hölder’s inequality yield the following chain of inequalities:

J1 ≤ c
∑

k≤m0

∫

B(x0,Am0+1)

∥∥fχI2,k

∥∥
Lp(·)(X) ·

∥∥gχI2,k

∥∥
Lq′(·)(X)∥∥χI2,k

∥∥
Lq(·)(X) ·

∥∥χI2,k

∥∥
Lq′(·)(X)

χEk(x)dμ(x)

= c

∫

B(x0,Am0+1)

∑

k≤m0

∥∥fχI2,k

∥∥
Lp(·)(X) ·

∥∥gχI2,k

∥∥
Lq′(·)(X)∥∥χI2,k

∥∥
Lq(·)(X) ·

∥∥χI2,k

∥∥
Lq′(·)(X)

χEk(x)dμ(x)

≤ c

∥∥∥∥∥

∑

k≤m0

∥∥fχI2,k

∥∥
Lp(·)(X)∥∥χI2,k

∥∥
Lq(·)(X)

χEk(x)

∥∥∥∥∥
Lq(·)(B(x0,Am0+1))

×
∥∥∥∥∥

∑

k≤m0

∥∥gχI2,k

∥∥
Lq′(·)(X)∥∥χI2,k

∥∥
Lq′(·)(X)

χEk(x)

∥∥∥∥∥
Lq′(·)(B(x0,Am0+1))

=: cS1
(
f
) · S2

(
g
)
.

(2.20)

Now we claim that S1(f) ≤ cI(f), where

I
(
f
)
:=

∥∥∥∥∥

∑

k≤m0

∥∥fχI2,k

∥∥
Lp(·)(X)∥∥χI2k

∥∥
Lp(·)(X)

χEk(·)

∥∥∥∥∥
Lp(·)(B(x0,Am0+1))

, (2.21)

and the positive constant c does not depend on f . Indeed, suppose that I(f) ≤ 1. Then taking
into account Lemma 2.13 we have that

∑

k≤m0

1
μ(I2,k)

∫

Ek

∥∥fχI2,k

∥∥p(x)
Lp(·)(X)

dμ(x)

≤ c

∫

B(x0,Am0+1)

(
∑

k≤m0

∥∥fχI2,k

∥∥
Lp(·)(X)∥∥χI2,k

∥∥
Lp(·)(X)

χEk(x)

)p(x)

dμ(x) ≤ c.

(2.22)
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Consequently, since p(x) ≤ q(x), Ek ⊆ I2,k and ‖f‖Lp(·)(X) ≤ 1, we find that

∑

k≤m0

1
μ(I2,k)

∫

Ek

∥
∥fχI2,k

∥
∥q(x)
Lp(·)(X)

dμ(x) ≤
∑

k≤m0

1
μ(I2,k)

∫

Ek

∥
∥fχI2,k

∥
∥p(x)
Lp(·)(X)

dμ(x) ≤ c. (2.23)

This implies that S1(f) ≤ c. Thus, the desired inequality is proved. Further, let us introduce
the following function:

P
(
y
)
:=
∑

k≤2
p+(I2,k)χEk(y). (2.24)

It is clear that p(y) ≤ P(y) because Ek ⊂ I2,k. Hence

I
(
f
) ≤ c

∥∥∥∥∥

∑

k≤m0

∥∥fχI2,k

∥∥
Lp(·)(X)∥∥χI2k

∥∥
Lp(·)(X)

χEk(·)

∥∥∥∥∥
LP(·)(B(x0,Am0+1))

(2.25)

for some positive constant c. Then, by using this inequality, the definition of the function P,
the condition p ∈ LH(X), and the obvious estimate ‖χI2,k‖p+(I2,k)Lp(·)(X)

≥ cμ(I2,k), we find that

∫

B(x0,Am0+1)

(
∑

k≤m0

∥∥fχI2,k

∥∥
Lp(·)(X)∥∥χI2,k

∥∥
Lp(·)(X)

χEk(x)

)P(x)

dμ(x)

=
∫

B(x0,Am0+1)

⎛

⎝
∑

k≤m0

∥∥fχI2,k

∥∥p+(I2,k)
Lp(·)(X)

∥∥χI2,k

∥∥p+(I2,k)
Lp(·)(X)

χEk(x)

⎞

⎠dμ(x)

≤ c

∫

B(x0,Am0+1)

⎛

⎝
∑

k≤m0

∥∥fχI2,k

∥∥p+(I2,k)
Lp(·)(X)

μ(I2,k)
χEk(x)

⎞

⎠dμ(x) ≤ c
∑

k≤m0

∥∥fχI2,k

∥∥p+(I2,k)
Lp(·)(X)

≤ c
∑

k≤m0

∫

I2,k

∣∣f(x)
∣∣p(x)dμ(x) ≤ c

∫

X

∣∣f(x)
∣∣p(x)dμ(x) ≤ c.

(2.26)

Consequently, I(f) ≤ c‖f‖Lp(·)(X). Hence, S1(f) ≤ c‖f‖Lp(·)(X). Analogously taking into
account the fact that q′ ∈ DL(X) and arguing as above, we find that S2(g) ≤ c‖g‖Lq′(·)(X). Thus,
summarizing these estimates we conclude that

∑

i≤m0

∥∥fχIi

∥∥
Lp(·)(X)

∥∥gχIi

∥∥
Lq′(·)(X) ≤ c

∥∥f
∥∥
Lp(·)(X)

∥∥g
∥∥
Lq′(·)(X). (2.27)

Lemma 2.14 for Lp(·)([0, 1]) spaces defined with respect to the Lebesgue measure was
derived in [24] (see also [22] for X = R

n, d(x, y) = |x − y|, and dμ(x) = dx).
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3. Hardy-Type Transforms

In this section, we derive two-weight estimates for the operators:

Tv,wf(x) = v(x)
∫

Bx0x

f
(
y
)
w
(
y
)
dμ
(
y
)
, T ′

v,wf(x) = v(x)
∫

X\Bx0x

f
(
y
)
w
(
y
)
dμ
(
y
)
.

(3.1)

Let a be a positive constant, and let p be a measurable function defined on X. Let us
introduce the notation:

p0(x) := p−
(
Bx0x

)
; p̃0(x) :=

⎧
⎨

⎩

p0(x) if d(x0, x) ≤ a;

pc = const if d(x0, x) > a.

p1(x) := p−
(
B(x0, a) \ Bx0x

)
; p̃1(x) :=

⎧
⎨

⎩

p1(x) if d(x0, x) ≤ a;

pc = const if d(x0, x) > a.

(3.2)

Remark 3.1. If we deal with a quasimetric measure space with L < ∞, then we will assume
that a = L. Obviously, p̃0 ≡ p0 and p̃1 ≡ p1 in this case.

Theorem 3.2. Let (X, d, μ) be a quasimetric measure space. Assume that p and q are measurable
functions on X satisfying the condition 1 < p− ≤ p̃0(x) ≤ q(x) ≤ q+ < ∞. In the case when L = ∞,
suppose that p ≡ pc ≡ const, q ≡ qc ≡ const, outside some ball B(x0, a). If the condition

A1 := sup
0≤t≤L

∫

t<d(x0,x)≤L
(v(x))q(x)

(∫

d(x0,x)≤t
w(p̃0)

′(x)(y
)
dμ
(
y
)
)q(x)/(p̃0)

′(x)

dμ(x) < ∞, (3.3)

holds, then Tv,w is bounded from Lp(·)(X) to Lq(·)(X).

Proof. Here we use the arguments of the proofs of Theorem 1.1.4 in [31, (see page 7)] and of
Theorem 2.1 in [21]. First, we notice that p− ≤ p0(x) ≤ p(x) for all x ∈ X. Let f ≥ 0 and let
Sp(f) ≤ 1. First, assume that L < ∞. We denote

I(s) :=
∫

d(x0,y)<s
f
(
y
)
w
(
y
)
dμ
(
y
)

for s ∈ [0, L]. (3.4)

Suppose that I(L) < ∞, then I(L) ∈ (2m, 2m+1] for some m ∈ Z. Let us denote sj := sup{s :
I(s) ≤ 2j}, j ≤ m, and sm+1 := L. Then {sj}m+1

j=−∞ is a nondecreasing sequence. It is easy to check
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that I(sj) ≤ 2j , I(s) > 2j for s > sj , and 2j ≤ ∫sj≤d(x0,y)≤sj+1 f(y)w(y)dμ(y). If β := limj→−∞sj ,
then d(x0, x) < L if and only if d(x0, x) ∈ [0, β] ∪ ⋃m

j=−∞(sj , sj+1]. If I(L) = ∞, then we take
m = ∞. Since 0 ≤ I(β) ≤ I(sj) ≤ 2j for every j, we have that I(β) = 0. It is obvious that
X =

⋃
j≤m{x : sj < d(x0, x) ≤ sj+1}. Further, we have that

Sq

(
Tv,wf

)
=
∫

X

(
Tv,wf(x)

)q(x)
dμ(x) =

∫

X

(

v(x)
∫

B(x0,d(x0,x))
f
(
y
)
w
(
y
)
dμ
(
y
)
)q(x)

dμ(x)

=
∫

X

(v(x))q(x)
(∫

B(x0,d(x0,x))
f
(
y
)
w
(
y
)
dμ
(
y
)
)q(x)

dμ(x)

≤
m∑

j=−∞

∫

sj<d(x0,x)≤sj+1
(v(x))q(x)

(∫

d(x0,y)<sj+1
f
(
y
)
w
(
y
)
dμ
(
y
)
)q(x)

dμ(x).

(3.5)

Let us denote

Bj(x0) :=
{
x ∈ X : sj−1 ≤ d(x0, x) ≤ sj

}
. (3.6)

Notice that I(sj+1) ≤ 2j+1 ≤ 4
∫
Bj (x0)

w(y)f(y)dμ(y). Consequently, by this estimate and
Hölder’s inequality with respect to the exponent p0(x)we find that

Sq

(
Tv,wf

) ≤ c
m∑

j=−∞

∫

sj<d(x0,x)≤sj+1
(v(x))q(x)

(∫

Bj (x0)
f
(
y
)
w
(
y
)
dμ
(
y
)
)q(x)

dμ(x)

≤ c
m∑

j=−∞

∫

sj<d(x0,x)≤sj+1
(v(x))q(x)Jk(x)dμ(x),

(3.7)

where

Jk(x) :=

(∫

Bj (x0)
f
(
y
)p0(x)dμ

(
y
)
)q(x)/p0(x)(∫

Bj (x0)
w
(
y
)(p0)′(x)dμ

(
y
)
)q(x)/(p0)

′(x)

. (3.8)



Journal of Inequalities and Applications 13

Observe now that q(x) ≥ p0(x). Hence, this fact and the condition Sp(f) ≤ 1 imply that

Jk(x) ≤ c

(∫

Bj (x0)∩{y:f(y)≤1}
f
(
y
)p0(x)dμ

(
y
)
+
∫

Bj (x0)∩{y:f(y)>1}
f
(
y
)p(y)

dμ
(
y
)
)q(x)/p0(x)

×
∫

Bj (x0)
w
((

y
)(p0)′(x)dμ

(
y
))q(x)/(p0)′(x)

≤ c

(

μ
(
Bj(x0)

)
+
∫

Bj (x0)∩{y:f(y)>1}
f
(
y
)p(y)

dμ
(
y
)
)

×
(∫

Bj (x0)
w(y)(p0)

′(x)dμ
(
y
)
)q(x)/(p0)

′(x)

.

(3.9)

It follows now that

Sq

(
Tv,wf

) ≤ c

⎛

⎝
m∑

j=−∞
μ
(
Bj(x0)

)
∫

sj<d(x0,x)≤sj+1
v(x)q(x)

×
(∫

Bj (x0)
w
(
y
)(p′0)(x)dμ

(
y
)
)q(x)/(p0)

′(x)

dμ(x)

+
m∑

j=−∞

(∫

Bj (x0)∩{y:f(y)>1}
f
(
y
)p(y)

dμ
(
y
)
)∫

sj<d(x0,x)≤sj+1
v(x)q(x)

×
(∫

Bj (x0)
w
(
y
)(p0)′(x)dμ

(
y
)
)q(x)/(p0)

′(x)

dμ(x)

⎞

⎠ := c(N1 +N2).

(3.10)

Since L < ∞, it is obvious that

N1 ≤ A1

m+1∑

j=−∞
μ
(
Bj(x0)

) ≤ CA1,

N2 ≤ A1

m+1∑

j=−∞

∫

Bj (x0)
f
(
y
)p(y)

dμ
(
y
) ≤ C

∫

X

(
f
(
y
))p(y)

dμ
(
y
)
= A1Sp

(
f
) ≤ A1.

(3.11)

Finally, Sq(Tv,wf) ≤ c(CA1 +A1) < ∞. Thus, Tv,w is bounded if A1 < ∞.
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Let us now suppose that L = ∞. We have

Tv,wf(x) = χB(x0,a)(x)v(x)
∫

Bx0x

f
(
y
)
w
(
y
)
dμ
(
y
)

+ χX\B(x0,a)(x)v(x)
∫

Bx0x

f
(
y
)
w
(
y
)
dμ
(
y
)
=: T (1)

v,wf(x) + T
(2)
v,wf(x).

(3.12)

By using the already proved result for L < ∞ and the fact that diam(B(x0, a)) < ∞, we
find that ‖T (1)

v,wf‖Lq(·)(B(x0,a))
≤ c‖f‖Lp(·)(B(x0,a)) ≤ c because

A
(a)
1 := sup

0≤t≤a

∫

t<d(x0,x)≤a
(v(x))q(x)

(∫

d(x0,x)≤t
w(p0)

′(x)(y
)
dμ
(
y
)
)q(x)/(p0)

′(x)

dμ(x) ≤ A1 < ∞.

(3.13)

Further, observe that

T
(2)
v,wf(x) = χX\B(x0,a)(x)v(x)

∫

Bx0x

f
(
y
)
w
(
y
)
dμ
(
y
)
= χX\B(x0,a)(x)v(x)

×
∫

d(x0,y)≤a
f
(
y
)
w
(
y
)
dμ
(
y
)

+ χX\B(x0,a)(x)v(x)
∫

a≤d(x0,y)≤d(x0,x)
f
(
y
)
w
(
y
)
dμ
(
y
)
=: T (2,1)

v,w f(x) + T
(2,2)
v,w f(x).

(3.14)

It is easy to see that (see also [31, Theorems 1.1.3 or 1.1.4]) the condition

A
(a)
1 := sup

t≥a

(∫

d(x0,x)≥t
(v(x))qcdμ(x)

)1/qc(∫

a≤d(x0,y)≤t
w
(
y
)(pc)′dμ

(
y
)
)1/(pc)

′

< ∞ (3.15)

guarantees the boundedness of the operator

Tv,wf(x) = v(x)
∫

a≤d(x0,y)<d(x0,x)
f
(
y
)
w
(
y
)
dμ
(
y
)

(3.16)



Journal of Inequalities and Applications 15

from Lpc(X \ B(x0, a)) to Lqc(X \ B(x0, a)). Thus, T
(2,2)
v,w is bounded. It remains to prove that

T
(2,1)
v,w is bounded. We have

∥
∥
∥T (2,1)

v,w f
∥
∥
∥
Lp(·)(X)

=

(∫

(B(x0,a))c
v(x)qcdμ(x)

)1/qc(∫

B(x0,a)
f
(
y
)
w
(
y
)
dμ
(
y
)
)

≤
(∫

(B(x0,a))c
v(x)qcdμ(x)

)1/qc∥
∥f
∥
∥
Lp(·)(B(x0,a))

‖w‖Lp′(·)(B(x0,a)).

(3.17)

Observe, now, that the condition A1 < ∞ guarantees that the integral

∫

(B(x0,a))c
v(x)qcdμ(x) (3.18)

is finite. Moreover, N := ‖w‖Lp′(·)(B(x0,a)) < ∞. Indeed, we have that

N ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(∫

B(x0,a)
w
(
y
)p′(y)

dμ
(
y
)
)1/(p−(B(x0,a)))

′

if ‖w‖Lp′(·)(B(x0,a)) ≤ 1,

(∫

B(x0,a)
w
(
y
)p′(y)

dμ
(
y
)
)1/(p+(B(x0,a)))

′

if ‖w‖Lp′(·)(B(x0,a)) > 1.

(3.19)

Further,

∫

B(x0,a)
w
(
y
)p′(y)

dμ
(
y
)

=
∫

B(x0,a)∩{w≤1}
w
(
y
)p′(y)

dμ
(
y
)
+
∫

B(x0,a)∩{w>1}
w
(
y
)p′(y)

dμ
(
y
)
:= I1 + I2.

(3.20)

For I1, we have that I1 ≤ μ(B(x0, a)) < ∞. Since L = ∞ and condition (2.1) holds, there exists
a point y0 ∈ X such that a < d(x0, y0) < 2a. Consequently, B(x0, a) ⊂ B(x0, d(x0, y0)) and
p(y) ≥ p−(B(x0, d(x0, y0))) = p0(y0), where y ∈ B(x0, a). Consequently, the condition A1 < ∞
yields I2 ≤ ∫B(x0,a)

w(y)(p0)
′(y0)dy < ∞. Finally, we have that ‖T (2,1)

v,w ‖f‖Lp(·)(X) ≤ C. Hence, Tv,w
is bounded from Lp(·)(X) to Lq(·)(X).

The proof of the following statement is similar to that of Theorem 3.2; therefore, we
omit it (see also the proofs of Theorem 1.1.3 in [31] and Theorems 2.6 and 2.7 in [21] for
similar arguments).
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Theorem 3.3. Let (X, d, μ) be a quasimetric measure space. Assume that p and q are measurable
functions on X satisfying the condition 1 < p− ≤ p̃1(x) ≤ q(x) ≤ q+ < ∞. If L = ∞, then, one
assumes that p ≡ pc ≡ const, q ≡ qc ≡ const outside some ball B(x0, a). If

B1 = sup
0≤t≤L

∫

d(x0,x)≤t
(v(x))q(x)

(∫

t≤d(x0,x)≤L
w(p̃1)

′(x)(y
)
dμ
(
y
)
)q(x)/(p̃1)

′(x)

dμ(x) < ∞, (3.21)

then T ′
v,w is bounded from Lp(·)(X) to Lq(·)(X).

Remark 3.4. If p ≡ const, then the condition A1 < ∞ in Theorem 3.2 (resp., B1 < ∞ in
Theorem 3.3) is also necessary for the boundedness of Tv,w (resp., T ′

v,w) from Lp(·)(X) to
Lq(·)(X). See [31, pages 4-5] for the details.

4. Potentials

In this section, we discuss two-weight estimates for the potential operators Tα(·) and Iα(·) on
quasimetric measure spaces, where 0 < α− ≤ α+ < 1. If α ≡ const , then we denote Tα(·) and
Iα(·) by Tα and Iα, respectively.

The boundedness of Riesz potential operators in Lp(·)(Ω) spaces, where Ω is a domain
in R

n was established in [5, 6, 36, 37].
For the following statement we refer to [11].

Theorem A. Let (X, d, μ) be an SHT . Suppose that 1 < p− ≤ p+ < ∞ and p ∈ P(1). Assume that
if L = ∞, then p ≡ const outside some ball. Let α be a constant satisfying the condition 0 < α < 1/p+.
One sets q(x) = p(x)/(1 − αp(x)). Then, Tα is bounded from Lp(·)(X) to Lq(·)(X).

Theorem B (see [9]). Let (X, d, μ) be a nonhomogeneous space with L < ∞ and letN be a constant
defined by N = a1(1 + 2a0), where the constants a0 and a1 are taken from the definition of the
quasimetric d. Suppose that 1 < p− < p+ < ∞, p, α ∈ P(N) and that μ is upper Ahlfors 1-regular.
One defines q(x) = p(x)/(1 − α(x)p(x)), where 0 < α− ≤ α+ < 1/p+. Then Iα(·) is bounded from
Lp(·)(X) to Lq(·)(X).

For the statements and their proofs of this section, we keep the notation of the previous
sections and, in addition, introduce the new notation:

v
(1)
α (x) : = v(x)

(
μBx0x

)α−1
, w

(1)
α (x) := w−1(x); v

(2)
α (x) := v(x);

w
(2)
α (x) : = w−1(x)

(
μBx0x

)α−1;

Fx : =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

{

y ∈ X :
d
(
x0, y

)
L

A2a1
≤ d

(
x0, y

) ≤ A2La1d(x0, x)

}

, if L < ∞,

{

y ∈ X :
d
(
x0, y

)

A2a1
≤ d

(
x0, y

) ≤ A2a1d(x0, x)

}

, if L = ∞,

(4.1)

where A and a1 are constants defined in Definition 2.11 and the triangle inequality for d,
respectively. We begin this section with the following general-type statement.
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Theorem 4.1. Let (X, d, μ) be an SHT without atoms. Suppose that 1 < p− ≤ p+ < ∞ and α is a
constant satisfying the condition 0 < α < 1/p+. Let p ∈ P(1). One sets q(x) = p(x)/(1 − αp(x)).
Further, if L = ∞, then one assumes that p ≡ pc ≡ const outside some ball B(x0, a). Then the
inequality

∥
∥v
(
Tαf

)∥∥
Lq(·)(X) ≤ c

∥
∥wf

∥
∥
Lp(·)(X) (4.2)

holds if the following three conditions are satisfied:

(a) T
v
(1)
α ,w

(1)
α

is bounded from Lp(·)(X) to Lq(·)(X);

(b) T
v
(2)
α ,w

(2)
α

is bounded from Lp(·)(X) to Lq(·)(X);

(c) there is a positive constant b such that one of the following inequalities hold: (1) v+(Fx) ≤
bw(x) for μ− a.e. x ∈ X; (2) v(x) ≤ bw−(Fx) for μ− a.e. x ∈ X.

Proof. For simplicity, suppose that L < ∞. The proof for the case L = ∞ is similar to that of
the previous case. Recall that the sets Ii,k, i = 1, 2, 3 and Ek are defined in Section 2. Let f ≥ 0
and let ‖g‖Lq′(·)(X) ≤ 1. We have

∫

X

(
Tαf

)
(x)g(x)v(x)dμ(x)

=
0∑

k=−∞

∫

Ek

(
Tαf

)
(x)g(x)v(x)dμ(x)

≤
0∑

k=−∞

∫

Ek

(
Tαf1,k

)
(x)g(x)v(x)dμ(x) +

0∑

k=−∞

∫

Ek

(
Tαf2,k

)
(x)g(x)v(x)dμ(x)

+
0∑

k=−∞

∫

Ek

(
Tαf3,k

)
(x)g(x)v(x)dμ(x) =: S1 + S2 + S3,

(4.3)

where f1,k = f · χI1,k , f2,k = f · χI2,k , f3,k = f · χI3,k .
Observe that if x ∈ Ek and y ∈ I1,k, then d(x0, y) ≤ d(x0, x)/Aa1. Consequently, the

triangle inequality for d yields d(x0, x) ≤ A′a1a0d(x, y), where A′ = A/(A − 1). Hence, by
using Remark 2.4, we find that μ(Bx0x) ≤ cμ(Bxy). Applying condition (a) now, we have that

S1 ≤ c

∥∥∥∥∥
(
μBx0x

)α−1
v(x)

∫

Bx0x

f
(
y
)
dμ
(
y
)
∥∥∥∥∥
Lq(x)(X)

∥∥g
∥∥
Lq′(·)(X) ≤ c

∥∥f
∥∥
Lp(·)(X). (4.4)

Further, observe that if x ∈ Ek and y ∈ I3,k, then μ(Bx0y) ≤ cμ(Bxy). By condition (b),
we find that S3 ≤ c‖f‖Lp(·)(X).
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Now we estimate S2. Suppose that v+(Fx) ≤ bw(x). Theorem A and Lemma 2.14 yield

S2 ≤
∑

k

∥
∥(Tαf2,k

)
(·)χEk(·)v(·)

∥
∥
Lq(·)(X)

∥
∥gχEk(·)

∥
∥
Lq′(·)(X)

≤
∑

k

(v+(Ek))
∥
∥(Tαf2,k

)
(·)∥∥Lq(·)(X)

∥
∥g(·)χEk(·)

∥
∥
Lq′(·)(X)

≤ c
∑

k

(v+(Ek))
∥
∥f2,k

∥
∥
Lp(·)(X)

∥
∥g(·)χEk(·)

∥
∥
Lq′(·)(X)

≤ c
∑

k

∥
∥f2,k(·)w(·)χI2,k(·)

∥
∥
Lp(·)(X)

∥
∥g(·)χEk(·)

∥
∥
Lq′(·)(X)

≤ c
∥
∥f(·)w(·)∥∥Lp(·)(X)

∥
∥g(·)∥∥Lq′(·)(X) ≤ c

∥
∥f(·)w(·)∥∥Lp(·)(X).

(4.5)

The estimate of S2 for the case when v(x) ≤ bw−(Fx) is similar to that of the previous
one. Details are omitted.

Theorems 4.1, 3.2, and 3.3 imply the following statement.

Theorem 4.2. Let (X, d, μ) be an SHT. Suppose that 1 < p− ≤ p+ < ∞ and α is a constant satisfying
the condition 0 < α < 1/p+. Let p ∈ P(1). One sets q(x) = p(x)/(1 − αp(x)). If L = ∞, then, one
supposes that p ≡ pc ≡ const outside some ball B(x0, a). Then inequality (4.2) holds if the following
three conditions are satisfied:

(i)

P1 : = sup
0<t≤L

∫

t<d(x0,x)≤L

(
v(x)

(
μ(Bx0x)

)1−α

)q(x)

×
(∫

d(x0,y)≤t
w−(p̃0)′(x)(y

)
dμ
(
y
)
)q(x)/(p̃0)

′(x)

dμ(x) < ∞;

(4.6)

(ii)

P2 : = sup
0<t≤L

∫

d(x0,x)≤t
(v(x))q(x)

×
(∫

t<d(x0,y)≤L

(
w
(
y
)(
μBx0y

)1−α)−(p̃1)
′(x)

dμ
(
y
)
)q(x)/(p̃1)

′(x)

dμ(x)<∞,

(4.7)

(iii) condition (c) of Theorem 4.1 holds.

Remark 4.3. If p = pc ≡ const on X, then the conditions Pi < ∞, i = 1, 2, are necessary for
(4.2). Necessity of the condition P1 < ∞ follows by taking the test function f = w−(pc)′χB(x0,t)

in (4.2) and observing that μBxy ≤ cμBx0x for those x and y which satisfy the conditions
d(x0, x) ≥ t and d(x0, y) ≤ t (see also [31, Theorem 6.6.1, page 418] for the similar arguments)
while necessity of the condition P2 < ∞ can be derived by choosing the test function
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f(x) = w−(pc)′(x)χX\B(x0,t)(x)(μBx0x)
(α−1)((pc)′−1) and taking into account the estimate μBxy ≤

μBx0y for d(x0, x) ≤ t and d(x0, y) ≥ t.

The next statement follows in the same manner as the previous one. In this case,
Theorem B is used instead of Theorem A. The proof is omitted.

Theorem 4.4. Let (X, d, μ) be a nonhomogeneous space with L < ∞. Let N be a constant defined by
N = a1(1+2a0). Suppose that 1 < p− ≤ p+ < ∞, p, α ∈ P(N) and that μ is upper Ahlfors 1-regular.
We define q(x) = p(x)/(1 − α(x)p(x)), where 0 < α− ≤ α+ < 1/p+. Then the inequality

∥
∥v(·)(Iα(·)f

)
(·)∥∥Lq(·)(X) ≤ c

∥
∥w(·)f(·)∥∥Lp(·)(X) (4.8)

holds if
(i)

sup
0≤t≤L

∫

t<d(x0,x)≤L

(
v(x)

(d(x0, x))
1−α(x)

)q(x)(∫

B(x0,t)
w−(p0)′(x)(y

)
dμ
(
y
)
)q(x)/(p0)

′(x)

dμ(x) < ∞;

(4.9)

(ii)

sup
0≤t≤L

∫

B(x0,t)
(v(x))q(x)

(∫

t<d(x0,y)≤L

(
w
(
y
)
d
(
x0, y

)1−α(y))−(p1)
′(x)

dμ
(
y
)
)q(x)/(p1)

′(x)

dμ(x)<∞,

(4.10)

and (iii) condition (c) of Theorem 4.1 is satisfied.

Remark 4.5. It is easy to check that if p and α are constants, then conditions (i) and (ii) in
Theorem 4.4 are also necessary for (4.8). This follows easily by choosing appropriate test
functions in (4.8) (see also Remark 4.3).

Theorem 4.6. Let (X, d, μ) be an SHT without atoms. Let 1 < p− ≤ p+ < ∞ and let α be a constant
with the condition 0 < α < 1/p+. One sets q(x) = p(x)/(1 − αp(x)). Assume that p has a minimum
at x0 and that p ∈ LH(X). Suppose also that if L = ∞, then p is constant outside some ball B(x0, a).
Let v and w be positive increasing functions on (0, 2L). Then the inequality

∥∥v(d(x0, ·))
(
Tαf

)
(·)∥∥Lq(·)(X) ≤ c

∥∥w(d(x0, ·))f(·)
∥∥
Lp(·)(X) (4.11)

holds if

I1 : = sup
0<t≤L

I1(t) := sup
0<t≤L

∫

t<d(x0,x)≤L

(
v(d(x0, x))
(
μ(Bx0x)

)1−α

)q(x)

×
(∫

d(x0,y)≤t
w−(p̃0)′(x)(d

(
x0, y

))
dμ
(
y
)
)q(x)/(p̃0)

′(x)

dμ(x) < ∞,

(4.12)
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for L = ∞;

J1 : = sup
0<t≤L

∫

t<d(x0,x)≤L

(
v(d(x0, x))
(
μ(Bx0x)

)1−α

)q(x)

×
(∫

d(x0,y)≤t
w−p′(x0)

(
d
(
x0, y

))
dμ
(
y
)
)q(x)/p′(x0)

dμ(x) < ∞,

(4.13)

for L < ∞.

Proof. We prove the theorem for L = ∞. The proof for the case when L < ∞ is similar. Observe
that by Lemma 2.10 the condition p ∈ LH(X) implies p ∈ P(1). We will show that the
condition I1 < ∞ implies the inequality v(A2a1t)/w(t) ≤ C for all t > 0, where A and a1

are constants defined in Definition 2.11 and the triangle inequality for d, respectively. Indeed,
let us assume that t ≤ b1, where b1 is a small positive constant. Then, taking into account the
monotonicity of v andw and the facts that p̃0(x) = p0(x) (for small d(x0, x)) and μ ∈ RDC(X),
we have

I1(t) ≥
∫

A2a1t≤d(x0,x)<A3a1t

(
v
(
A2a1t

)

w(t)

)q(x)
(
μB(x0, t)

)(α−1/p0(x))q(x) dμ(x)

≥
(

v
(
A2a1t

)

w(t)

)q− ∫

A2a1t≤d(x0,x)<A3a1t

(
μB(x0, t)

)(α−1/p0(x))q(x)dμ(x) ≥ c

(
v
(
A2a1t

)

w(t)

)q−

.

(4.14)

Hence, c := limt→ 0(v(A2a1t)/w(t)) < ∞. Further, if t > b2, where b2 is a large number, then
since p and q are constants, for d(x0, x) > t, we have that

I1(t) ≥
(∫

A2a1t≤d(x0,x)<A3a1t

v(d(x0, x))
qc
(
μB(x0, t)

)(α−1)qcdμ(x)

)

×
(∫

B(x0,t)
w−(pc)′(x)dμ(x)

)qc/(pc)
′

dμ(x)

≥ C

(
v
(
A2a1t

)

w(t)

)qc ∫

A2a1t≤d(x0,x)<A3a1t

(
μB(x0, t)

)(α−1/pc) qcdμ(x) ≥ c

(
v
(
A2a1t

)

w(t)

)qc

.

(4.15)

In the last inequality we used the fact that μ satisfies the reverse doubling condition.
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Now we show that the condition I1 < ∞ implies

sup
t>0

I2(t) : = sup
t>0

∫

d(x0,x)≤t
(v(d(x0, x)))

q(x)

×
(∫

d(x0,y)>t
w−(p̃1)′(x)(d

(
x0, y

))(
μ
(
Bx0y

))(α−1)(p̃1)′(x)dμ
(
y
)
)q(x)/(p̃1)

′(x)

dμ(x) < ∞.

(4.16)

Due to monotonicity of functions v and w, the condition p ∈ LH(X), Proposition 2.6,
Lemmas 2.9, and 2.10 and the assumption that p has a minimum at x0, we find that for all
t > 0,

I2(t) ≤
∫

d(x0,x)≤t

(
v(t)
w(t)

)q(x)(
μ(B(x0, t))

)(α−1/p(x0))q(x)dμ(x)

≤ c

∫

d(x0,x)≤t

(
v(t)
w(t)

)q(x)(
μ(B(x0, t))

)(α−1/p(x0))q(x0)dμ(x)

≤ c

⎛

⎝
∫

d(x0,x)≤t

(
v
(
A2a1t

)

w(t)

)q(x)

dμ(x)

⎞

⎠(μ(B(x0, t))
)−1 ≤ C.

(4.17)

Now, Theorem 4.2 completes the proof.

Theorem 4.7. Let (X, d, μ) be an SHT with L < ∞. Suppose that p, q and α are measurable functions
on X satisfying the conditions: 1 < p− ≤ p(x) ≤ q(x) ≤ q+ < ∞ and 1/p− < α− ≤ α+ < 1. Assume
that α ∈ LH(X) and there is a point x0 ∈ X such that p, q ∈ LH(X, x0). Suppose also that w is a
positive increasing function on (0, 2L). Then the inequality

∥∥(Tα(·)f
)
v
∥∥
Lq(·)(X) ≤ c

∥∥w(d(x0, ·))f(·)
∥∥
Lp(·)(X) (4.18)

holds if the following two conditions are satisfied:

Ĩ1 : = sup
0<t≤L

∫

t≤d(x0,x)≤L

(
v(x)

(
μBx0x

)1−α(x)

)q(x)

×
(∫

d(x0,x)≤t
w−(p0)′(x)(d

(
x0, y

))
dμ
(
y
)
)q(x)/(p0)

′(x)

dμ(x) < ∞;

Ĩ2 : = sup
0<t≤L

∫

d(x0,x)≤t
(v(x))q(x)

×
(∫

t≤d(x0,x)≤L

(
w
(
d
(
x0, y

)) × (μBx0y

)1−α(x))−(p1)
′(x)

dμ
(
y
)
)q(x)/(p1)

′(x)

dμ(x) < ∞.

(4.19)
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Proof. For simplicity, assume that L = 1. First observe that by Lemma 2.10 we have p, q ∈
P(1, x0) and α ∈ P(1). Suppose that f ≥ 0 and Sp(w(d(x0, ·))f(·)) ≤ 1. We will show that
Sq(v(Tα(·)f)) ≤ C.

We have

Sq

(
vTα(·)f

)

≤ Cq

⎡

⎣
∫

X

(

v(x)
∫

d(x0,y)≤d(x0,x)/(2a1)
f
(
y
)(
μBxy

)α(x)−1
dμ
(
y
)
)q(x)

dμ(x)

+
∫

X

(

v(x)
∫

d(x0,x)/(2a1)≤d(x0,y)≤2a1d(x0,x)
f
(
y
)(
μBxy

)α(x)−1
dμ
(
y
)
)q(x)

dμ(x)

+
∫

X

(

v(x)
∫

d(x0,y)≥2a1d(x0,x)
f
(
y
)(
μBxy

)α(x)−1
dμ
(
y
)
)q(x)

dμ(x)

⎤

⎦ := Cq[I1 + I2 + I3].

(4.20)

First, observe that by virtue of the doubling condition for μ, Remark 2.4, and simple
calculation we find that μ(Bx0x) ≤ cμ(Bxy). Taking into account this estimate and Theorem 3.2
we have that

I1 ≤ c

∫

X

(
v(x)

(
μBx0x

)1−α(x)

∫

d(x0,y)<d(x0,x)
f
(
y
)
dμ
(
y
)
)q(x)

dμ(x) ≤ C. (4.21)

Further, it is easy to see that if d(x0, y) ≥ 2a1d(x0, x), then the triangle inequality for
d and the doubling condition for μ yield that μBx0y ≤ cμBxy. Hence, due to Proposition 2.7,
we see that (μBx0y)

α(x)−1 ≥ c(μBxy)
α(y)−1 for such x and y. Therefore, Theorem 3.3 implies that

I3 ≤ C.
It remains to estimate I2. Let us denote:

E(1)(x) := Bx0x \ B
(
x0,

d(x0, x)
2a1

)
; E(2)(x) := B(x0, 2a1d(x0, x)) \ Bx0x. (4.22)

Then we have that

I2 ≤ C

⎡

⎣
∫

X

[

v(x)
∫

E(1)(x)
f
(
y
)(
μBxy

)α(x)−1
dμ
(
y
)
]q(x)

dμ(x)

+
∫

X

[

v(x)
∫

E(2)(x)
f
(
y
)(
μBxy

)α(x)−1
dμ
(
y
)
]q(x)

dμ(x)

⎤

⎦ =: c[I21 + I22].

(4.23)
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Using Hölder’s inequality for the classical Lebesgue spaces we find that

I21 ≤
∫

X

vq(x)(x)

(∫

E(1)(x)
wp0(x)

(
d
(
x0, y

))(
f
(
y
))p0(x)dμ

(
y
)
)q(x)/p0(x)

×
(∫

E(1)(x)
w−(p0)′(x)(d

(
x0, y

))(
μBxy

)(α(x)−1)(p0)′(x)dμ
(
y
)
)q(x)/(p0)

′(x)

dμ(x) .

(4.24)

Denote the first inner integral by J(1) and the second one by J(2).
By using the fact that p0(x) ≤ p(y), where y ∈ E(1)(x), we see that J(1) ≤ μ(Bx0x) +∫

E(1)(x) (f(y))
p(y)(w(d(x0, y)))

p(y)
dμ(y), while by applying Lemma 2.9, for J(2), we have that

J(2) ≤ cw−(p0)′(x)
(
d(x0, x)
2a1

)∫

E(1)(x)

(
μBxy

)(α(x)−1)(p0)′(x)dμ
(
y
)

≤ cw−(p0)′(x)
(
d(x0, x)
2a1

)
(
μBx0x

)(α(x)−1)(p0)′(x)+1.

(4.25)

Summarizing these estimates for J(1) and J(2) we conclude that

I21 ≤
∫

X

vq(x)(x)
(
μBx0x

)q(x)α(x)
w−q(x)

(
d(x0, x)
2a1

)
dμ(x) +

∫

X

vq(x)(x)

×
(∫

E(1)(x)
wp(y)(d

(
x0, y

))(
f
(
y
))p(y)

dμ
(
y
)
)q(x)/p0(x)(

μBx0x

)q(x)(α(x)−1/p0(x))

×w−q(x)
(
d(x0, x)
2a1

)
dμ(x) =: I(1)21 + I

(2)
21 .

(4.26)

By applying monotonicity ofw, the reverse doubling property for μwith the constants
A and B (see Remark 2.12), and the condition Ĩ1 < ∞we have that

I
(1)
21 ≤ c

0∑

k=−∞

∫

B(x0,Ak)\B(x0,Ak−1)
v(x)q(x)

(∫

B(x0,Ak−1/2a1)
w−(p0)′(x)(d

(
x0, y

))
dμ
(
y
)
)q(x)/(p0)

′(x)

× (μBx0,x

)q(x)/p0(x)+(α(x)−1)q(x)dμ(x) ≤ c
0∑

k=−∞

(
μB
(
x0, A

k
))q−/p+
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×
∫

B(x0,Ak)\B(x0,Ak−1)
v(x)q(x)

(∫

B(x0,Ak)
w−(p0)′(x)(d

(
x0, y

))
dμ
(
y
)
)q(x)/(p0)

′(x)

× (μBx0,x

)q(x)(α(x)−1)
dμ(x) ≤ c

0∑

k=−∞

(
μB
(
x0, A

k
)
\ B
(
x0, A

k−1
))q−/p+

≤ c
0∑

k=−∞

∫

μB(x0,Ak)\B(x0,Ak−1)

(
μBx0,x

)q−/p+−1dμ
(
y
)

≤ c

∫

X

(
μBx0,x

)q−/p+−1dμ
(
y
)
< ∞.

(4.27)

Due to the facts that q(x) ≥ p0(x), Sp(w(d(x0, ·)f(·))) ≤ 1, Ĩ1 < ∞ andw is increasing,
for I(2)21 , we find that

I
(2)
21 ≤ c

0∑

k=−∞

(∫

μB(x0,Ak+1a1)\ B(x0,Ak−2)
wp(y)(d

(
x0, y

))(
f
(
y
))p(y)

dμ
(
y
)
)

×
⎛

⎝
∫

μB(x0,Ak)\B(x0,Ak−1)
vq(x)(x)

(∫

B(x0,Ak−1)
w−(p0)′(x)(d

(
x0, y

))
dμ
(
y
)
)q(x)/(p0)

′(x)

×(μBx0,x

)(α(x)−1)q(x)
dμ(x)

⎞

⎠ ≤ cSp

(
f(·)w(d(x0, ·)) ≤ c.

(4.28)

Analogously, the estimate for I22 follows. In this case, we use the condition Ĩ2 < ∞ and
the fact that p1(x) ≤ p(y) when d(x0, x) ≤ d(x0, y) < 2a1d(x0, x). The details are omitted. The
theorem is proved.

Taking into account the proof of Theorem 4.6, we can easily derive the following
statement, proof of which is omitted.

Theorem 4.8. Let (X, d, μ) be an SHT with L < ∞. Suppose that p, q and α are measurable functions
on X satisfying the conditions 1 < p− ≤ p(x) ≤ q(x) ≤ q+ < ∞ and 1/p− < α− ≤ α+ < 1. Assume
that α ∈ LH(X). Suppose also that there is a point x0 such that p, q ∈ LH(X, x0) and p has a
minimum at x0. Let v and w be a positive increasing function on (0, 2L) satisfying the condition
J1 < ∞ (see Theorem 4.6). Then inequality (4.11) is fulfilled.

Theorem 4.9. Let (X, d, μ) be an SHT with L < ∞ and let μ be upper Ahlfors 1-regular. Suppose
that 1 < p− ≤ p+ < ∞ and that p ∈ LH(X). Let p have a minimum at x0. Assume that α is constant
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satisfying the condition α < 1/p+. We set q(x) = p(x)/(1−αp(x)). If v andw are positive increasing
functions on (0, 2L) satisfying the condition

E : = sup
0≤t≤L

∫

t<d(x0,x)≤L

(
v(d(x0, x))

(d(x0, x))
1−α

)q(x)

×
(∫

d(x0,x)≤t
w−(p0)′(x)(y

)
dμ
(
y
)
)q(x)/(p0)

′(x)

dμ(x) < ∞,

(4.29)

then the inequality

∥
∥v(d(x0, ·))

(
Iαf

)
(·)∥∥Lq(·)(X) ≤ c

∥
∥w(d(x0, ·))f(·)

∥
∥
Lp(·)(X) (4.30)

holds.

Proof. The proof is similar to that of Theorem 4.6, we only discuss some details. First, observe
that due to Remark 2.5 we have that p ∈ P(N), whereN = a1(1+ 2a0). It is easy to check that
the condition E < ∞ implies that v(A2a1t)/w(t) ≤ C for all t, where the constant A is defined
in Definition 2.11 and a1 is from the triangle inequality for d. Further, Lemmas 2.9 and 2.10,
the fact that p has a minimum at x0, and the inequality

∫

d(x0,y)>t

(
d
(
x0, y

))(α−1)(p1)′(x)dμ
(
y
) ≤ ct(α−1)(p1)

′(x)+1, (4.31)

where the constant c does not depend on t and x, yield that

sup
0≤t≤L

∫

d(x0,x)≤t
(v(d(x0, x)))

q(x)

×
⎛

⎝
∫

d(x0,y)>t

(
w
(
d
(
x0, y

))

(
d
(
x0, y

))1−α

)−(p1)′(x)
dμ
(
y
)
⎞

⎠

q(x)/(p1)
′(x)

dμ(x) < ∞.

(4.32)

Theorem 4.4 completes the proof.

Example 4.10. Let v(t) = tγ andw(t) = tβ, where γ and β are constants satisfying the condition
0 ≤ β < 1/(p−)

′, γ ≥ max{0, 1 − α − (1/q+) − (q−/q+)(−β + (1/(p−)
′))}. Then (v,w) satisfies the

conditions of Theorem 4.6.
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